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CONTINUOUS INCREASING FUNCTIONS OF FINITE AND
TRANSFINITE ORDINALS*

BY

OSWALD VEBLEN

Introduction.t

A continuous increasing function of a set of ordinal numbers is analogous to
a progressively continuous increasing function of the real variable. Some of its
properties} are developed below, especially such as bear on the notion of a
derived function of the ath degree (cf. § 3) and its extensions (cf. §4). They
are nearly all generalizations of properties discovered by CANTOR § for particular
functions and so may be used to simplify some of his proofs and generalize
some of his results. In particular they extend his theory of e-numbers.

One of the most interesting problems in the theory of transfinite numbers
arises in connection with Harpy’s | scheme for obtaining a subset of the con-
tinuum of type Q. The success of his method de
ordinal number a (a & 8 41 ) of the second class a unique fundamental sequence
S, ={a,} such that Za, = a. For each number « (@ % B + 1) of the second
class there evidently exists an infinitude of such sequences, of which, in any
special case, one may be selected. But no one has as yet given a method of

determining a set of sequences {S,} such that for each a (£B8+1, 0=a< Q)
there exists one and only one S, .

If a is restricted to be less than € the first enumber, the problem of deter-

mining { 8, } is very easily solved. For every number of the second kind 9] in
the second number-class can be written uniquely in the form,**

pends on determining for each

* Presented to the Society September 5, 1907, under the title, Continuous Increasing Functions
of Ordinal Numbers. Received for publication December 26, 1907.

T The rest of the article can be read independently of the introduction.
1 Many others could be transferred to this theory from the theory of the functions of a real

variable, for example, the theorem that a continuous function of a continuous funoction is
continuous.

¢ G. CANTOR, Beitrige zur Beg
Annalen, vol. 49 (1897).

| G. H. HARDY. Quarterl

1 CANTOR, loc. cit., p. 226.

** CANTOR, loc. cit., p. 237, Theorem B.

rindung der transfiniten Mengenlehre, Mathematische
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=8+ o (r+0),

in which o denotes what CANTOR calls the exponent of a.

Now take {v} (v finite) as the fundamental sequence for w; if o is of the
first kind, take {8 + oy} (v finite) as the fundamental sequence for 8 + ov;
and if v is of the second kind, take {B + @} (where {7, } is the fundamental
sequence for ) as the fundamental sequence for 8 4 w?. Since w*> «a for all
a@’s less than ¢, this method determines { S, } for all such a’s, but since w' — €
it fails to determine a sequence for ¢. A method for extending this determina-

tion of {.S,} much further, though not so as to include all ordinal$ less than Q,
is given in Example 6.

§1. Let {«} be the set of all finite and transfinite ordinal numbers less
than a given ordinal X.

A continuous increasing function f is subject to the following conditions:

1) For every « of {x}, f(«) is an ordinal number.

2) Tt o, < m,, f(,) < f(=,)-

3) If {a'} is the set of all ordinals less than an ordinal & of the second kind,
then f(x) is the least ordinal greater than every f (). *

A set of ordinals is said to be internally closed if it includes all its limit.
values with the possible exception of its least upper bound. On account of con-
dition 3) the set of values y satisfying the conditions y = f(x) is internally
closed. Conversely, let {y} be any internally closed set of ordinals. Then {y}
is a well-ordered (or eutactic) set and hence is similar to the set of all ordinals
less than a certain X. Calling the latter set {x} and denoting the ordered
correspondence between {2} and {y} by £, it is evident that the function f
satisfies the conditions 1), 2), 8). Hence,

THEOREM 1.  The set of values of J(x), if f is any continuous increasing
Junction, is internally closed. Conversely, any closed set of ordinals defines
by its correspondence with a segment of the set of ordinals a continuous increas-
ing function.

ExaMpLE 1. As a function of B, a+ B is continuous and increasing, but
as a function of a, it is discontinuous.

ExampLE 2. The product af is a continuous increasing function of B but
not of a.

