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PREFACE

That teachers and students of the Calculus have shown such a gen-
erous appreciation of Granville’s “ Elements of the Differential and
Integral Calculus ” has been very gratifying to the author. In the last
few years considerable progress has been made in the teaching of the
elements of the Calculus, and in this revised edition of Granville’s
“Calculus” the latest and best methods are exhibited, — methods that
have stood the test of actual classroom work. Those features of the
first edition which contributed so much to its usefulness and popu-
larity have been retained. The introductory matter has been cut down
somewhat in order to get down to the real business of the Calculus
sooner. As this is designed essentially for a drill book, the pedagogic
principle that each result should be made intuitionally as well as
analytically evident to the student has been kept constantly in mind.
The object is not to teach the student to rely on his intuition, but, in
some cases, to use this faculty in advance of analytical investigation.
Graphical illustration has been drawn on very liberally.

This Calculus is based on the method of limits and is divided into
two main parts, — Differential Calculus and Integral Calculus. As
special features, attention may be called to the effort to make pesr-
fectly clear the nature and extent of each new theorem, the large
number of carefully graded exercises, and the summarizing into
working rules of the methods of solving problems. In the Integral
Calculus the notion of integration over a plane area has been much
enlarged upon, and integration as the limit of a summation is con-
stantly emphasized. The existence of the limit ¢ has been assumed
and its approximate value calculated from its graph. A large num-
ber of new examples have been added, both with and without
answers. At the end of almost every chapter will be found a col-
lection of miscellaneous examples. Among the new topics added are

approximate integration, trapezoidal rule, parabolic rule, orthogonal
v
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trajectories, centers of area and volume, pressure of liquids, work
done, etc. Simple practical problems have been added throughout;
problems that illustrate the theory and at the same time are of
interest to the student. These problems do not presuppose an ex-
tended knowledge in any particular branch of science, but are based
on knowledge that all students of the Calculus are supposed to have
in common.

The author has tried to write a textbook that is thoroughly modern
and teachable, and the capacity and needs of the student pursuing a
first course in the Calculus have been kept constantly in mind. The
book contains more material than is necessary for the usual course of
one hundred lessons given in our colleges and engineering schools ;
but this gives teachers an opportunity to choose such subjects as best
suit the needs of their classes. It is believed that the volume con-
tains all topics from which a selection naturally would be made in
preparing students either for elementary work in applied science or
for more advanced work in pure mathematics.

WILLIAM A. GRANVILLE

Grrryssure COLLEGE
Gettysburg, Pa.
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DIFFERENTIAL CALCULUS

CHAPTER I
COLLECTION OF FORMULAS

1. Formulas for reference. For the convenience of the student we
give the following list of elementary formulas from Algebra, Geome-
try, Trigonometry, and Analytic Geometry.

1. Binomial Theorem (n being a positive integer) :
nn—1)(n—2)

(@+)n = ar + nar =10 I Gl PUNPY P Y ar—3b8 4 ...
2 B
n n(n—l)(n—2)...(n—r+2)an_r+1br_1+.“°
[r—1

2. nl=|n=1-2.3.4...(n —)n.
7 4

3. In the quadratic equation ax? + bx + ¢ = 0,
when b2 — 4 ac > 0, the roots are real and unequal ;
when %2 — 4 ac = 0, the roots are real and equal ;
when b2 — 4 ac < 0, the roots are imaginary.

4. When a quadratic equation is reduced to the form 22 + px 4+ ¢ = 0,

p = sum of roots with sign changed, and ¢ = product of roots.

o

In an arithmetical series,
l=a+@n—1)d; s:%(a+l):g[2a+'(n——l)d]. :

6. In a geometrical series,
_rl—a__a(m—1)

l=am-1; 3 =
r—1 r—1

H

7: log.ab = log a + logb. 10. log Va = T—Izlog a. 13. log % =—log a.
8. log% =loga —logb. 11. logl=0. 14. Circumference of circle=2r.
9. log a* = nlog a. 12. logga =1. 15. Area of circle = 712,

* In formulas 14-25, r denotes radius, « altitude, B area of base, and s slant height.
1
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16.
17
18.
19.
20.
21.
22.
23.
24.

.

25.

26.

27.

28.

29.

. 30.

36.

37.

38.
39.

40.

41.
42,
43.

45.

46.
47.

48.

DIFFERENTIAL CALCULUS

Volume of prism = Ba.
Volume of pyramid = % Ba.
Volume of right circular cylinder = #r%a.

- Lateral surface of right circular cylinder = 2 7rra.

Total surface of right circular cylinder = 2#r (r 4 a).
Volume of right circular cone = } mr2a.

Lateral surface of right circular cone = arrs.

Total surface of right circular cone = #r (r + s).
Volume of sphere = 4 3.

Surface of sphere = 4 #r2,

. 1 1 1

Sing =——; cose=——; tanx = ——.
cse x secx cotx
sinx cosx

tan® = ——; cotx = ——.
cos & sinx

sin?z 4+ cos?x =1; 1+ tan2z = sec2z; 14 cot2z = csc?x.

' 31. si =si iny.

sin 7 — cos (7_:- _ a:) , sin (z + y) = sinz cosy + cosz siny
2 . . .

- 32. sin (x — y) = sinx cosy — cosz siny.

cosx = sin (— — x); . .

2 33. cos(z &+ y¥) = coszcosy F sinzsiny.

T
tanac:cot(g—x). tanz + tany

34. tan(@ +v) = 1—tanztany

sin (wr —x) = sinz;

cos (T — &) =— cosST; tan x — tan
(m—2) ; 35. tan (z — y) = —onE —tANY
tan (r — x) =— tanz. 14 tanztany
. . .y 2tanz
sin2x = 2sinx cosx; cos2x = cos’x — sin2z; tan 20 = ————.
1 — tan?z
. . T x z . . 2t
sinx = 2sin-cos~; cosx:cos2——sm2:f; tanm:——ill%i.
2 2 2 2 1—tan?}z

cos?xr =} + cos2zx; sin?x =} — 1 cos 2.

1+ cosx = 200523; 1— cosx=2sin2§.

. 1—cosx T 14 cosz T 1— cosx
sl — = —_ C0S— = _ tan - = _— .
2 iV 2 772 i\/ 2 2 i\h+cosaa

sinz 4 siny = 2sin} (z + y)cos } (x — ¥).
sinx —siny = 2cos} (x + y)sin} (z — v).
cosx + cosy = 2cos}(x + y)cosi(x — ).

. COST — cosy =— 2sin (z + y)sin } (x — ¥).

a b [
——=—_=—"_: Law of Sines.
sind = sinB  sinC’

a? = b2 4 ¢ — 2bc cos A; Law of Cosines.

d=+(z,—2,)% + (y; — ¥,)?; distance between points (x4, ¥y) and (2, V).
_ Az, + By, + C

d —_— b
+VA4? + B

distance from line Ax + By + C = 0 to (z;, ¥,).



49.

50.
51.

COLLECTION OF FORMULAS 3

; codrdinates of middle point.

T+ Xy Y1+ Yo
xr = = = =
g Y 2

T =2,+ 2, ¥y =y, + ¥'; transforming to new origin (z,, ¥,).

T =a" cosf — y’sinf, y = &’ sind + y’ cosd; transforming to new axes making

the angle  with old.

52.
53.
54.

b5.

and

56.

z =pcosf, y = p sind; transforming from rectangular to polar cosrdinates.

9
p=Va?t+y? f=arctan % ; transforming from polar to rectangular cosrdinates.
Different forms of equation of a straight line:

y—y Yo— VY .
(2) x—_zi = 5;——:1;: » two-point form ;

(b) 2 + % = i, intercept form;

(¢) ¥ —y, = m(z — z,), slope-point form;
(d) ¥ = mx + b, slope-intercept form ;

(e) xcosa+ y sin @ = p, normal form;
(f) 4z + By + C = 0, general form.

m, — .
tang = 21— M | angle between two lines whose slopes are m, and m,,.
14+ mm,
m, = m, when lines are parallel,
1 . .
m; =— W when lines are perpendicular.
2

(z — a)% + (y — B)? = r%, equation of circle with center (a, g) and radius r.

2. Greek alphabet.

Letters  Names Letters ~ Names Letters  Names
A a  Alpha I . Tota P p Rho
B B Beta K «  Kappa 2 os Sigma
I' v Gamma A A Lambda T = Tau
A &  Delta M p Mu T v  Upsilon
E e Epsilon N » Nu ® ¢ Phi
Z §  Zeta E & Xi X x Chi
H n Eta O o Omicron ¥ +  Psi
® 6  Theta oI - Pi Q o Omega
3. Rules for signs of the trigonometric functions.

Quadrant Sin Cos Tan Cot " Sec Cse
First . . . . + + + + +
Second . . . . + — - - -
Third . . . . — — + + — —

Fourth . . . . - + - - + —




DIFFERENTIAL CALCULUS

4. Natural values of the trigonometric functions.

Angle in Angle in . .
Radians Degrees Sin Cos I'an Cot Sec Cse
0 0° 0 1 0 ®© 1 ©
- 90° 1 0 © 0 © 1
T 180° 0 —1 0 © -1 ©
3w
-? 270° —1 0 © 0 o> -1
2 360° 0 1 0 ® 1 ®
?{l;ili::; ‘;2:2;2 Sin Cos Tan Cot Sec Csc
0 0° 0 1 0 ® 1 ®
1
x 300 5 V3 V3 Vi | 28 2
6 2 2 3 3
7 45° V2 Ve 1 1 V2 V2
2 2
; 1 _
3 o0 | V3 z Vi | 8 s | 2V8
3 2 2 3 3
T
B 90° 1 0 © 0 © 1
Angle in Angle in . ,
Radians Degrees Sin Cos Tan Cot
.0000 0° .0000 1.0000 .0000 ® 90° 1.5708
.0175 1° .0175 .9998 0175 57.290 89° 1.56533
.0349 20 .0349 .9994 .0349 28.636 88° 1.5359
.0524 3° .0523 .9986 .0524 19.081 87° 1.5184
.0698 4° .0698 L9976 .0699 14.300 86° 1.5010
.0873 5° .0872 .9962 .0875 11.430 85° 1.4835
1745 10° 1736 .9848 .1763 5.671 80° 1.3963
.2618 15° .2588 .9659 .2679 3.732 75° 1.3090
.3491 20° .3420 .9397 .3640 2.747 70° 1.2217
.4363 25° 4226 .9063 4663 2.145 65° 1.1345
.5236 30° .5000 .8660 b774 1.732 60° 1.0472
.6109 35° .5736 .8192 .7002 1.428 55° .9599
.6981 40° .6428 .7660 .8391 1.192 50° 8727
71854 45° L7071 L7071 1.0000 1.000 45° .7854
. Anglein | Anglein
Cos Sin Cot Tan Degrees Radians




