Asymptotic behavior of Rauzy’s sequence
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Abstract. For the sequence u(n) defined by
u) ==z, w@)=y,  un)=u(ln/3])+uln—[n/3]) (n=3),

lim,, o, u(n)/n exists and is approximately equal to 0.37512046x+0.31243977y.

To prove the claimed result, we must make various estimates. First, however,
we prove a lemma on equidistribution mod 1. For real z, let {x} =z — |x] be
the fractional part of z.

Lemma 1 Let 0 be irrational and I be a subinterval of [0, 1] with length L. For
v real and k € Z, define z1 g(7y, k) to be 1 if {y+k0} € I and 0 otherwise. Then
asn — 0o, + > o<k<n 21,0(7s k) = L uniformly in .

Proof. Let w(vy,n) = g<pcn 21,0(7,k). Since 0 is irrational, for any real
and v € [0,1], there is at most one k € Z with {y + k0} = v. Let I have left
endpoint ¢ and right endpoint b, so L = b—a. If L = 0, the previous remark then
implies that w(vy,n) < 1 for all n, and if L = 1, it implies that w(y,n) > n—1 for
all n. Uniform convergence of w(~y, n)/n is clear in both cases, so let L € (0,1). If
a =0, add (1-5b)/2 to a and b. This replaces w(vy,n)/n by w(y—(1-0)/2,n)/n,
and the uniform convergence of the latter clearly implies that of the former. If
b = 1, similarly, subtract a/2 from a and b. After these changes we may assume
0<a<b<1l Letmin(L/2,a,1 —0b) > e > 0. Any continuous function on
R/Z can be approximated arbitrarily closely by a trigonometric polynomial [2,
Theorem 2.5]. It follows that there are trigonometric polynomials R;(t) and



R5(t) such that

1+e > Ri(t) > 1, t € [a,b];
e > Ri(t) > 0, tel0,a—€eUb+el];
1+e > Ri(t) > 0, te(a—ea)U(bb+e)
1 > Ro(t) > 1—g¢ tela+eb—e;
0 > Re(t) > —¢ t€10,a]U b, 1];
1 > Ro(t) > —¢ te€ (a,a+e)U(b—¢b).

Let

Ri(t) = Z aljeQ’”jt, le{1,2}.

—m<j<m
Observe that as @ is irrational, €2™7% #£ 1 for all j # 0. Therefore
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for some constants Z; and Z, independent of 7. Now
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0

and .
agoz/ Ro(t)dt > —e+1-(b—a—2¢) = L — 3e.
0

Now, it is clear that Ry > x; > Rs on [0, 1], where y; is the indicator function
of I. It follows that
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L — > —_ > - > 7
+ 3e+ - > aqo + = E Ri({~v+k0}) > -
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1 Z Z
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Letting ¢ — 0 concludes the proof. |

Lemma 2 Fiz irrational 0 and a subinterval I of [0,1] with length L. Allow
v >0, B1 > Bo, and v to vary in any way such that v — 0 and v(B1—By)? — 0.

Then .
NS 21’0(%@6—”(6—[30)2_)@
BeZ,
Bo<B<B
and

2 L

VY ey Bt 5 VTE
peZ,
Bo<B<P1

Proof. We prove the first limit; since each term in the sum is bounded by 1,
the second is then clear. Summation by parts gives, for any v > 0,

2 ’ 2 ’ 2
Z 2179(775)6*1’(5*50) — Z Z 21’0(775) (e*l’(ﬁ —Bo)” _ o—v(B'+1-po) )
Bo<B<B1 Bo<B'<P1 \Po<BLP’
+ Z 2179(7,6) 6*1’([51J+1*ﬁ0)2_ (1)
Bo<B<|B1]

We now estimate > 5 5 2r,0(7, 8). If 8 < Bo + v~/ then the trivial
bound 0 < 27,9(7, B) < 1 gives 3 5 <5< 21,0(7,8) = O(v=1/*). Otherwise, 3’ —

By > v~1* = 0, so we can apply Lemma 1 to find that Zﬁogﬁg,@' zr.o(v,B) =
(8" = [Bo] +1)(L + o(1)). Putting these estimates together yields