ExampLE 8. The numbers of the second kind of any number class and all
preceding classes form an internally closed set. They therefore define a con-
tinuous increasing function S(zx).

* This may be expressed by the notation
B {f(#)r=/()
sz

and the language ‘‘f(x ) is the least upper bound of the set { f( 2’ )L
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ExampLE 4. If @, is any element of a well-ordered set { }, then the set of
all elements preceding «, is called a section (* Abschnitt’) of {} and the set
consisting of x, and all following elements is called a residue (““ Rest””) of
{x}.+ A well-ordered set is never similar to a section of itself, but some well-
ordered sets are similar to all their residues.

Such a set is called self:residual and its type or ordinal number is also called
self-residual. An equivalent definition is that a self-residual number B satisfies
the equation

at+B=24

for every a less than B. The smallest self-residual number is evidently o.

Also if {a} is any set of self-residual numbers, B { } is easily seen to be self-
residual because, if it had a residue less than itself, this residue as well as the
corresponding section would be less than one of the o’s.

Now let X > o be the first ordinal of some number class and consider all the
self-residual numbers of the set {x} < X. Since the set of self-residual num-
bers in {x} has just been seen to be internally closed it defines a continuous
increasing function which we shall denote by r(=).

THEOREM 2. There exists one and but one continuous increasing function
S () with a given value for f(1) if the value of f(x + 1) is given uniquely
Jor each value of f(x).

Proof.  Suppose the theorem not valid ; then there must be a first value x,
for which f () is not uniquely defined. 1f =, is of the first kind, there exists a
number z; such that x; + 1 = 2, and f(=;) is uniquely defined, and therefore
S(=,) also, contrary to the hypothesis. If x, is of the second kind, it is the
least ordinal larger than all those smaller ordmals for which f(«) is uniquely
defined. Hence by Condition 3) S (,) must be the least upper bound of the set
of values f(x) for » <a,. Thus f(,) is again uniquely defined, contrary to
hypothesis. ‘

Corollary 1. The function S(z) in Example 8 above is the same as » 2.

Proof. 1f S(wx) is any number of the second kind, it is well known that

.~ S(x + 1), the next following ordinal of the second kind, is S (2)+w. Alsoit

is well known that
o (r+l)=w2+ 0.
By definition,
o=w01=_8(1).

As o -2 and §(=) are both continuous increasing functions, Theorem 2 gives

w-x=8(x).
1 CANTOR, loc. cit., p. 210.
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ExampLE 6. According to CANTOR’s definition § when translated into our
terminology, o® is the one continuous increasing function for which

ot = o - a,

Corollary 2. The self-residual function »(2) defined in Example 4 is the
same as o

Proof. If x is self-residual, x + a (@ = ) can not be self-residual because
one of its residues is . Hence the self-residual ordinal next larger than x is

z-». Sincer(1)=w, this requires by Theorem 2 that

r(x) ="

THEOREM 3. A continuous increasing function f always satisfies the con-

dition
OEE?
Proof. Supposing the theorem untrue, let =, be the first value for which
Sf(x) <wx. Since f(1) =1, 2,>1. Hence if x, were of the first kind,

f(x;) = x; where x; + 1 =1, and so by Condition 2) f(x,) = w,, which gives
a contradjction. If x; were of the second kind, for all preceding values of x we
should have f(x) = «. But if so,

B{f(@)} = B(a)

which is, by Condition 8), a contradiction of /() L ;.

§ 2. Let us now introduce the conditions that X > o shall be the first ordinal
of a certain number class and that the values of f(x) as well as of x shall be
less than X. The latter condition is fulfilled, as may easily be shown, when-
ever f(1) << X and the difference between /() and f(x + 1) is always less
than X. From here on, the functional symbols f, ¢, etc., shall be used only
for continuous increasing functions satisfying these additional conditions.

THEOREM 4. There exist solutions of the equation f(x)=wx and these
solutions { £} form a closed set similar to {x}.