COLLECTION OF FORMULAS

5. Logarithms of numbers and trigonometric functions.

TABLE OF MANTISSAS OF THE CoMMON LOGARITHMS OF NUMBERS

No. 0 1 2 3 4 5 6 7 8 9
1 0000 | 0414 | 0792 1139 | 1461 1761 2041 2304 | 2553 | 2788
2 3010 | 38222 | 8424 | 3617 | 3802 3979 | 4150 | 4314 | 4472 | 4624
3 4771 4914 | 5051 5185 | 5315 5441 5563 5682 5708 | 5911
4 6021 | 6128 | 6232 6335 | 6435 6532 | 6628 6721 6812 | 6902
5 6990 | 7076 | 7160 7243 7324 7404 7482 7559 7634 | 7709
6 7782 7853 7924 7993 | 8062 8129 | 8195 | 8261 8325 | 8388
7 8451 8513 | 8573 | 8633 | 8692 8751 8808 8865 | 8921 8976
8 9031 9085 | 9138 9191 9243 0204 | 9345 | 9395 | 9445 | 9494
9 9542 | 9590 | 9638 9685 | 9731 9777 | 9823 | 9868 9912 | 9956
10 || 0000 | 0043 | 0086 | 0128 | 0170 0212 | 0253 | 0294 | 0334 | 0374
11 0414 | 0453 0492 0531 0569 0607 0645 0682 0719 | 0755
12 0792 | 0828 | 0864 | 0899 | 0934 0969 | 1004 1038 1072 1106
13 1139 | 1173 1206 1239 1271 1303 1335 | 1367 1399 | 1430
14 1461 1492 1523 1553 1584 || 1614 | 1644 1673 1703 1732
15 1761 1790 | 1818 1847 1875 1903 1931 1959 1987 | 2014
16 2041 2068 | 2095 | 2122 | 2148 2175 | 2201 2227 | 2253 | 2279
17 2304 | 2330 | 2355 | 2380 | 2405 2430 | 2455 | 2480 | 2504 | 2529
18 25563 | 2577 | 2601 2625 | 2648 2672 | 2695 | 2718 2742 | 2765
19 2788 | 2810 | 2833 | 2856 | 2878 2900 | 2923 | 2945 | 2967 | 2989
TABLE or LogAriTHMS oF THE TRIcoNoMETRIC Kuxcrioxs
‘I&{zg:::; ‘I;)I;?;: log sin - log cos log tan log cot
.0000 0° e 0.000 e cee 90° 1.5708
0175 1° 8.2419 9.9999 8.2419 1.7581 89° 1.5533
.0349 20 8.5428 9.9997 8.5431 1.4569 88° 1.5359
.0524 3° 8.7188 9.9994 8.7194 1.2806 87° 1.5184
.0698 4° 8.8436 9.9989 8.8446 1.1554 86° 1.5010
.0873 5° 8.9403 9.9983 8.9420 1.0580 85° 1.4835
1745 16° 9.2397 9.9934 9.2463 0.7537 80° 1.3963
2618 15° 9.4130 9.9849 9.4281 0.5719 75° 1.3090
.3401 20° 9.5341 9.9730 9.5611 0.4389 70° 1.2217
.4363 25° 9.6259 9.9573 9.6687 0.3313 65° 1.1345
.5236 30° 9.6990 . 9.9375 9.7614 0.2386 60° 1.0472
.6109 35° 9.7586 9.9134 0.8452 0.1548 55° 0.9599
.6981 40° 9.8081 9.8843 9.9238 0.0762 50° 0.8727
7854 45° 9.8495 9.8495 0.0000 0.0000 45° 0.7854
. Angle in | Anglei
log cos log sin log cot log tan DI;§ ]Z;‘ R‘;ﬁi::]z




CHAPTER II
VARIABLES AND FUNCTIONS

6. Variables and constants. A wvariable is a quantity to which an
unlimited number of values can be assigned. Variables are denoted
by the later letters of the alphabet. Thus, in the equation of a
straight line,

z,¥

=+<=1,

a b
z and y may be considered as the variable codrdinates of a point
moving along the line.

A quantity whose value remains unchanged is called a constant.

Numerical or absolute constants retain the same values in all prob-
lems, as 2, 5, \/-'?, T, ete.

Arbitrary constants, or parameters, are constants to which any one
of an unlimited set of numerical values may be assigned, and they
are supposed to have these assigned values throughout the inves-

- tigation. They are usually denoted by the earlier letters of the

alphabet. Thus, for every pair of values arbitrarily assigned to a
and b, the equation

z,Y

4Z2=1

a b

represents some particular straight line.

7. Interval of a variable. Very often we confine ourselves to a
portion only of the number system. For example, we may restrict
our variable so that it shall take on only such values as lie between
a and b, where a and b may be included, or either or both excluded.
We shall employ the symbol [a, 5], @ being less than b, to represent
the numbers «a, b, and all the numbers between them, unless otherwise
stated. This symbol [a, &] is read the interval from a to b.

8. Continuous variation. A variable z is said to vary continuously
through an interval [a, 8], when z starts with the value ¢ and increases

until it takes on the value & in such a manner as to assume the value
6
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of every number between a and & in the order of their magnitudes.
This may be illustrated geometrically as follows:

R . a @ b
0 <4 ‘P B

The origin being at O, lay off on the straight line the points 4 and
B corresponding to the numbers ¢ and 4. Also let the point P corre-
spond to a particular value of the variable 2. Evidently the interval
[a, 8] is represented by the segment AB. Now as  varies continuously
from a to b inclusive, i.e. through the interval [a, 8], the point P gen-
erates the segment 4B.

9. Functions. When two variables are so related that the value of the
first variable depends on the value of the second variable, then the first
variable 18 said to be a function of the second variable.

Nearly all scientific problems deal with quantities and relations
of this sort, and in the experiences of everyday life we are con-
tinually meeting conditions illustrating the dependence of one quan-
tity on another. For instance, the weight a man is able to lift
depends on his strength, other things being equal. Similarly, the
distance a boy can run may be considered as depending on the
teme. Or, we may say that the area of a square is a function of
the length of a side, and the wolume of a sphere is a function of
its diameter.

10. Independent and dependent variables. The second variable, to
which values may be assigned at pleasure within limits depending on
the particular problem, is called the independent variable, or argument ;
and the first variable, whose value is determined as soon as the value
of the independent variable is fixed, is called the dependent variable,
or function.

Frequently, when we are considering two related variables, it is in
our power to fix upon whichever we please as the independent variable ;
but having once made the choice, no change of independent variable
is allowed without certain precautions and transformations.

One quantity (the dependent variable) may be a function of two
or more other quantities (the independent variables, or arguments).
For example, the cost of cloth is a function of both the quality and
quantity ; the area of a triangle is a function of the base and altitude ;
the volume of a rectangular parallelepiped is a function of its three
dimensions.
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11. Notation of functions. The symbol f(2) is used to denote a
function of 2, and is read f of 2. In order to distinguish between
different functions, the prefixed letter is changed, as F(2), ¢ (),
S (@), ete.
During any investigation the same functional symbol always indi-
cates the same law of dependence of the function upon the variable.
In the simpler cases this law takes the form of a series of analytical
operations upon that variable. Hence, in such a case, the same func-
tional symbol will indicate the same operations or series of operations,
even though applied to different quantities. Thus, if
F@)=2"—9z+14,

then S =y"—9%y+14.

Also ‘ Sf(@)=a"—9a+14,
SJO+D)=0(+1)>—9(b+1)+14=0"—T7b+ 6,
S(0)=0"—9-0+14 =14,
P =(=1 =9 (=) +14 =24,

S(B)=3"—-9-3+14=—4,
S(MH=T—=9-T+14 =0, etc.

Similarly, ¢ (z, y) denotes a function of = and y, and is read ¢ of
z and y.

If ¢ (2, y)=sin(z+ y),
then : ¢ (a, b)=sin(a+ b);
and ¢<72—r,0>=sing=1.
Again, if F(a, y,2)=22+3y—12¢,
then F(my—m, m)=2m—3m—12m=—13m,
and F(3,2,1)=2-83+3-2-12-1=0.

Evidently this system of notation may be extended indefinitely.

12. Values of the independent variable for which a function is defined.
Consider the functions

2>—2x+ 5, sinz, arctanz

of the independent variable 2. Denoting the dependent variable in
each case by y, we may write

y=a*=2x+5, y=sinzg, y=arctanmz
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In each case y (the value of the function) is known, or, as we
say, defined, for all values of . This is not by any means true of all
functions, as the following examples illustrating the more common
exceptions will show.

D y=——

Here the value of y (i.e. the function) is defined for all values of =
except z =56, When = = b the divisor becomes zero and the value of y
cannot be computed from (1).* Any value might be assigned to the
function for this value of the argument.

In this case the function is defined only for positive values of z.

Negative values of z give imaginary values for y, and these must be
excluded here, where we are confining ourselves to real numbers only.

a

(3) y=log,z. a>0

Here y is defined only for positive values of z. For negative values
of z this function does not exist (see § 19).

(4) y=arcsinw, y=arccosz.

Since sines and cosines cannot become greater than + 1 nor less

than — 1, it follows that the above functions are defined for all values
of z ranging from — 1 to + 1 inclusive, but for no other values.

EXAMPLES
1. Given f(z) = 2® —102% 4+ 81z — 30 ; show that

f(0) =— 30, fy) =9*—1092 + 31y —30,

(@) =0, f(a)=a®—10a% 4 31a — 30,

f(8) =r1(5), f(yz) = y3%2% — 109222 + 31 yz — 30,

FA)>F(=3), fl@—2)=2’—16a% 4+ 83z — 140,
F(=1) == 67(6).

2. If fz) = «® — 8z + 2, find F(0), F(1), F(—1), F(— 1), FAD.
3. If f(x) =23 —102% + 312 — 30, and ¢ (x) = 2* — 5522 — 210 — 216, show that
F@)=9(—2), @ =¢(—38), fB)=9¢(—4), f(0)+ ¢(0)+ 246 =0.
4. If F(x) = 2=, find F(0), F(— 8), F(}), F(—1).
5. Given F(x) =z (x — 1) (z + 6) (x — ) (z + ) ; show that
F(0)=F(1)=F(—6)=F@})=F(—§) =0.