S 20003 8) = (8 = [Bo] + (L +o(1) + O/,
Bo<B<B’
uniformly in 8’. Substituting this into (1) gives

Z 21.6(7, B)e VBP0 =
Bo<B<p

D (8 = [Bo] + 1)L+ 0(1)) + O~ 1)) (e 00" — emr(Fiior
Bo<B'<p1

(18] = [Bo] + 1)(L + o(1)) + O~ /4))ev(LBr]+1=F0)*

= (L + 0(1)) Z (5' _ (ﬁo] + 1)(6—’/(5/—50)2 _ e—V(ﬂ/-‘rl—ﬁo)Q)
Bo<B'<P1

+ (18] = [Bol + 1)6_”(\-5”"‘1_50)2 + O(V_1/4)



and applying summation by parts again gives

ST e Be I = (Lto(1) [ DD e TN | oY)
Bo<B<B1 Bo<B<B

so it is enough to show that

NS (6= _, VT

2
Bo+1<B<p1
However, if 8 > By + 1, then

B+1 2 2 A 2
NG / eV PR3 < \fpe BB <y | eV BmR g
s A-1

and substituting v = /v(8 — fo) into the integrals yields
Vv (B—Bo) )

e—’de,y < \/176—1’(/5—50)2 S/ e~V dy.

/\/;(ﬁﬂo+1)
VV(B—Bo—1)

Vv (B—PBo)

Summing these inequalities and recalling that v — 0 proves that

V(81—
N, Z eV (B—B0)? _ /f( 1) 6772(1’}/ 0.
Bo+1<B<p 0

However, /v(81 — fy) — o0, so the integral approaches fooo 6’72d'y = /7/2.
This proves the lemma.

Let 0<p<1,a>b>1, and for n € Z~, let
X, ={(a,8) | o, 8 € Z>p,logn—loga < —alogp— Blog(l —p) < logn —logb}

and 0, = 0, (a,b) = 32, pres, (O‘:ﬁ) Define the entropy function H by H(x) =
—zlogz — (1 — z)log(1l — ).

Lemma 3 If logp/log(l — p) is irrational, ap < b, a(l —p) < b, and € > 0,
then for all large enough n, on/n is between —e + (loga — logb)/(aH (p)) and
e+ (loga —logb)/(bH (p)).

Proof. We may interchange p and 1 — p if necessary to find that, without loss
of generality, p < % < 1—p. Also, let n > max(a,e). Now, since ap < b and
a(l — p) < b, fixing « for some (o, 3) in ¥, determines 8, and vice versa. It
follows that there are most two (a, 8) € ,, with @ = 0 or § = 0. Deleting these
will change o, by at most 2, which is o(n). We will therefore take the sum in
o to be over only positive v and 3. We now have the estimate [1, (1.5)]

~1/@min(@,8) (OB y  (a+B) _ JatB , 5
€ 271'(166 - « - 271'0466 ’ 2)
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where

Yp=1(a,B) = (a+p)log(a+B)—aloga—Blogp
= alog(1+§)+ﬁlog(l+%).

Let @ be —alogp — Blog(1l —p), ag be pQ/H (p), and Sy be (1 —p)Q/H(p).
Observe that @_ < Q < @4, where Q_ = logn—loga, Q@+ = logn—logb. Since
—aplogp — Polog(l — p) = Q, we can write, for some A, o = ag + Alog(1l — p)
and 8 = By — Alogp. Now

datp = log(a+ ) —loga =log(1l + f/a),
s = log(a+ B) —logB =log(l+a/B),
dacd = 1/(a+p)—1/a,
aa[ﬂl) = 1/(0[—|—5)7
s = 1/(a+B)—1/B,

so if we fix Q and treat 1) as a function of A,
B «
Oxy = log(1 — p) log(1 + —) — logplog(1 + E)’

(logp —log(1 —p))*  (log(1—p))* (logp)®

Y = oy _ . —
We remark that
1/}|>\:0 = Qa
a)\¢|/\:0 = 0, and
IDala=o = (logp —log(1 —p))* _ (log(1—p))* _ (logp)
=0 ag + Bo @ By
__Hp)®
Qp(1—p)

Either a < ag or 8 < By and therefore

(logp)? — (logp —log(1 —p))*  (log(1 — p))?