Proof.f Let x, be any value of . Consider the sequence

h=S(2)s ¥.=F (%) ¥s=S(%)s *** Y =f(Ypr)> -

for all finite values of n. The least upper bound £ of the arguments y__, is also
the least upper bound of the functional values, y,. Hence, by Condition 3) of the
definition of a continuous increasing function, /(€)= £. This shows that for
every value of o there is a larger or equal value of £. As { £} is a subset of {« }
this requires that { £} and {«} shall be similar. To show that { £} is closed,

T Loc. cit., p. 233.
1 Ct. CANTOR’S proof of Theorem.A, loc. cit, p. 242.
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let {£} be any subset of {&} whose least upper bound x, is of the second
kind. Being identical with {&'}, the set { f( £')} has also the upper bound
@,. Hence f(,) =2, and =, belongs to { £3.

The continuous increasing function defined by the correspondence between
{2} and { £} is called the Jirst derived function of f.

Corollary 1. If f' is the first derived function of f, f ‘(1) is the least
upper bound of £(1), SLA)T, -, and if f'(2)<a <Sf'(x+1), then
J' (2 4 1) is the least upper bound of f(a), f[f(a)],---.

Corollary 2. The first derived function of o teisao+ (x—1).t

Corollary 3. The first derived function of a-xis a® .

Proof. By Corollary 1, a® is the first ordinal which satisfies

(1) aA-x=17.
Also if £ satisfies (1),

a(f+1)=at+a=fta,

and hence by Corollary 1, £ + a is the next ordinal satisfying (1). According
to Theorem 2, this shows that o - g is identical with the first derived function
of a-z.

Corollary 4. The first derived function of ®* is the function e, where e(x)
stands for the e-number A

Corollary 5. The first derived function of o= (2> ) is the function f,
where f(x) stands for the enumber €+ If €5 is the first enumber larger
than a. The first derived function of #* (n finite) is the function ¢, where
¢(1)=wand ¢(x) = €, when1l<w.§

THEOREM 5.| If {8,} is a well-ordered set of internally closed sets S, of’
ordinals, each S, being a subset of {x} similar to {x} and also a subset of
each S, which precedes it, then, provided the cardinal number {8.] isless than

{w}, there exists an internally closed set S which includes all the ordinals com-
mon to all S.’s and is similar to {ec}.

Proof. Let x be any ordinal of {«} and y, be the first ordinal of .S, which
is larger than 2. The set {¥.} is, by hypothesis, of cardinal number less than
{=}. Hence as {#.} is a subset of {w} it has a least upper bound y in {x}.

Since {y,} is a subset of S, y is a member of S, In like manner, since the
set of all y.’s for which @ > 8 is a subset of Sg, y is a member of S;. Hence
y is a member of every §,. Thus the set S of all ordinals y common to the sets
&S, exists and is similar to {=}. That S is internally closed follows from the fact
that any subset S’ of § whose least upper bound is not X is a subset of each S,

t Here it is to be remembered that if z So,z—1=z.
1 CANTOR, loc. cit., 3 20.
¢ CANTOR, theorems G and H, p. 245,

|| For the notation cf. CANTOR, Mathematische Annalen, vol. 46 (1895), pp. 481-2.
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and hence as each S, is internally closed the least upper bound of S’ is a member
of each §,.

THEOREM 6. For every continuous increasing function f(x) there exists @
well-ordered set of continuous increasing functions f(x,a), a < X, such that
the values of f(x,a) (for fized a and variable x) are the set of all ordinals
which are solutions of

Sz, B) =,
Jfor every B less than a.

Proof. In view of Theorems 4 and 1 this is a corollary of Theorem 5. The
first derived function of f(zx, ) is f(®, @ + 1), and f(2, a) may be called the
ath derived function of f(x).

Corollary 1. If f(1)>1 the function f(1, ) is a continuous increasing
function of a, a taking all values of {x}.