* See § 14, p. 12.
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10.

11.

12.

. If fimg) =

. Given ¢ (x) = logi
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m—1 , show that

m;+1
f(my) — f(my) Mo my
14+ f(m)f(my) 14 mm,

. If ¢ () = a=, show that ¢ (¥) - ¢ (2) =¢ (¥ + 2).

a',; show that
4z

$@) + ) =¢(%).

. If f(¢) = cos ¢, show that
f(@)=Ff(—¢)=—F(w—¢)=—S(m+ ¢).

If F(f) = tan @, show that

Feo) =210

1-[FOP
Given y (x) = x2n + 22m + 1; show that

Y1) =3, v =1 y@=y(-a.
73, find 7(V2).

2% —
T+

If f(z) =

Ans. —.0204.



CHAPTER III
THEORY OF LIMITS

13. Limit of a variable. If a variable v takes on successively a series
of values that approach nearer and nearer to a constant value / in such
a manner that |» — I|* becomes and remains less than any assigned arbi-
trarily small positive quantity, then v is said to approach the limit I, or
to converge to the limit . Symbolically this is written

limit v=1, or, v=1

The following familiar examples illustrate what is meant:

(1) As the number of sides of a regular inscribed polygon is indefi-
nitely increased, the limit of the area of the polygon is the area of the
‘circle. In this case the variable vs always less than its limit.

(2) Similarly, the limit of the area of the circumsecribed polygon is
also the area of the circle, but now the variable is always greater than

its limat.
(8) Consider the series
1.1 1
4 1-—§+1——8—+~-.

The sum of any even number (27) of the first terms of this series is

11 1 1 1
=gt gt e
1
——1
2n
(B) S, :_2 :g L By 6, P 1

R R e N

Similarly, the sum of any odd number (27 +1) of the first terms of

the series is 1 1 1 1 1
S2n+1=1_§+1_§+“‘—w+%’
1 4
Q2n+1 2 1
(D) Synp1= __%_1 =§+3'22n. BY6,P-1

* To be read the numerical value of the difference between v and L.
11
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Writing (B) and (€) in the forms

:g_‘Szn:g.Q‘Zn—l’ S2n+1_§:‘3‘22"'7
we have limit (2 _ limit 1 0
A% n =0 3 2n —T’I,:CO?)-AQQ“_I— )
and limit 2 _ limit 1
’ n=oo\ 2"t g n=o0g.922n

Hence, by definition of the limit of a variable, it is seen that both
8,, and S,, ., are variables approaching £ as a limit as the number of
terms increases without limit. ) )

Summing up the first two, three, four, etc., terms of (4), the sums
are found by (B) and (C) to be alternately less and greater than 2,
illustrating the case when the variable, in this case the sum of the terms
of (4), is alternately less and greater than its limit.

In the examples shown the variable never reaches its limit. This is
not by any means always the case, for from the definition of the limt
of @ variable it is clear that the essence of the definition is simply that
the numerical value of the difference between the variable and its limit
shall ultimately become and remain less than any positive number we
may choose, however small.

(4) As an example illustrating the fact that the variable may reach
its limit, consider the following. Let a series of regular polygons
be inscribed in a circle, the number of sides increasing indefinitely.
Choosing any one of these, construct the circumscribed polygon
whose sides touch the circle at the vertices of the inscribed polygon.
Let p, and F, be the perimeters of the inscribed and circumscribed
polygons of n sides, and C the circumference of the circle, and sup-
pose the values of a variable z to be as follows:

By, Pusv O B Pars O L, ete

Then, evidently, limit
n=w®" ¢
and the limit is reached by the variable, every third value of the variable
being C.

14. Division by zero excluded. % is indeterminate. For the quotient

of two numbers is that number which multiplied by the divisor will
give the dividend. But any number whatever multiplied by zero gives
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zero, and the quotient is indeterminate ; that is, any number whatever
may be considered as the quotient, a result which is of no value.

%has no meaning, a being different from zero, for there exists no

number such that if it be multiplied by zero, the product will equal a.
Therefore division by zero ts not an admissible operation.

Care should be taken not to divide by zero inadvertently. The following fallacy
is an illustration.

Assume that a=D>.
Then evidently ab = a®.
Subtracting 42, ab — V? = a® — 02,
Factoring, b(a—1b) = (@ +b) (@—D).
Dividing by @ — b, b=a+0.
But 4 =10,

therefore b=2Db,

or, 1=2.

The result is absurd, and is caused by the fact that we divided by a — b = 0.

15. Infinitesimals. A variable v whose limit is zero is called an
tnfinitestmal.* This is written
limitv =0, or, v =0,
and means that the successive numerical values of » ultimately become

and remain less than any positive number however small. Such a
variable is said to become indefinitely small or to ultimately vanish.

If limit v = I, then limit(v — )= 0;
that is, the difference between a variable and its imit is an infinitesimal.
Conversely, ¢f the difference between a variable and a constant is an
infinitestmal, then the variable approaches the constant as a limit.
16. The concept of infinity (o). If a variable v ultimately becomes

and remains greater than any assigned positive number however large,
we say v increases without limst, and write

limit v =+ o0, or, v =+ .

If a variable v ultimately becomes and remains algebraically less
than any assigned negative number, we say v decreases without limit,
and write .. .

w b limit v =— w0, or, v = — wo.

*Hence a constant, no matter how small it may be, is not an infinitesimal,
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If a variable » ultimately becomes and remains in numerical value
greater than any assigned positive number however large, we say v,
in numerical value, increases without limit, or v becomes infinitely great,*

and write limit v = o0, or, v = o0.

Infinity (o) is not a number; it simply serves to characterize a
particular mode of variation of a variable by virtue of which it
increases or decreases without limit.

17. Limiting value of a function. Given a function f(z).

If the independent variable z takes on any series of values such that

limit z = a,

and at the same time the dependent variable f(z) takes on a series of
corresponding values such that

limit f(x) =4,
then as a single statement this is written
e f() =4,
and is read the limit of f (&), as x approaches the limit a in any manner,
is A.
18. Continuous and discontinuous functions. A function f(2) is said
to be continuous for x = a if the limiting value of the function when =

approaches the limit @ in any manner is the value assigned to the
function for z=a. In symbols, if

S0 =f(0),
then f(z) is continuous for z = a.

The function is said to be discontinuous for x = a if this condition
is not satisfied. For example, if

At f(@) =0,

the function is discontinuous for z =a.
The attention of the student is now called to the following cases
which occur frequently.

*On account of the notation used and for the sake of uniformity, the expression
v=+ o is sometimes read v approaches the limit plus infinity. Similarly, v =- o« is read
v approaches the limit minus infinity, and v = is read v, in numerical value, approaches
the limit infinity.

‘While the above notation is convenient to use in this connection, the student must not
forget that infinity is not a limit in the sense in which we defined a limit on p. 11, for
infinity is not a number at all.
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Cask I. As an example illustrating a simple case of a function con-
tinuous for a particular value of the variable, consider the function

2’—4

For z =1, f(2)=,(1)=38. Moreover, if z approaches the limit 1

in any manner, the function f(2) approaches 8 as a limit. Hence the
function is continuous for z =1.

T

Case II. The definition of a continuous function assumes that
the function is already defined for #=a. If this is not the case, how-
ever, it is sometimes possible to assign such a value to the function for
z=a that the condition of continuity shall be satisfied. The following
theorem covers these cases.

Theorem. If f(x) ¢s not defined for x = a, and if
limit f( x) — B,

X=a
then f(x) will be continuous for x = a, if B is assumed as the value of
f(@) for x=a. Thus the function

z*—4

z— 2

is not defined for z =2 (since then there would be division by zero).
But for every other value of z,

22— 4
—3 2 °
z—2 T+ 2
limit
and x“;”? (z+2)=4;
« . 2
therefore limit 2°— 4 =4,

z=22—9

Although the function is not defined for =2, if we arbitrarily assign
it the value 4 for x = 2, it then becomes continuous for this value.

A function f(z) is said to be continuous in an interval when it is
continuous for all values of = in this interval *

* In this book we shall deal only with functions which are in general continuous, that is,
continuous for all values of x, with the possible exception of certain isolated values, our
results in general being understood as valid only for such values of « for which the function
in question is actually continuous. Unless special attention is called thereto, we shall as a
rule pay no attention to the possibilities of such exceptional values of « for which the function
is discontinuous. The definition of a continuous function f(x) is sometimes roughly (but
imperfectly) summed up in the statement that « small change in x shall produce a small
change in f(x). We shall not consider functions having an infinite number of oscillations
in a limited region.
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19. Continuity and discontinuity of functions illustrated by their
graphs.
(1) Consider the function 2?, and let

“ y=2

If we assume values for z and calculate the corresponding values
of y, we can plot a series of points. Drawing a smooth line free-hand
v through these points. a good representation of the gen-
cral behavior of the function may be obtained. This
picture or image of the function is called its graph.
It is evidently the locus of all points satisfying
equation (4).

Such a series or assemblage of points is also called
a curve. Evidently we may assume values of z so near
together as to bring the values of y (and therefore the points of the
curve) as near together as we please. In other words, there are no
breaks in the curve, and the function 2* is continuous for all values of .

(2) The graph of the continuous

Y|
function sinz is plotted by draw- L\
ing the locus of 7N\ /
g AN N A N

@)

y =sinz.

It is seen that no break in the curve occurs anywhere.

(3) The continuous function ¢* is of very frequent occurrence in
the Calculus. If we plot its graph from
y=é (e=2.718--")

If
we get a smooth curve as shown. From this it is
clearly seen that,

) (a) when 2 =0, glci:ig y(=e¢)=1;

o - (b) when 2> 0, y(=¢) is positive and increases

as we pass towards the right from the origin ;

() when 2<0, y(=¢) is still positive and decreases as we pass
towards the left from the origin. v

(4) The function log,z is closely related to the ’ . /
last one discussed. In fact, if we plot its graph © X
from

y =log,z, ,
it will be seen that its graph has the same rela- |

tion to OX and OY as the graph of ¢ has to OY and OX.
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Here we see the following facts pictured :

(a) For z=1, log,z =1log,1=0.

(b) For # >1, log,z is positive and increases as z increases.

(¢) For 1>z>0, log,z is negative and increases in numerical value
as z diminishes, that is, ;}izig log z =— 0.

(@) For =0, log,z is not defined ; hence the entire graph lies to
the right of 0.