< _ _
8)\/\7/} = B o
2 _ _ — m))2 _ 2
- max(_(logp) (logp —log(1 —p)) ’_(10g(1 p)))
Bo Qg
K
= —a, for some constant K > 0.

It follows that v < Q — KA\?/(2Q), so ¥ < Q4 — KA?/(2Q). Let N =
(logn)'/?loglogn. If |A| > N, then ¢ < logn — logb — K (loglogn)?/2, so
e¥ = O(ne~K(oglogn)’/2)  (Thig, and all succeeding o, O and € estimates,



are uniform with respect to «, 8, and A.) But a < —(logn — logb)/logp
and 8 < —(logn — logb)/log(l — p), so the part of the sum in o, we are
considering is over O((logn)?) terms. As \/(a + 3)/(2raf) is clearly bounded,
it follows that the portion of the sum in o, where |A| > (logn)*/?loglogn is
O(n(logn)2e=K(oglogn)*/2) — 4(p).

Assume from now on that |A] < N. If we take n sufficiently large, this will
imply that o > «p/2 and 8 > Sy/2. Then

N ((bg(l —p) —logp)® (log(1—p))* (logp)3>

(a0 + Bo)(a + B) Qo Bofs
2 ((log(l —p) —logp)®  (log(1 —p))* (10gp)3)

|0AAY — O |a=o]

(ao + Bo)? ap B
= 2/A0((logn)~?)
= O(loglogn(logn)~3/?),

IN

SO

v = Q- (H(p)*/(Qp(1—p))+ O(loglog n(logn) ~3/?))A?/2
= Q- NH(p)?*/(2p(1-p)Q) + O((loglogn)®(logn)~'/%).  (3)

Also, if |A] < N, we have

a/ag = 1+ Alog(1 — p)/ao = 1+ 0((loglogn)(logn)~1/2),
B/Bo = 1= Xlogp/Bo = 1+ O((loglogn)(logn)~1/2),
(@ +8)/(ao+ o) = 1+ A(log(1 —p) —logp)/(ao+Bo) = 1+ O((loglogn)(logn)~'/?),
atp ao + —1/2
maf 27Orao/3§ (1-+ O((toglog n)(log m) /%))
_ H{(p) -
= m(l + O((loglogn)(logn)~/2)). (4)

Finally, if |A] < X, then as we have already observed,
min(a, 5) = Q(logn). (5)

(2), (3), (4), and (5) then give

_J_HD) oln
70 =\ Zmpt (1 o()) + ol) (6)
where
=y, Q' exp(@Q-NH(p)/(2p(1-p)Q)).
(a,8)€EXn
IAJ<N



Observe that

-1/2 g_ H(P)d -1/2 Q. H(P)S
Qe olm, 2p(1—p)Qf) ST Q-TeTrelm 2p(1 —p)Q+” ")
where ,
dn )= Y, et
(a,8)€Sn
AN

Our task is now to estimate ¢(n, 1), where p > 0 and n is large. For 8 € Z, let
y(B) be 1 if there exists some o € Z with

logn —loga < —alogp — Blog(1 — p) < logn — logb, (8)

and 0 otherwise. Recalling that fixing S for some (a, 8) € X,, determines a and
that A = (B — B)/ log p, we have

¢(n7 /’L) = Z y(ﬂ)e_lt(ﬁ—ﬁo)z/(logp)z.
[B—Bo|<N|log p|
We can rewrite (8) as

< logn — loga log(1 —p) < —a+t loga —logb — o log(b/a)

logp logp — —logp @ logp
and an « satisfying this will evidently exist just when

{lognloga L glos(l p)} . <07 log(b/a)} |

log p logp

)

log p
Therefore, if I = (0,log(b/a)/logp], § = log(1 — p)/logp, and v = (logn —
loga)/logp, we have y(8) = z1,0(7, 8), so
d(n, 1) = Z 2 9(%5)(;#(6750)2/(103;17)2_
[8—Bo|<\|log p|

Now [ has length log(b/a)/logp, so it follows from Lemma 2 that, provided
that ¢ — 0 and pu\? —= oo,