Progf. Since f(1)>1, we have f(1,1)> f(1) by Condition 2) of the
definition of a continuous increasing function taken with Corollary 1 of
Theorem 4. In like manner f(1, a+ 1)> f(1, a), and hence Conditions 1)
and 2) of the definition of -a continuous increasing function are satisfied by
J(1,a). To show that Condition 3) is satisfied, consider any set of a’s,
{a'}, whose least upper bound B is not X. B{f(1, a)} is a value of
Sf(x, @) for each a of {a'} because every value of f(1,a’) for o« > o, is
a value of f(x, a;). Henceas f(1, B) cannot be less than E{f(l, o)} it
must be equal to it. ;

Corollary 2. If f(x)=r + x (v constant),

flx,a) =190 4 (2 — 1),

and so v @ is a continuous increasing function of a.
Corollary 8. If f(x) =« - (7 constant),

flx,a)= vt x,

and hence the function y** is a continuous increasing function of «.

Corollary 4. If f(x)= o7 f(x, a) is the (a— 1)th derived function of
e(x). For each a, { f(x, )} is an internally closed set of enumbers. Also
{f(1, a)} is an internally closed set of enumbers.

§3. In order to extend the notion of a derived function still further, let us
consider the set of symbols

{4)(961’582’ ""mﬂ)}= {‘?S}a

where 3 may be any ordinal less than X and w,(a=1,2, ..., @, ---, 8) may
be any ordinal less than X, though in a given symbol ¢ only a finite number

of values x, are different from 1. We shall refer to a symbol ¢(a,, @, - - -, 24)
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as of Bth order. Let the set {¢} be ordered according to last differences, +
i e, as follows: Of two symbols

¢1=¢(w1,w2,...,xﬂ), ¢2=¢(y1,y2’...,yy)’

¢, precedes ¢, if B <, or if B = v and 2y <y, , or if 8=y and x, <y, for
some a (a << B3) while x, =y, for all values of p such that o < p=R.

According to this rule {¢} is simply ordered and it may be shown to be well
ordered by proving that every subset {¢'} has a first element. Let 3, be the
smallest final subscript in any element of {¢'}.  The elements of {$ } of order
B, form a set {$”} and precede all other elements of {¢'}. Let y, be the
smallest value of x, in any element of {¢"}.

If there is more than one element of this kind, they form a set {¢,} of ele-
ments which precede all other elements of {¢}. Let B, be the lowest sub-
seript in any element & of {¢,} such that in ¢ nothing but 1’s appear between
g, and y, , and let y, be the smallest @, in any element ¢. This determines
a set of elements {¢,} which precede all other elements of {¢'}. 1If
{¢,} contains more' than one element, repeat this process, obtaining sets
{&:}y {b}y -, {¢,) where ¢, consists of elements of the type

b (o, -y Ys,r 13K+l’ Ty Yp 1B,<_1+1’ s Ygy)-

By a finite number of steps this must lead to a set
one element ¢_, because a sequence 3, 8,, 3,, --
Thus ¢, is the required first elements of {¢}.

The symbols of {¢}, aside from ¢(1) the first element, fall into seven classes. t
4. ¢(1,1,,-.-,1,) (a of 1st kind)

{$,} consisting of only
- of type w* is impossible.

=B{¢(1,1,, .., w,)} for all values of &, where &’ + 1 — «.
B. $(1,,1,, -+, 1,) ( of 2d kind)

= B{‘l’(ln 12,

C. ¢(x, - xg) (¢,>1, 1st kind) has a next preceding element ¢(9c;,' ceey ),
where ¢, + 1 = x,.

D. (1, gy, ®g) (> 1, 1st kind, x, of 1st kind)

coey 1)} for y < a.

=E{¢(11, ey gy Tl ey @)}

t The ordering of various sets analog
been studied by F. Hauspor
1906-07.