Y
(5) Consider the function L and set
x
,_1
“ 0 X

If the graph of this function be plotted, it
will be seen that as x approaches the value
zero from the left (negatively), the points of
the curve ultimately drop down an infinitely great distance, and as z
approaches the value zero from the right, the curve extends upward
infinitely far.

The curve then does not form a continuous branch from one side
to the other of the axis of ¥, showing graphically that the function
is discontinuous for z = 0, but continuous for all other values of z.

(6) From the graph of

2z
1—a?

1
|
|
|
|
|
it is seen that the funection i
i
I
|

is discontinuous for the two Values z=+1, but continuous for all
other values of z. v
(7) The graph of

y=tanzx

shows that the function tanz is dis-
continuous for infinitely many values
of the independent variable z, namely,

z=" 2 T, where n denotes any odd positive or negative integer.

(8) The function
arc tan z
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has infinitely many values for a given value of 2, the graph of equation
y=arctanz

consisting of infinitely many branches. If, however, we confine our-

selves to any single branch, the function is continuous. For instance,

if we say that y shall be the arc of smallest numeri-

L cal value whose tangent is a, that is, y shall take

Y,
rr T T
— on only values between — 2 and Z, then we are

2
5 < limited to the branch passing through the origin,

= and the condition for continuity is satisfied.
£ (9) Similarly,

1
arc tan -,
€T

is found to be a many-valued function. Confining ourselves to one

branch of the graph of !
Y = arc tan -,

we see that as x approaches zero from the left, y approaches the
limit — g, and as a approaches zero from the right, y approaches the

limit + ’-Zf Hence the function is discon- z Y
tinuous when 2 =0. Its value for z=0 .

can be assigned at pleasure. 0 X
Functions exist which are discontinuous .
for every value of the independent vari- ~ ‘

able within a certain range. In the ordinary applications of the Cal-
culus, however, we deal with functions which are discontinuous (if
at all) only for certain isolated values of the independent variable;
such functions are therefore in general continuous, and are the only

Ny

ones considered in this book.

20. Fundamental theorems on limits. In problems involving limits
the use of one or more of the following theorems is usually implied.
It is assumed that the limit of each variable exists and is finite.

Theorem I. The limit of the algebraic sum of a finite number of vari-
ables is equal to the like algebraic sum of the lLimits of the several
variables. ‘

Theorem II. The limit of the product of a finite number of variables
8 equal to the product of the limits of the several variables.

Theorem III. The limit of the quotient of two variables is equal to the
quotient of the limits of the separate variables, provided the limit of the
denominator is not zero.
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Before proving these theorems it is necessary to establish the fol
lowing properties of infinitesimals.

1) The sum of a finite number of infinitesimals ¢s an infinitestmal.
To prove this we must show that the numerical value of this sum can
be made less than any small positive quantity (as €) that may be
assigned (§ 15). That this is possible is evident, for, the limit of each
infinitesimal being zero, each one can be made numerically less than

£ (n being the number of infinitesimals), and therefore their sum can
n

be made numerically less than e.

(2) The product of a constant ¢ and an infinitesimal is an infinitesimal.
IFor the numerical value of the product can always be made less than
any small positive quantity (as €) by making the numerical value of

. . €
the infinitesimal less than -.
¢

(8) The product of any finite number of infinitesimals s an infinitesimal.
For the numerical value of the product may be made less than any
small positive quantity that can be assigned. If the given product
contains n factors, then since each infinitesimal may be assumed less
than the nth root of €, the product can be made less than e itself.

&) If v is a variable which approaches a limit | different from zero,
then the quotient of an tnfinitesimal by v is also an infinitesimal. For if
limit » =, and % Is any number numerically less than /, then, by defini-
tion of a limit, » will ultimately become and remain numerically greater

than 2. Hence the quotient =, where € Is an infinitesimal, will ulti-
q v )

. . € .
mately become and remain numerically less than A and is therefore
by (2) an infinitesimal.

Proof of Theorem I. Let v, v, v,, --- be the variables, and 7,, 7, 7., - - -
their respective limits. We may then write

v—l=¢,
Y l2: €p
by Zs: 3

where €, €, €, --- are infinitesimals (i.e. variables having zero for a
. . L3 .
limit). Adding

(A @ttt )=+ L+h+ - )=Cet et et
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Since the right-hand member is an infinitesimal by (1), p. 19, we
have, from the converse theorem on p. 18,

limit, (vl+ Uyt vyt )= l1+ l2+ la+ L)
or, limit (v, + v, + v,+ - - -) = limit v, + limit v, + limit v, + - - -,
which was to be proved.

Proof of Theorem I1. Let v, and v, be the variables, I, and [, their
respective limits, and e, and ¢, infinitesimals ; then

v=1I+e n
and v,=1l,+¢,
Multiplying, vo,=(+e)(,+¢)
= lll2+ lle2+ l2€l + eleﬁ"
or,
(B) . v, lll2= llez+ l2e‘1+ €€,

Since the right-hand member is an infinitesimal by (1) and (2), p. 19,
we have, as before,

limit (v,p,) =], = limit v, - limit v,,
which was to be proved.

Proof of Theorem II1. Using the same notation as before,

vl_ll+el_ll+<ll+el_ll>’

v2_l2+ 62—l2 l2+ 62 l2
or,
v 1 le —1le
(0) a_a_ n 1%2
/02 l2 l2(l2+€2)

Here again the right-hand member is an infinitesimal by (4), p. 19,
it ,+0; hence s L limito
limit {2 )=t 1

2

l: ~ Timit 1)2,
which was to be proved.
It is evident that if any of the variables be replaced by constants,

our reasoning still holds, and the above theorems are true.
21. Special limiting values. The following examples are of*special

importance in the study of the Calculus. In the following examples
a>0and ¢+ 0Q,
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Written in the form of limits. Abbreviated form often used.
W e .
©) ;igi;cx:w; ¢+ 00 = 0.
®) mli:i;%:w; %=oo.
€) ;ii’i;;—’;=0; ==0.
® xinitw a® =+ oo, when a <1; a =+ 0.
(6) x‘ﬁ‘i‘w a*=0, when a<1; R
) mim_itm a*=0, when a>1; a->=0.
3 xl_i__n:i_tw a® =+ o0, when a >1; at® =+ oo,
€)) ;“2‘3 log,z=+ o, when a <1; log,0 =+ oo.

10 x“:“itw log,z =— o0, when a <1j loga‘ (+ %) =—oo.

an ;“2‘8 log,z =— o0, when a >1; log,0 =— co.

azy , im_*i_tw log,z =+ o0, when a>1;  log,(+ o) =+ co.

The expressions in the second column are not to be considered as
expressing numerical equalities (oo not being a number); they are
merely symbolical equations implying the relations indicated in the
first column, and should be so understood.

22 Show that NIt S X 4 4
x=0 x
Let O be the center of a circle whose radius is unity.
Let arc AM = arc AM' =z, and let M7 and M'T be tangents drawn
to the circle at M and M'. From Geometry,
’ MPM' < MAM' < MTM';

or 2sinz < 22 < 2tan .
Dividing through by 2 sin z, we get
z 1

sinz cosz

1<

* If we refer to the table on p. 4, it will be seen that for all angles less than 10° the angle
in radians and the sine of the angle are equal to three decimal places. If larger tables are
consulted, five-place, say, it will be seen that for all angles less than 2.2° the sine of the angle
and the angle itself are equal to four decimal places. From this we may well suspect that

limit sine _
=0 g ~
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If now z approaches the limit zero,

limit =z
z=0ginz
. ‘ imit 1 L
must lie between the constant 1 and limit ——» which is also 1.
z=0cosz
Therefore limit -Z— =1, or, limit sinz _ . Th. ITI, p. 18
z=0ginz =0 g

It is interesting to note the behavior of this function from its graph,
the locus of equation

sinz
x
Y
1
T AT S— T [3) T N— 2T 3T X

Although the function is not defined for # =0, yet it is not discon-
tinuous when z=0 if we define

su(l)O -1 Case II, p. 15

23. The number e. One of the most important limits in the Cal-

culus is imi
Tt (14 2y = 271828 . =

To prove rigorously that such a limit ¢ exists, is beyond the scope
of this book. For the present we shall content ourselves by plotting

the locus of the equation 1
: y={+=z7
1
and show graphically that, as =0, the function (1+2)*(=y)
z v z y v
10 1.0096
5 1.4310 e
2 1.7320 — e
1 2.0000 III
) 2.2500 —.5 4.0000 ]
1 2.5937 —.1 2.8680 1 =1
.01 2,7048 —.01 2.7320 a0 o X
.001 2.7169 —.001 2.7195°

takes on values in the near neighborhood of 2.718 ..., and therefore
e=2.718 ... approximately.
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As 7= 0 from the left, y deereases and approaches e as a limit. As
z =0 from the right, y increases and also approaches e as a limit.

As z =, y approaches the limit 1; and as z=—1 from the right,
4 increases without limit.

In Chap. XVIII, Ex. 15, p. 283, we will show how to calculate the
value of e to any number of decimal places.

Natural logarithms are those which have the number e for base.
These logarithms play a very important role in mathematics. When
the base is not indicated explicitly, the base e is always understood
in what follows in this book. Thus loy,v is written simply log v.

Natural logarithms possess the following characteristic property :
If z= 0 in any way whatever,

limit }0:2_(_:16-!-_%)- = limit log (1 + x);c =loge=1.

24. Expressions assuming the form £. As oo is not a number, the
expression o <+ oo is indeterminate. To evaluate a fraction assuming
this form, the numerator and denominator being algebraic functions,
we shall find useful the following '

RULE. Divide both numerator and denominator by the highest power of
the variable occurring in either. Then substitute the value of the variable.

limit 2% — 32% 4+ 4
ISTR : ox ; 1. Evaluate .
ILLesTrATIVE ExampLe 1. Ev NS B
imit 22% —3a* + 4

» C e
— = 2, which isindeter-
= fr—a2— T3

Solution. Substituting directly, we get a;l

minate. Hence, following the above rule, we divide both numerator and denominator
by 3. Then

9 3 4
limiy 22% =322+ 4 Jiniit r a2, Ans.
T=whr—a2—Ta®] T=ow 5 1 7 7
¢z
EXAMPLES
Prove the following :
1. ]i_r{nit (z + 1) -1
r = o x
limit (11 + 1\ _ limit ( 1
Proof. 2= ‘T)—z:oo ‘1+5
_ limit limit (1
"a::oo(l)_'_z:oo(i) Th. I, p. 18

=140=1.