Viid(n. 1) = V/wlog(afb). (9)

If i1 is a constant divided by either Q_ or @4, it is certainly true that g — 0
and p\? — co. Hence (7) and (9) yield

Q77 rtog(a/o)y | 2B (14 o)

Tn

IA

“12 0, 2p(1 - p)@Q
Q~""e?* /mlog(a/b) W

IN

(14 0(1)). (10)

Substituting (10) into (6) then yields the desired result. |



Lemma 4 Iflogp/log(1l—p) is irrational, then lim,,_, o 0, /n ezists and equals
Hp) (b=t —a™1).

Proof. Fix some integer m > 0 such that log(a/b)/m < min(—logp, —log(1 —
p)), and set ¢; = b(a/b)"/™ i =0, ..., m. It now follows from Lemma 3 that
foralli=0, ..., m — 1 and for large enough n,

loga—logb+ 1 S on(Cit1,¢i) S loga—logb_ 1

n = mei H(p)  m2

5 =

me; H (p) m

However, o,(a,b) = > o <;cm 0n(Cit1,¢i), so summing these inequalities over 4
gives, for large n,

1 +loga—logb Z C_1>an(a,b)> 1 +1oga—logb Z 1

o i Z Z Cit1:

m mH(p) 4= n m mH(p) 5=,
However, both L3 . c; ' and LN o<icm c;_ll are Riemann sums of the
integral B B

/1 1 b=!—a?
dx =
o bla/b)® loga —logb
so letting m — oo proves the lemma. |

We now proceed to examine Rauzy’s sequence. For any x and y, let

ugy(l) = z,
ul,y(2) = Y,
uw,y(n) = uz,y(l_n/gj) + um,y(” — [n/3]), n > 3.

It is immediately clear that u1 2(n) = n for all n and so

tey(n) = (&= Duro(n) + Suia(n)
= (&= Duon) + 5

for all n. To prove that u, ,(n)/n approaches a limit, it will therefore do to
prove that u1 o(n)/n approaches a limit. From now on, call u; g(n) u(n). Then
for positive integers n,

u(3n) = wu(n)+u(2n),
u@Bn+1) = uln)+u2n+1),
u@Bn+2) = uln)+u2n+2),

so if we write (du)(m) = u(m + 1) — u(m), then for positive integers n,
(0u)Bn) = (0u)(2n),
(bu)(Bn+1) = (éu)(2n+1),
(u)Bn+2) = (Gu)(n),



and u(1) =1, u(2) =0, u(3) = u(1)+u(2) = 1, s0 (du)(1) = —1 and (du)(2) = 1.
It follows by induction that |(du)(n)| =1 for all n; together with w(1) = 1, this
implies that u(n) < n for all n.

For all nonnegative real x, define go(z) = |z/3] and ¢1(z) = [22/3], let the
set of finite length words of Os and 1s be {0,1}*, and for each w = w; -+ - wy, €
{0,1}*, define gy = G, © * - - © Guy,,- Then for all positive integers n > m > 2,

un) = Y ulgow)+ Y ulgrw(n)). (11)
we{0,1}* we{0,1}*
guw(n)>m guw(n)>m
gow(n)<m g1w(n)<m

Fix n, and for all nonnegative real z, set ho(x) = z/3, hi(x) = 2z/3, and
hy = By, 0+ - -0y, for w € {0,1}*. We have |gj(xz)—h;(z)| < 1for j € {0,1}. It
follows by induction on the length of w that |g, (z) — by (2)] < 3 for w € {0,1}*.
Also, if m is an even integer, then for integral n, go,,(n) < m iff g, (n) < 3m+2
and g14(n) < m iff g, (n) < 3m/2, so we can rewrite (11) as

u(n) = > u(go(gw(n))) + > u(g1(9w(n)))
we{0,1}* we{0,1}"
3m+2>g., (n)>m+1 3m/2> g, (n)>m+1
= So(Bm+2,m+1)+S1(3m/2,m+ 1), (12)

where we write

Si(a,b) = > u(gi(gu(n)))-
we{0,1}*
aZQw(n)Zb

Now if we also write

Ti(a,b)= > ulgi(guw(n))).
wef{0,1}*
a>hqy (n)>b

then for all a > b+ 6,

Sj(a,b) = Tj(a=3,0+3)+ > u(gi(gu(m)+ Y u(g;(9w(n)))

we{0,1}" we{0,1}"
a+3>hy(n)>a—3 b+3>hy (n)>b—3
a>gu(n)>b a>gw(n)>b
SO
15;(a,b) — Tj(a—3,b+3)| < Tj(a+4,a—3) +T;(b+3.b—3).  (13)