1 In this notation z, indicates the first non-unity ordinal in the symbol

ous to {¢} according to first or last differences ha
FF ; Untersuchungen iiber Ordnungstypen, Leipziger Berichte ,

. . ¢(1U"‘7z¢y"'v z8)
if such an ordinal exists.
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for all w, < X where o, + 1 =, and &' + 1 = a.
E. d(1,, -y @yy Lppry o+ v Lg) (2 =1, 1st kind, «, of 2d kind)

=B{¢(,, -
Foo (L, ey @y oo )
=B{¢(1,y 2, o L
G. (1, oy @yy -y wg)  (aof 2d kind, @, of 2 kind)
=B {$(Ly s

Note that the elements of {¢} of the first kind are ¢(1) and the class C'.  The
elements of the second kind which are least upper bounds of sequences of type
X are classes 4 and D; and those which are least upper bounds of sequences
which are sections of X are classes B, #, F,and G. All the elements of
classes A and B form an internally closed set of order-type X. Again all
symbols of type

by Wy Wyyqy v ooy Bg)} Tor all o, <, .

(a of 2d kind, x, of 1st kind)

cvyag)} for all 4 < a where x; + 1 =2,.

<y 2g)} for all o, < o,°

‘#(11, lzv crry XLgy vty wg)a

where all the digits except a, are fixed, form an internally closed set.
happen that all the elements of one internally closed set come between two ele-
ments of some other set, as

(@, Ly ooy gy +o 5 %)}
come between two elements of
{¢,(11, 12, cey By ...,mﬁ},

§4. Let ¢(=,) be any continuous increasing function, i. e, let {¢(wl)} be’
an internally closed subset of {w, }. Then by ¢(=,, 1,,1,, , 15) is meant
the set of all common solutions of the equations

@) ¢ (1,5 1y,

for y < B, and by ¢ (2, 1,, 1,y <+, 2,5 -
common solutions of the equations

(2) ¢’(11?129" ,1y+1"", w;a

for y < a and x, < T the numbers 2, in the symbol being constants with the

exception of x, and
Note that thxs comcxdes with the definition of derived function in § 2 for the

As an extension of Theorem 6, we have

It may

...,my>=my

y Lg )y &> 1, is meant the set of all

”’wﬂ):xy

cases ¢ (x,, x;).
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TrEOREM 7. If ¢ (x,) is an arbitrary continuous increasing function for TaEo
which ¢ (1) > 1, this definition determines one and only one value of e <X Proo
for each symbol ¢(w,, - -, x,).

Proof. (a). We first show that if the theorem is true for all symbols pre- and for

ceding a certain one,

¢
4)(113 ] 547 {_ia+], ] EB)=($’ 007‘01
‘ function
and if (1, -+, 2, .-, @y ) = 8(w,) is any function of x, (all ordinals before . THEO
@, in the symbol being 1, as usual) the symbols for all of whose values precede ; This
¢, then 8(x,) is a continuous increasing function. ' f(1,,
If this were not so, let ¢ (1, - .-, @,y +-+y 25) be the first element which | inequali
appeared in a function & («, ) which was not continuous and increasing. The first ,
non-continuous increasing function in which this element could appear would be ! it canno
This ;

S(Lis oo ey ooy @y ooy ) = 8(m,) (¢=7). ;

Since the sets of equations (1) and (2) in the definitions are well-ordered and of ! be 1
cardinal less than {«}, if € =1, the function 8(x,) would have to be continu- ean
ous and increasing on account of Theorems 4 and 5.
I But if e > 1, the definition shows that when w, is of the firs* kind and x, is and the
E; its next preceding ordinal, I frc
' , , whose v
' 4)(11,...,;1;“...,wy,...,x8)<¢(21,12’...,ws’...,wy,...,ms) of funct
<¢’(1n tery Loyt x‘y’ Tty ms)r : ;e
‘ the comn

| and hence 8(x,) satisfies Condition 2) of the definition of a continuous increas-’
1 ing function. The definition also shows that when x, is of the second kind Proc
1 8(x,) = B 8(=,) for &, < @, and hence 8(=, ) satisfies Condition 3) as well.