DIFFERENTIAL CALCULUS

limit <x2 +2 x) 1

TT=0\5_ 3z2 3
142
Proof, limit 22 + 22\ limit x
ro0 =w\5_822) T=wo| 5
o

- [Dividing both numerator and denominator by x2.]

limit 2
L T=® (1 + E)
= ——— Th. III, p. 18

limit
o Ta ()

lnmt limit (2
L0+, (%)

= Th. I, p. 18
" limit /5 _ limit o
T =0 \z2 z=cw®
140 _ 1
T0-3 3
limit 22 — 2245 _ 1 limit & 2
3-:(:_1:62__{_7 3 13.2_02((3“-}-6“)—@
limit 32 + 6a® 2 limit 223 + 32?% _
4. it i 14, [t 2T 4 O7
=02zt 1522 5 =0 g
P i 2 __
5. h_mlt 2?41 ] 15. 9!1:1:,0531 2z _
r=—2 x4+ 3 g4 T
6. 1M Baz? —2he 4 51 =83az2. 16, y“g";y i o=
7. lumt (ax2 40z + ¢) = oo. 17. limit nn+1) _
n=®m+2)(n+3)
L] —_ 2 __ 3
8. ,lc"flf) -k =2k 1g, limit s —1 _
= z(x + k) Cs=13-71°
limit 2241 1 -
- T =, limit (x + A —an
9 z=w3zrias_1 3 19. ) Dty =mn
limit 3 + 2z _ limit sinh
10. T=wz2 _p5g 20. hlzlo[co @+ n) ]:cosﬁ.
i i pa— . . 2 —
11, Jmit cos@—a@) __ o, g1, limit 422 —z i‘,
T 2cos(2a— a) T=o4.— 32 3
19, limit @@?+bzt+c_a 2. hmxtl—cow 1
TT=wd2fex+f d 6= 2 2
23. ;i:izm _1 2= % if x is increasing as it approaches the value a.
o4, limit L + o, if x is decreasing as it approaches the value a.

T=ar—a
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CHAPTER IV
DIFFERENTIATION

25. Introduction. We shall now proceed to investigate the man-
ner in which a function changes in value as the independent variable
changes. The fundamental problem of the Differential Calculus is to
establish a measure of this change in the function with mathematical
precision. It was while investigating problems of this sort, dealing
with continuously varying quanti’ﬁies, that Newton * was led to the
discovery of the fundamental principles of the Calculus, the most
scientific and powerful tool of the modern mathematician.

26. Increments. The increment of a variable in changing from one
numerical value to another is the difference found by subtracting the
first value from the second. An increment of z is denoted by the
symbol Az, read delta z.

The student is warned against reading this symbol delta times =,
it having no such meaning. Evidently this increment may be either
positive or negative’ according as the variable in changing is increas-
ing or decreasing in value. Similarly,

Ay denotes an increment of y,
A denotes an increment of ¢,
A f(x) denotes an increment of f(z), ete.

If in y =f(2) the independent variable z takes on an increment Az,
then Ay is always understood to denote the corresponding increment
of the function f(z) (or dependent variable y).

The increment Ay is always assumed to be reckoned from a definite
initial value of y corresponding to the arbitrarily fixed initial value of z
from which the increment Az is reckoned. For instance, consider the
function y =2~

* Sir Isaac Newton (1642-1727), an Englishman, was a man of the most extraordinary
genius. He developed the science of the Calculus under the name of Fluxions. Although
Newton had discovered and made use of the new science as early as 1670, his first published
work in which it occurs is dated 1687, having the title Philosophiae Naturalis Principia
Mathematica. This was Newton’s principal work. Laplace said of it, * It will always remain

preéminent above all other productions of the human mind.” See frontispiece.
T Some writers call a negative increment a decrement,

25
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Assuming 2 =10 for the initial value of z fixes y =100 as the initial
value of . .
Suppose z increases to z=12, thatis, Az =2;

then 4 increases to y =144, and Ay = 44.
Suppose @ decreaset to z=9,  that is, Az =—1;
then y decreases to y =81, and Ay =—19.

It may happen that as z increases, y decreases, or the reverse; in
either case Az and Ay will have opposite signs.

It is also clear (as illustrated in the above example) that if y = f(«)
is a continuous function and Az is decreasing in numerical value, then
Ay also decreases in numerical value.

27. Comparison of increments. Consider the function

(4) y=2"

Assuming a fixed initial value for z, let = take on an increment Az.
Then y will take on a corresponding increment Ay, and we have

y+Aay =(z+Az)’,
or, y+Ay =2+ 22z. Az + (Ax)>

Subtracting (4), ¥ = z?

(B) Ay = 2z Az + (A2)?
we get the increment Ay in terms of z and Az.

To find the ratio of the increments, divide (B) by Az, giving

%:2:6—'—A2L‘.

If the initial value of z is 4, it is evident that

limit Ay _ 8
Az =0 Az :

Let us carefully note the behavior of the ratio of the increments of
z and y as the increment of z diminishes.

Initial New Increment Initial New Increment Ay
value of x | value of x Ax value of y value of y Ay Ax
4 5.0 1.0 16 25. 9. 9.
4 4.8 0.8 16 23.04 7.04 8.8
4 4.6 0.6 16 21.16 5.16 8.6
4 4.4 0.4 16 19.36 3.36 8.4
4 4.2 0.2 16 17.64 1.64 8.2
4 4.1 0.1 16 16.81 0.81 8.1
4 4.01 0.01 16 16.0801 0.0801 8.01
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It is apparent that as Az decreases, Ay also diminishes, but their
ratio takes on the successive values 9, 8.8, 8.6, 8.4, 8.2, 8.1, 8.01;

illustrating the fact that 2—y can be brought as near to 8 in value as
¥

we please by making Az small enough. Therefore

limit Ay

—Y *
Ax:OAa:—S'

28. Derivative of a function of one variable. The fundamental
definition of the Differential Calculus is:

The derivative ¥ of a function is the limit of the ratio of the increment
of the function to the increment of the independent variable, when the lat-
ter increment varies and approaches the limit zero.

When the limit of this ratio exists, the function is said to be differ
entiable, or to possess a derivative.

The above definition may be given in a more compact form symbol-
ically as follows: Giiven the function

(4 y=S(@),
and consider z to have a fixed value.

Let 2 take on an increment Az ; then the function y takes on an
increment Ay, the new value of the function being

B y+Ay=f(z+Ar).
To find the increment of the function, subtract (4) from (B), giving
) Ay =f (@ + Az) —f(2).
Dividing by the increment of the variable, Az, we get
Ay _ f(z+Az)—f(2)
D — = .
D) Az Az

The limit of this ratio when Az approaches the limit zero is, from our
definition, the derivative and is denoted by the symbol Z—Z Therefore
dy _limit f(x+Ax) — f(%)

dx Ax=0 Ax
defines the derivative of y [or f (@) with respect to a.

(&)

*The student should guard against the common error of concluding that because the
numerator and denominator of a fraction are each approaching zero as a limit, the limit of
the value of the fraction (or ratio) is zero. The limit of the ratio may take on any numerical
value. In the above example the limit is 8.

1 Also called the differential coefficient or the derived function.
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From (D) we also get
@) 8 @y limit Ay

dx Ax=0Ax
The process of finding the derivative of a function is called differ-
entiation.
It should be carefully noted that the derivative is the limit of the
ratio, not the ratio of the limits. The latter ratio would assume the

form %, which is indeterminate (§ 14, p. 12).

29. Symbols for derivatives. Since Ay and Az are always finite and
have definite values, the expression
Ay
Az
is really a fraction. The symbol
dy
d—'x,
however, is to be regarded not as a fraction but as the limiting value of
a fraction. In many cases it will be seen that this symbol does possess
fractional properties, and later on we shall show how meanings may
be attached to dy and dz, but for the present the symbol Zy
considered as a whole.
Since the derivative of a function of z is in general also a function
of z, the symbol f(#) is also used to denote the derivative of f(z).

Hence, if y=f(2),
: Y _ o,
we may write T S'(x),
which is read the derivative of y with respect to = equals f prime of z
The symbol d
dz

when considered by itself is called the differentiating operator, and
indicates that any function written after it is to be differentiated with
respect to z. Thus
dy
da:

— f (x) indicates the derivative of f(z) with respect to z;

or di y indicates the derivative of y with respect to z;

o (29: + 5) indicates the derivative of 22*+ 5 with respect to z.

y'is an abbreviated form of dy
z
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The symbol D, is used by some writers instead of di If then
X

y=rf(2),

we may write the identities
Y= = Ly =@ =Df @ =F @.

30. Differentiable functions. From the Theory of Limits it is clear
that if the derivative of a function exists for a certain value of the
independent variable, the function itself must be continuous for that
value of the variable.

The converse, however, is not always true, functions having been
discovered that are continuous and yet possess no derivative. But
such functions do not occur often in applied mathematics, and in this
book only differentiable functions are considered, that is, functions that
possess a derivative for all values of the independent variable save at
most for isolated values.

31. General rule for differentiation. From the definition of a deriv-
ative it is seen that the process of differentiating a function y =f(z)
consists in taking the following distinct steps:

GENERAL RULE FOR DIFFERENTIATION *

First Step. In the function replace x by x + Az, giving a new value
of the function, y+ Ay.

Seconp Step. Subtract the given value of the function from the new
value in order to find Ay (the increment of the function).

Tuirp Step. Divide the remainder Ay (the increment of the function)
by Az (the increment of the independent variable).

Fourtu Ster. Find the limit of this quotient, when Az (the increment
of the independent variable) varies and approaches the limit zero. This
ts the derivative required.

The student should become thoroughly familiar with this rule by
applying the process to a large number of examples. Three such
examples will now be worked out in detail.

IrLustrATIVE ExaAMmpLE 1. Differentiate 322 + 5.

Solution. Applying the successive steps in the General Rule, we get, after placing

y =3x2 + 5,
First step. y+Ay=3@&x+A2)2+ 5
=3x% 4 6z Ax + 3(Ax)2 + 5.

* Also called the Four-step Rule.
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Second step. y+Ay =382+ 6x-Ar + 3(Ax)2 + 5
Y = 32 +5
Ay = 6x- Az + 3 (Ar)2.
Third step. Ay =6z + 3-Ax.
x
dy _
Fourth step. — =06x Ans.
dx
‘We may also write this
) d

3x2 4+ 5 =6z
da:(x-l-) z

IrvustrATIVE Exampere 2. Differentiate a3 — 2 + 7.