Now if w € {0,1}* and hy(x) > 6, as |hy(z) — gw(z)| < 3, we have g, (z) >
3. It follows that if j € {0,1}, then |g;(hw(z)) — g](gw( )| < 2. Now
since g;(huw(x)) = g;(6) = 2 and g;(gw(z)) = g;(3) = 1, u(g;(hw(x))) and



u(gj(gw(x))) are defined, and since |(du)(n)| = 1 for all positive integral n,
[u(gj (9w ())) — u(g;(hw(x)))| < 2. Therefore, if we set

Uj(a,b) = > ulgi(hu(n)),
we{0,1}*
a>hy, (n)>b

V(a,b) = Z 1,

we{0,1}
a>hy, (n)>b

we have, for b > 6,
|Tj(a,b) = Uj(a,b)| < 2V (a,b). (14)

Combining (12), (13), and (14) now yields, if m > 14,
lu(n) —Up(3m —1,m +4) = U1(3m/2 —3,m +4)| <
Uo(3m~+6,3m—1)+Uy(m~+4, m—2)+U;(3m/2+4,3m/2—3)+U; (m+4, m—2)+
2V (3m + 6,3m — 1) + 4V (m + 4,m — 2) + 2V (3m/2 + 4, 3m/2 — 3)+
2V(3m — 1,m+4) + 2V (3m/2 — 3,m + 4). (15)
Now if z < a, j € {0,1}, u(g;(z)) is defined, and a is integral, then u(g;(x)) <
g;i(z) < gj(a) <a,so
Uj(a,b) < aV(a,b) (j € {0,1}, a, b integral, b > 3.) (16)

Also, if j € {0, 1}, ¢ is a positive integer and x € [i,i+1), then |g;(z)—g;(4)] < 1,
so if u(g; (7)) is defined, |u(g;(x)) — u(g;(¢))] < 1. This means that

Uj(a,0) = > ulg;())V(i+1,i)| < V(a,b)  (j €{0,1}, a, b integral, b > 3.)
a>i>b
(17)
Substituting (16) and (17) into (15) yields

uln) = Y ulge(@)V(i+1,0) - > w(gr(D))V(i+1,9)| <
3m—1>i>m-+4 3m/2—3>i>m+4
(3m+8)V (3m+6, 3m—1)+(2m+12)V (m+4, m—2)+(3m/2+6)V (3m/2+4, 3m/2-3)
+3V(3m — 1,m +4) + 3V (3m/2 — 3,m + 4). (18)

Now observe that, if the word w has a Os and 8 1s, hy(z) = (3)*(2)?z. There-
fore, if we set p = %, V(a,b) = on(a,b). Now fix m > 50, divide (18) by n and
let n tend to infinity. We can then apply Lemma 4 to find that for any € > 0,

u(n) _ _ulgo(i) wgr(@) |, 23
K 3m—1>ZiZm+4 H(%)Z Lt 1) 3m/2—§iZm+4 H(%)Z(Z + 1) = +H(%)m
(19)

10



for sufficiently large n. Letting e = 1/m and m — oo now immediately proves
that lim,_, . u(n)/n exists, as claimed. Furthermore, it follows immediately
from (19) that if this limit is £, then

- ulgoli) won@) |2
e D 2 ARG+ S dhm ")
(20)
Obviously, this allows us to compute £ to any desired degree of accuracy. In
fact, taking m = 10°, we find that £ = 0.37512046 +4-10~8. Finally we remark
that for all z and y,

lim Ue(n) _ (x—y)£+% = (0.37512046+4-10%)2+(0.31243977+£2-10"%)y.

n—o0 n 2
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