now to
}* Condition 1) is evidently satisfied. Xence §(=,) is always a continuous
Hi increasing function, contrary to hypothesis.
i (b) Now supposing our theorem untrue, let ¢ (x,, --., x5) = P be the first is impc
symbol for which there is not determined a unique value. & cannot belong to J ¢ (s -
| classes A or B (cf. § 3) because then the first part of our definition determines j by The
for it a value which exists and is unique by Theorems 4 and 5 together with
( paragraph (@) of this proof. In like manner ® cannot belong to class C or to Now le

| class £ with a =1 because when o, =1, --., 2, =1 its value is determined by
| first part of our definition and in the other cases by the second part. & can- (
not belong to the classes D, £, F', or G because in these cases its value is
determined by the second part of the definition.

Corollary. ¢(1,, ---ya,,y -+, xg ) is a continuous increasing function of x,.

and by
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TaEOREM 8. (1, -, 2, -, Loy ooy mB)>xy fe,>1.
Proof. By Theorem:3 and the corollary above,

>
(1, ---,1,, ey Xy ey ) = z,,
and for a given x,

¢(1“ Sy Ry ey Ly vy mﬁ)>¢(11, ey lu, ey T, ...,xﬁ),
Corollary. ¢(1,, -y 2, -, @,y -+, Xg) is not a continuous increasing
function of x, if @, > 1.

TrEoREM 9. (1, .-+, 1,) is @ continuous increasing function of B.
This is evident from the definition of this function. On the other hand

S(1;,--+,25) is not a continuous increasing function because on account of the
inequality

.f(ll, R } 2p>>f(1n :

it cannot satisfy /(1,, ..+, 2,) = 8.
This new continuous increasing function

Sy 1) =¥(8)
can be used to generate a new set of functions

‘I’(lla Pty Loy ey w,g)9
and the process continued indefinitely.

If from the set § of functional symbols ¢ (2,57 -+, 25 ) is omitted each symbol
whose value is equal to a value of its first derived function, there remains a set

W 1,)E8

+of functional symbols which we denote by 7'.

Tueorem 10.  The ordinal number represented by each symbol in T satisfies
the condition

¢(w!7 "',Cl)y, trty wg)/\wy

Proof. Let x, be the first non-unity element in ¢(a,, - -
now to be written ¢(1,, ..., 2, ---, xg). Then the equation

(1=r=8).

-y @5 ) which is

qS(]_“ Ceey Xy, ...,wﬂ)=xa

is impossible because in that case ¢(1,, .-, 2, -, xg ) would be equal to

b(=yy o5 1,524, +1, -+, 2,) and thus could not be a member of 7. Hence
by Theorem 3

(j)(l], ceey X, ...,w5)>ma.
Now let @, be the first non-unity element after ,. It follows that
¢)(11, ey Ly ey Xy '”’mﬁ)>¢(1l’ ceey 1‘“ .
and by the argument above

d)(ll, ceey 1‘1, ...,ws’ ...,mﬂ)>ws.

.,xs’...,mﬁ)’
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As there are only a finite number of non-unity elements between x, and x; a
finite number of repetitions of this step establishes the theorem.
Exaypre 6. Let é(x) =1+, and form the set S of functions

(s - ®g)- Then
é(x,,1,)=0+ (z,—1) (cf. Corollary 2, Theorem 4).

‘;b(wn 22)="’2+ (wx— 1)

¢ (x,, x,)= 0"+ (2, —1) (cf. Corollary 2, Theorem 6).

Hence (1, x,) = ™.
$(1,,1,, 1,)=¢(1 ) = the smallest e-number (cf. Corollary 4, Theorem 4).

é(,, 1,,1,) = e(a,), which are the emumbers.

#(1,,2,, 1,) is the smallest e-number equal to its subseript.