Solution. Place y=a3—2x+17.
First step. y+Ay=(@x+Ar)° -2+ Az) + 7
=%+ 3z%- Az + 32 - (A2)% + (A2)® — 22— 2. Ax 4+ 7.
Second step. y+Ay =22+ 32 Ar + 3x- (Ax)2 + (Ax)® — 22— 2. Az +7
v — g8 — 2z +17
Ay = 3z%. Az + 3 - (Ax)? + (Ax)? — 2- Az,
- Ay :
Third step. A—:3x2+3x-Ax+(Ax)2—2.
z
dy
Fourth step. — =322 — 2. Ans.
dx ;
d
Or, — (@ —2x+4+T7) =322 —2.
, = +17)

. . c
ILLustraTive Examrre 3. Differentiate — .
N 2

c

Solution. Place Y=—-
2
c
First step. Ay=_—°%_ .
54 Y+ Ay @7 Ao
¢
Second step. YL Ay =&
cond step ¥y + Ay @1 Ao
_ ¢
v Ta
Ay=—S ¢ _—cAr@ztAn)
(€ + Az)*  2? 22 (z + Ax)?
Third step. Ay __ c. 2zt Ar
Az 22 (x 4 Ax)?
dy 2z
Fourth step. YW__ ..
” dz a? (z)?
2¢
= — 3:_3. . A

d[c —2c
o (5=



DIFFERENTIATION 31

LEXAMPLES

Use the General Rule, p. 29, in differentia’ing the following functions:

1. y =322  Ans. d—yzﬁx. 7. y=as. Ans. (E:Sﬁ.
dx dx
2. y=2a2+ 2. d—y:2:c. 8. y=2z2—38. d—y=4x.
dx dx
3.y=56—4zx. d—y:——4. 9. y=1— 223, d—yz-—(}x?.
dx dx
ds dp
4, s=212 — 4. — =41, 10. p=ab?2. - =2ad.
at P ag - "
1 dy 1 2 dy 4
5 y=-. Yo 1. y=—. Y__Z2.
Y z dx x? v x? dx a3
G,y:m+2. d_y:—z. ~ 12. y = 3 . dﬁ:__(_;ﬁ_
x dx - x? 2 —1 dx (x2 —1)2
13. y=T722 4 x. 18. y =ba? —cx. 23. y=1a% 4 2z.
14. s = at®> — 20t. 19. p=36°—26 24. z=4x — 322,
15, r=8t+4 3L, 0 y=122—lz 25. p=30+6°
2 __ K
16, y=2>. 21, y=""2 26. y =20
a2 z z2
a 2 3+ 2
17 s=— ———. 2. p=——+ 21. z= .
204+ 3 P 1446 ‘ x
28. y=22—3x+ 0. Ans. vy =2z — 3.
29, s=212 4+ 5¢(—8. s =4t4 5.
30. p=56°—260+6. p=1562— 2.
31, ¥y = ax? + bx + c. ¥y =2azx + b.

32. Applications of the derivative to Geometry. We shall now
consider a theorem which is fundamental in all applications of the

Differential Calculus to Geometry. Let
4 y=s(@

be the equation of a curve AB.
Now differentiate (4) by the General Rule
and interpret each step geometrically.

FirsT StEP. y+Ay=f(z+Az)
y+Ay=f(x+Az)

y =f()

SEcoxDp STEP.

Y

/4

B

S

/lf;T
i
9| M N X
=NQ
—NQ
=MP =NR

Ay =Ff (o +ba)—f (z) = EQ.

"THIRD STEP.

=tan RPQ =tan¢

ég_f(x+Aa:)—f(x) _ RQ =R_Q
Az Az MN PR

= slope of secant line PQ.
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limit Ay _ limit f(z+ A2)—f(2)
FourTH STEP. Az=0Ap—Az=0 A

(B) = %‘1—/ = value of the derivative at P.
7

But when we let Az = 0, the point @ will move along the curve and
approach nearer and nearer to P, the secant will turn about P and
approach the tangent as a limiting position, and we have also

-

B limit Ay _ limit )
s a8y _ _
v ) Q/ . Az—0 Ay Ax=0tanq$ tan T
- .
N @) /AT; ) = slope of the tangent at P.
vy Hence from (B) and ),
£ A0 :
QI /M N X fi_y = slope of the tangent line PT. Therefore
x

Theorem. The value of the derivative at any point of a curve is equal
to the slope of the line drawn tangent to the curve at that point.

It was this tangent problem that led Leibnitz* to the discovery of
the Differential Calculus.

ILLustrATIVE ExampLE 1. Find the slopes of the tangents to the parabola y = a2
at the vertex, and at the point where z = }.
Solution. Differentiating by General Rule, p. 29, we get

d
(4) Y _9r= slope of tangent line at any point on curve.
To find slope of tangent at vertex, substitute z = 0 in (4),
ivin, b _ 0
giving -

Therefore the tangent at vertex has the slope zero; that is, it is
parallel to the axis of 2 and in this case coincides with it.

To find slope of tangent at the point P, where & = 1, substitute

in (4), giving dy 1.

- 5. — )

dz

that is, the tangent at the point P makes an angle of 45° with the axis of x.

* Gottfried Wilhelm Leibnitz (1646-1716) was a native of Leipzig. His remarkable abili-
ties were shown by original investigations in several branches of learning. He was first to pub-
lish his discoveries in Calculus in a short essay appearing in the periodical Acta Eruditorum
at Leipzig in 1684. It is known, however, that manuscripts on Fluxions written by Newton
were already in existence, and from these some claim Leibnitz got the new ideas. The decision
of modern times seems to be that both Newton and Leibnitz invented the Calculus independ-
ently of each other. The notation used to-day was introduced by Leibnitz. See frontispiece.
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EXAMPLES

Find by differentiation the slopes of the tangents to the following curves at the
points indicated. Verify each result by drawing the curve and its tangent.

1. y=a2— 4, where z = 2. Ans. 4.
2. y=6—322 " where 2 = 1. — 6.
3. y=1ad, where © =— 1. 3.
~4, y:g, where © = — 2. ——1-
T 2
5. y =z — 22, where = 0. L
1 1
6. y=—— where x = 3. —Z.
4 z—1’ 4

1 2
7. y:ix, where z = 4. 4.
8. y=a?2—22x+3, wherexz=1. 0.
9. y=9—122 where x =— 3. 6.

_. -10. Find the slope of the tangent to the curve y = 223 — 6z + 5, (a) at the point
where ¢ = 1; (b) at the point where z = 0. Ans. (a) 0; (b) — 6.

11. (a) Find the slopes of the tangents to the two curvesy =322 —1land y=222 4+ 3
at their points of intersection. (b) At what angle do they intersect ?
Ans. (a) 412, 4 8; (b) arc tan .

12. The curves on a railway track are often made parabolic in form. Suppose that
a track has the form of the parabola y = x? (last figure, p. 32), the directions OX and
OY being east and north respectively, and the unit of measurement 1 mile. If the train
is going east when passing through O, in what direction will it be going

(a) when } mi. east of OY ? Ans. Northeast.

(b) when } mi. west of OY'? Southeast.

(c) when ? mi. east of O0Y ? N. 30°E.

(d) when {; mi. north of 0X? E. 30°8S., or E. 30°N.

13. A street-car track has the form of the cubical parabola y = 23. Assume the
same directions and unit as in the last example. If a car is going west when passing
through O, in what direction will it be going

(a) when % mi. east of OY ? Ans. Southwest.
3

(b) when % mi. west of OY ? Southwest.
3

(¢) when } mi. north of 0X? S. 27°43' W.

(d) when 2 mi. south of 0.X ?
(e) when equidistant from OX and OY ?




CHAPTER V
RULES FOR DIFFERENTIATING STANDARD ELEMENTARY FORMS

33. Importance of General Rule. The General Rule for differentia-
tion, given in the last chapter, p. 29, is fundamental, being found
directly from the definition of a derivative, and it is very important
that the student should be thoroughly familiar with it. However, the
process of applying the rule to examples in general has been found
too tedious or difficult; consequently special rules have been derived
from the Gleneral Rule for differentiating certain standard forms of
frequent occurrence in order to facilitate the work.

It has been found convenient to express these special rules by
means of formulas, a list of which follows. The student should not
only memorize each formula when deduced, but should be able to
state the corresponding rule in words. _

In these formulas u, », and w denote variable quantities which are
funections of 2, and are differentiable.

.FORMULAS FOR DIFFERENTIATION

dc
—=0.
. ax
dx
—=1.
I r
. d(u-}-v W) = u dv dw
dx Tdx  dx dx
d dv
— (V) =C —-.
v dx( ) dx .
d dv. du
— (W) =u—+4+v—.
v dx( ) dx+ dx
d dv
- D" :nl)n_l——.
VI dx( D o
Via d(x")——nx"*1
% =
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_ du udv
viI d/u _ dx dx
dx\v - v
du
d <u> dx
Vila —_— = = —-
dx\c c
dv
d dx
VII — (1o av =lo ae'—'
dx( g, V) 8.l
dv
d dx
Villa —(logv) =—-
dx( gv) v
d dv
IX —(a —a’log a—-
dx( ") ga_-
/ d dv
IXa —(e — eV —.
dx( L dx
d du dv
X — (v =o' — 4t logu-u’—-
B dx( ) 2 T8 ™
d . . dv
XI —(sinv) =cosv—-.
dx( ) dx
d . dv
XII —(cosvV) =—sinv—-
dx( ) dx
d dv
XIII —(tanv) =sectv—-.
dx( ) dx
d dv
XIv — (cotv) = —csc’v—-.
dx( ) dx
d dv
Xy —(secv) =secvtanv—.
dx( ) dx
d dv
XVI —(cscv) =—cscvcotv—-
dx( ) dx
Xvia i1—(vers v) =sin vil{
.dx dx
dv
XvII d (arcsinv) = i
dx vVi-
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dv
XIX 4 (arccosv) =— ax .
dx Vi—?
dv
d dx
Xx Ix(arc tanv) = Fpl
@
d dx
XXI Ir (arccotv) =— 77
dv
XXII 4 (arc secv) = i— .
dx vVt —1
dv
XXIIT 4 (arccscv) =— dx_
dx vVir—1
dv
XXIV i (arcversv) = _dx_ .
dx Vev_ v
dy dy dv . .
XXV Fx = 3{) . d_x’ vy belng a function of v.
&

1
XXVI = = y being a function of x.

dx
dy
34. Differentiation of a constant. A function that is known to have

the same value for every value of the independent variable is constant,

and we may denote it by y=c .

As z takes on an increment Az, the function does not change in

| value, that is, Ay =0, and Ay _,.
Az
limit (Ay\_dy _
But Ax:O(A—QJ>—E;—O.
dc
I Soo—=0.
dx

The derivative of a constant is zero.
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35. Differentiation of a variable with respect to itself.

Let y=z.
Following the General Rule, p. 29, we have
FirsT StEP. y+Ay =x+Az.
SEcoND STEP. Ay =Az.
Ay
L - =1,
THIRD STEP Ay
FourTH STEP. dy =1.
dz
1I * & =1
S =L

 The derivative of a variable with respect to itself is unity.

36. Differentiation of a sum.

Let Yy=u+v—w

By the General Rule,

First StEP. y+Ay=u+Au+v+Av—w—Aw.
SeconD STEP. Ay =Au+ Av — Aw.

THIRD STEP. Ay = Au + Av_Aw,

Az Az Az Az
dy du  dv dw

FourTH STEP. =y .
dr dx ' de dz
[Applying Th. I, p. 18.]
du dv dw

~—ll V—W) = — _— e
I (u+ ) dx+dx =

Similarly, for the algebraic sum of any finite number of functions.

The derivative of the algebraic sum of a finite number of functions is
equal to the same algebraic sum of their derivatives.

37. Differentiation of the product of a constant and a function.

Let y = cv.
By the General Rule,
FirsT STEP. Y+ Ay =c(v+ Av)=cv + cAw.

SECOND STEP. Ay =c-Av.
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THIRD STEP. ==
HIRD TEP. Ax 4 Ax
dy _ dv

F 'H STEP. .
OURTH DTEP dx d(l)

[Applying Th. 1I, p. 18.]
d dv
I S — () =¢Cc— -
v o () =¢

The derivative of the product of a constant and a function is equal tv
~ the product of the constant and the derivative of the function.

38. Differentiation of the product of two functions.

Let Y =uv.

By the General Rule,

FI§ST StEP. ¥ +Ay =(u+ Auw) (v + Av)

Multiplying out this becomes
y+Ay=uv+u-Av+v-Au+ Au-Av.

SECOND STEP. Ay=u-Av 4 v-Au + Au-Av.
Ay Av Au Av
T STEP. Iy — 2 Au .
{ HIRD STEP Ax u Az + v + Az
dy dv du
F STEP, ==
OURTH STEP dz u + dx
[Applying Th. II, p. 18, since when Az =0, Au =0, and (_\u %) &0.]
- ) (uv)—udv+vdu
"t dx T dx | dx

The derivative of the product of two functions is equal to the first
Sunction times the derivative of the second, plus the second function
times the derivative of the first.

39. Differentiation of the product of any finite number of functions.

Now in dividing both sides of V by ww, this formula assumes the
form

d du dv
=" & @
uv - u v
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If then wehave the product of » functions
y = ’0102 DR )

d dv d
o (v, - v,) 3;1 T (CXNEE v,)
e T s +—

we may write

VY, T, v, VY,
dv. dv, d
_dy  dv  do @2, 0
Tu v, v, 0,
dv, dv, dv, dv,
dr  dr dx dz
=—t et —4 . —
1 Y Vs U

Multiplying both sides by v, -v,, we get

d
dx

: d d
(o, 1) = (2 0,) P (oo w) T2

dz
dv
+ (vlvz e ,Un—l) d_x".

The derivative of the product of a finite number of functions is equal
to the sum of all the products that can be formed by multiplying the
dertvative of each function by all the other functions.

40. Differentiation of a function with a constant exponent. If the
n factors in the above result are each equal to v, we get

.i v") _@.
dz dz
n =N—
v v
) d _,dv

I Ge — (V) = —.

dx @0 dx
‘When » = 2z this becomes
Via 4 (x™) = nx""1,

dx

We have so far proven VI only for the case when = is a positive
integer. In § 46, however, it will be shown that this formula holds true
for any value of n, and we shall make use of this general result now.

The derivative of a function with a constant exponent is equal to the
product of the exponent, the function with the exponent diminished by
unity, and the derivative of the function.
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41. Differentiation of a quotient.

- Let Yy = %, v+ 0.
By the General Rule,
U+ Au
F StEP. Ay = .
IRST STEP ¥y +Ay Sy

_ut+Au u v-Au—u-Av

v+Av v v(v+Av) '
Au Av

VP — —

Ay Az “Az
Az v(v+Av).

SEcoND STEP.

Tuirp STEP.

v du u dv
FourTH STEP. f‘lﬁ = M
dz v?
[Applying Theorems IT and III, p. 18.]
du dv
V— — U—
I . d <u>_ dx dx
| Caa\e/T

The derivative of a fraction is equal to the demominator times the
dertvative of the nwmerator, minus the numerator times the derivative
of the denominator, all divided by the square of the denominator.

When the denominator is constant, set » = ¢ in VII, giving
du

Vila d (E) &,
dx \c¢ c
[Since %=—@=0.]

x dx

We may also get VIIa from IV as follows:

@
() tix_is
dz\e/) ecdxr ¢

The derivative of the quotient of a function by a constant is equal to
the derivative of the function divided by the constant.

All explicit algebraic functions of one independent variable may be
differentiated by following the rules we have deduced so far.
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EXAMPLES*

Differentiate the following :

1. y=ad.

Solution. % = %(1;3) =3x%. Ans. By Vlia

[n=3.]
2. y = ax* — bx?.
dy d d d
Solution. — = — (ax* — bx?) = — (axt) — — (bx?
ution, 7z (aa: ) ( ) dx(z) . by IIL

= a— @) —b— (wz) by IV
_4ao:3——2bx. Ans. By Via

3. y= a:% + 5.

. dy d 4 d
lution. — = — —(5

Solution s da:(z)+dx() by III

= %x%. Ans. By VIa and I
_ 8% Tx 1
4. + 8Vl
Y

Solution. =¥ — _(33;‘5"‘) - d%a b+ % @®zh by 111

:asax%+gx—§+z,&f?. Ans. By IV and VIa

5. y = (z% — 3)5.

dy d
Solution. — = 5(x2 — 3)* — (22 — 3
ution. - (x ) da:( ) by VI
=22-3and n=5.]
=5(x?—8)*.2x = 10z (x2 — 3)*. Ans.
We might have expanded this function by the Binomial Theorem and then applied
III, etc., but the above process is to be preferred.

6. y=Va2—z%
Solution. ‘;—z = %(az —z)t = %(cﬂ - zz)**d%(az —a?) by VI

[v=a?— 22 and n=13.]

._1 2 _ o H_opy—— T A
_2(a x2) " ¥( z)= az—m2. ns.
:(3x2+2)\/1+5x2
Solution. ‘l = @2 +2) (1+5z2)’}+(1+5m2)’} - (327 +2) by V

[u=3x2+2,and v= (1+.)x2)'}.]
=82 + 2)%(1 + 5x2)*’};—x(1 +522) + (1+ 522t 6a by VI, ete.
@+ 2)(1+520) sz 46201+ 520)F

2 3
:51‘,(33!7 +2)+6xm:45z +1633. Ans.
V14 ba? V1 + 5a?

*When learning to differentiate, the student should have oral drill in differentiating
simple functions.
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8. Yy=————-
Va? — z?
@ (az—x?)%l%(a? +a?) — (a? + xQ)di(az—a:“’)’}
. _ z
Solution. o g by VII
_2x(a® —a?) + x (a? + x?)
(a2 — a2)}
[Multiplying both numerator and denominator by (a2 —.1:2)%.]
20 _ 23
:M. Ans.
(@2 — )}
9. y=>5x*4 322 — 6. d—y:20x3+6:c.
dx
. dy
10. y = 3cx?2 — 8dx + Se. d—=60w—8d.
: x
11, y =qatd, d—y':(a+b)xﬂ+b—1.
dx
dy
12. y=z" + nx + n. — =nx*—1 4 n.
- dx
13. f(x) =22 — 322 + 5. f(x) =2x%--3z.
14. f(x) = (a + b)2? + cx + d. f@)y=2(@+ bz +c..
15. i(a+ba:+ca:2):b+2cac. 21. 1(2x3+5):63:2.
dx dx
d d o .
16. — (bym— 3y + 6) = bmym—1—3, 22, — (35— 2¢2) =151 — 41,
dy dt '
d - d
17. — (2224328 =—4z—3—9zx—4, 23. — (a6* + bd) = 4a63 + .
dz de
d . d 3 1
18, —(8s—4t—s§) =—12s5"5—1. 24, —(5—2a?)=—38al.
ds da
19. Laat p oy =20t 4 22, 25. Lo} 41 =158 — g2,
dx dt
d -3 _ _3 d
20, —(y—2—4y )=—2y-%42y7 2, 26. — (2212 — %) = 24!l — 928
dy i dx
27. r=c6 + dd? + ef. =23cH2 + 2d0 + e.
28. y =623 + 42% + 22f. yv=21z% + 10z} + 323.
— 1 3 1 1
29.y: 3Z+%+—- y/:——:“‘—_'—‘h
z "2V8x 3Vaiz 2°
a + bxr + cx? . a
3O.y:T- y_c——ﬁ-
—1)3 :
31, y= =1 y=3z%—bad 4 20 % 4 3ok
z
3 _ g} 3 S
32.y:x x sz +a. y,:2m 4+ x4+ 22 3a'
et 228
33. y = (228 + 22 — b)3. yY=6z(3z+ 1) (22 + 22 — 5)2.



34.
35.
36.
37.
38.
- 39.
40.
(a) 1(2:c3 — 4z + 6)
dx " . )

(b) 4 (at™ + b5 — 9).

dt

d 3 1 .
= (362 — 262 1 66).
(c) d0(30 0% 4 606)

(@ (%(2 a8 + )b,
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f@ = (a + da?)t,
F@)=(1+ 429 1+ 222).
f@) = (a+z)Va—z.
S@) = (a + z)m( + ).

L ,
y = —

1n

y=x(a®+ z?)Va? — 2.

Differentiate the following functions:

®

d
(8) @

(© %(b + ).

(h) %\/H 9.