é(x,, @, 1,) are the generalization of enumbers of Corollary 4,
Theorem 6.

b (@, -0y %) AT flrther generalizations of e-numbers. By fixing all the
x,’s except one which is preceded only by 1’s we obtain an internally
closed subset of enumbers.

The set 7" based on the function 1 + = gives expressions in terms of smaller
ordinals in the form:

¢(x,) =142, for ordinals greater than or equal to 1 and less than o,

b(x,1,)=0+ (g, —1) for ordinals greater than or equal to and
less than o?,

b (@, x,) = o™ + (2, — 1) for ordinals greater than or equal to ™ and
less than @®*!, with the exceptions of those ordinals which satisfy

the condition ¢(1, w,)=x,[= o™]. These are expressed by

means of !

¢ (2,5 15, 1;) [their ranks as enumbers] unless they are values of
d’ (wl ’ 22’ 13)
Ordinals not denoted by any previous symbol are expressed in terms of

¢ (1), -+ s %, -+ %) unless they satisfy the equation
G, ey @y s wg) = 1x,, in which case they are expressed by means of

bz, w1y g ) or some later symbol.
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By this scheme every ordinal is expressed in terms of smaller ordinals and by
means of a symbol involving subscripts smaller than itself with the exception
of those numbers which satisfy the equation

¢(11’ 12’ ) 1“ cety 15)=,8

The solutions of this equation are clearly an internally closed set and define a
continuous increasing function

E(=)

and may be called the E-numbers. Of course this function E(2) may be made
the basis of a new set 7" and the expression of ordinals in terms of smaller
ordinals continued indefinitely.

‘We may now solve the problem of determining for each ordinal of the sec-
ond kind and less than E(1) a unique sequence of type o of which it is the
least upper bound. Any such ordinal is expressed in terms of smaller ordinals

in the form
Py, ey ey 2y ) =D (a=1),

which belongs to one of the classes 4 — G of § 3.
If @ is of class 4, its sequence is { "} where

El = 4)(11’ ]2’ T 1a’)’ ""‘Ev=¢(11’ 129 ttty f:'_l .

If @ is of class B, its sequence is {$(1,,1,, ---, 1, )} where {¢,} is the
sequence for a.

If ® =¢(, ,az)is of class C,let ¢(z;, -+, x5) =pwherex, + 1=z,
and let &’ be the element obtained by replacing 2, by 1 in ®. The element
@’ must belong to one of the classes 4, B, D, £, F', G. If @' belongs to
olass A, then the sequence for ® is { £} where

Empdl, ., @=0¢(1,1, - &),

If ®' belongs to class BB, then the sequence for @ is {¢[1,,1,, -, (p+ 1)”] }
where {v,} is the sequence for a.

If @' belongs to class D, then the sequence for ® is {£'} where
Eompdl, o 8= b(Ly, ey B @y oy @g)y e v

If @' belongs to class £ or G then the sequence for & is
{¢[(p+ 1), --»aly -+, 2]} where {«} is the sequence for z,.

If @’ belongs to class F', then the sequence for @ is

{(l)[(p-*.l)“ ...,27 y ...,q;;, ceey wﬂ]}

14

where {r,} is the sequence for a.
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If ® is of classes D, £, F' or @, unless it is of class & with a =1, its
sequence is the same as the corresponding one developed above for class C, on
setting p= 0.

If @ is of class £ with a =1, its sequence is { ¢(a}, ---, 25 )} where {a}}
is the sequence for x, =, .

This scheme serves to define a unique sequence for each ordinal smaller than
E(1), but it would not serve for E(1) because the symbol for E(1) belongs
to class B and involves a subscript equal to E(1) and therefore the sequence
for E (1) would be defined in terms of E(1) itself. Of course the following pro-
cedure is possible. Let

¢(1, 1, -0, 1) =/(B)

and form the set of functions

f(Bl, R} Ba)

and determine sequences for all the Z-numbers less than the first solution of
f(ll’ ey la)z(l

f(Bl’ Tty Ba.)’
and this may be repeated irdefinitely.
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