43
S (x) = %(a + wa)i.
Sf@)y=4z(1+ 3z +10zx8).
L,y G—3Z
PRV
” _ m » m n
F@ =+ oo+ o
L
de ™~ antl

dy a*+ a’x? — 42t

de Vaz — z2

() 7 @ —ab),

@ — )i, () 26+ 208,
4 — ¢%). (k) ;_SV(H bVs.

d 1 5
1) —(2x3 4 223
1) (223 4 223)

2t dy 8b%% —4ab
R i
a—x dy 2a
42. y = = .
Y a+x dx (@ + )2
43 s— B ds 312+
T A+ ? - (1+1)3
(s +92 o EFDE+Y
4. = . =7 7,
4. f(s) s13 (8 G+3)?°
[4 a
45. f(f) = —- ) =—— —.
Va — bg? (a— b2}
147 1
46. F(r)=~/——. Fi)y=—F .
( 1—r - 1—=rVi-1r?
Yy mym—1
47. ={— Y = ———-
7. 90 = (L) o) =5
222 -1 14 422
48. ¢ (1) = == $@)=—2 .
V1 + a2 2? (1 + 2%)2
49. y =V2pz. y’:]—).
Y 2
50. y:QVaﬁ—ocZ. y,__b_a:'
a 2
acy
51. y:(a%_.xg‘)%_ y’:_i/g.
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52. r =Vag + c V¢S, W:M-
2V
. 0w+ pd . pe—1 pd—1
63. u = od . w = 3 + T
b4, p= @+ R ESY
Ve-1 (¢— 1t
55. Differentiate the following functions:
l‘ a2 — x2 . i ay2 d a2
® di<a2+:c2) @ dy(b+y3)' ©®© %vi—as
d 28 d [ a?—s? d 1422
by = (= ). Bl . h) — .
(b) dz (1 + m‘) © ds <\/m) () 4z (1 _ anyi
d(l+x) ' d V4 —223 d 14 ¢
c) — . —_ — i) = .
O\ ® &= O ZVi—e

42. Differentiation of a function of a function. It sometimes happens
that y, instead of being defined directly as a function of z, is given as
a function of another variable », which is defined as a function of .
In that case y is a function of # through v and is called a function of
a function.

. 2v
F if =
or example, y=1_
and v=1—2%

~ then y is a function of a function. By eliminating » we may express y
directly as a function of z, but in general this is not the best plan

when we wish to find dy,
dx
If y =f(v) and v = ¢ (2), then y is a function of 2 through ». Hence,
when we let z take on an increment Az, v will take on an increment Av

and y will also take on a corresponding increment Ay. Keeping this
in mind, let us apply the General Rule simultaneously to the two

functions y=F() and v =g ().
First Step. ¥+ Ay =f(v+Av) v+ Av =¢ (x4 A7)
SEcoND STEP.y + Ay = f(v + Av) v+Av=¢ (z + Ax)
y =f() v =¢®

Ay=f(v+Av)—f(v), Av=¢(z+Ax)—¢(2)

THIRD STEP. Ay — JS(@+Av)—f(v) , Av _ p(z+A2)—¢ ()
Av Av Az Az
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The left-hand members show one form of the ratio of the increment
of each function to the increment of the corresponding variable, and
the right-hand members exhibit the same ratios in another form. Before
passing to the limit let us form a product of these two ratios, choos-
ing the left-hand forms for this purpose.

This gives % . g, which equals i—i .
ite thi Ay _Ay Av,
Write this A~ Av Az
Fourru Step. Passing to the limit, ‘

4 B _B D Th. 11, p. 18
“) T TP
This may also be written J

Y

B — =f"(v) - ¢'(x).

€:)) -7 ¢' (0

If y =f(v) and v = ¢ (), the derivative of y with respect to z equals.
the product of the derivative of y with respect to v and the derivative of v
with respect to .

43. Differentiation of inverse functions. Let y be given as a function
of 2 by means of the relation y =f().

It is usually possible in the case of functions considered in this book
to solve this equation for z, giving

z=¢();
that is, to consider y as the independent and 2 as the dependent
variable. In that case f(@) and ¢ (y)

are said to be inverse functions. When we wish to distinguish between
the two it is customary to call the first one given the direct function
and the second one the ¢nverse function. Thus, in the examples which
follow, if the second members in the first column are taken as the
direct functions, then the corresponding members in the second column
will be respectively their ¢nverse functions.

y=x2+1, fZ:j:Vy'—'l.
y=a, ‘z=log,y.
y =sing, x = arc sin y.

Let us now differentiate the inverse functions

y=Ff(@ and z=4¢()
simultaneously by the Greneral Rule.
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First Ster. y+Ay=f(r+A7) - Az ='¢ (y+4Ay)
SeconDp StEP. Y+Ay=f(x+A7) r+Az=¢ (y+Ay)
y__=f@® z =6

Ay=F@+An)—f @) da=¢y+Ap)—$ @)
Ay f@HAD—f@)  Ar_¢y+An—¢ )
Az Az Ay Ay
Taking the product of the left-hand forms of these ratios, we get
Ay Az
Ao Ay
or, Ay 1
Az Bz
Ay

Tuirp STEP.

b

Fourrn Stee. Passing to the limit,
dgp 1
© PPy
dy
or,

’ 1
! = —

@D () = 5D

The derivative of the inverse function is equal to the reciprocal of the
dertvative of the direct function.

44. Differentiation of a logarithm.

Let y =log,v.*

+ Differentiating by the General Rule, p. 29, cons1dermg v as the
independent variable, we have

FirsT STEP. Yy +Ay = log, (v + Av).
Seconp STEP. Ay =log, (v + Av) —log,v 1
+ Av Av
=log, (% = 2%).
oga< " > loga<1 + ” )
[By '8, p. 1]

* The student must not forget that this function is defined only for positive values of the

base « and the variable v.
t If we take the third and fourth steps without transforming the right-hand member,

there results:

Third step. Ay _ loga(v+Av)—logav‘

Av Av
dy O

Fourth step. =0 which is indeterminate. Hence the limiting value of the right-hand
member in the third step cannot be found by direct substitution, and the above transfor-

mation is necessary.
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Ay 1 < Av> < Av) e
! ZP. — = 1 = 1
TrIRD STEP Av Ap og,(1+ 10ga +

= % lOg <1 —+ AU>A7’

Dividing the logarithm by » and at the same time multiplying the exponent of the
parenthesis by v changes the form of the expression but not its value (see 9, p. 1).]

dy
F Step. =2 =Zlog,e.
OURTH OSTEP o " 0g,¢e

[When Av =0, A'_vv =0. Therefore hum"i) (1 + ) Av = ¢, trom p. 22, placing z= A—” ]

Hence
dy d > 1
Y_2 =1 =
(4) = <logav 0g.e

Since v is a function of z and it is required to differentiate log,»
with respect to z, we must use formula (4), § 42, for differentiating
a function of a function, namely,

dy dy dv
de dv'de

Substituting value of %Z from (4), we get
v

dy 1 dv
A | .28
dz 8y i
@
d dx
VIIx .. — (log,v) =log,e. —-
_ dx v

When a =, log,e = log,e =1, and VIII becomes

dv
dx
Villa — (log V) = -

The derivative of the logarithm of a function is equal to the product i
of the modulus* of the system of logarithms and the derivative of the |
function, divided by the function. |

* The logarithm of e to any base a (=logae) is called the modulus of the system whose
base is a. In Algebra it is shown that we may find the logarithm of a number N to any

base a by means of the formula
OgeN

Togea
The modulus of the common or Briggs system with base 10 is
log,,e = .434294 ...

loga N=1ogae - loge N= ——
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45. Differentiation of the simple exponential function.
Let y=a. a>0
Taking the logarithm of both sides to the base e, we get
log y = v log a,

or, »=18Y
log a
~ 1. lo
" loga g
Differentiate with respect to y by formula VIIIa,
w_1 1
dy loga y
and from (C), § 43, relating to inverse functions, we get
%’% =loga-y,
or,
4) Z—'Z =loga-a’.

Since v is a function of z and it is required to differentiate a” with
respect to z, we must use formula (4), § 42, for differentiating a
JSanction of a function, namely,

Substituting the value of %‘% from (4), we get

dy , v

ﬂ—loga-a T

d dv

IX oo —(a) =loga-av-—-
7 (@) =log

When a=e¢, loga=1loge=1, and IX becomes
d dv

IXa — () =e’—.
dx (2 dx

The derivative of a constant with a variable exponent is equal to the
product of the natural logarithm of the constant, the constant with the
variable exponent, and the derivative of the exponent.
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46. Differentiation of the general exponential function.
Let y=u* ‘
Taking the logarithm of both sides to the base e,

log,y = v log,u,
or, y = el

Differentiating by formula IXa,

% = ¢?los® O;iz (v logu)
= e”“’g“(% Z—Z + log u%)
—u”<v %+log %)
X %(u")zvuv“%-;- logu-uv:_;).

49

by v

The derivative of a function with a variable exponent ts equal to the
sum of the two results obtained by first differentiating by VI, regarding
the exponent as constant; and again differentiating by IX, regarding the

Sunction as constant.
Let v =n, any constant; then X reduces to

d .
&;(u)—nu T

But this is the form differentiated in § 40; therefore VI holds true

for any value of n.

ILcusTraTivE Examere 1. Differentiate y = log (22 + «).

d
— @2+ a
Solution. ay "
: de~ a+4a
[v=22+a.]
= 2—x~ Ans.
2 4 a
ILLustrATIVE Exampre 2. Differentiate y = log V1 — a2,
d di (1—a?
- Solution. v_@
e 1—ayt
_ 11—z (20
(1— :ci’)%
x
= . Ans.

* u can here assume only positive values.

B - T - o R

by VIIIa

by VIIIa

by VI



50 DIFFERENTIAL CALCULUS

ILLusTrRATIVE EXAMPLE 3.

Solution.
ILLusTRATIVE EXAMPLE 4.

Solution.

ILLUusTRATIVE ExAMPLE 5.

Solution.

Differentiate y = a32%

Z_:z loga-a“z’d%(élm?)

=6zloga-a®*’. Ans.
Differentiate y = bec*+3%.

@ — bi (ec2+a:2)
dx dx

= beC’+=’£; (c? + x?)
= 2bxec’+2%, Ans.

Differentiate y = x¢®.

dy
dz

= "1 4 2% logx - e*

= emre® (1 + log:c). Ans.
x

1 @ d
— = exx¢ —ld;(.z) + ze’IogwE(ex)

by IX

by IV

by IX a

by X

47. Logarithmic differentiation. Instead of applying VII and VIIIa
at once in differentiating logarithmic functions, we may sometimes
simplify the work by first making use of one of the formulas 7-10
on p. 1. Thus above Illustrative Example 2 may be solved as follows :

TLLUSTRATIVE EXAMPLE 1.

Differentiate y = log V1 — 2.

Solution. By using 10, p. 1, we may write this in a form free from radicals as

follows :

Then

ILLUSTRATIVE EXAMPLE 2.

y = jlog(l—a?).

41— )
dy _lde
dr~ 2 1—g2

1 —22 T

Ans.

T lme et

| 2
Differentiate y = log 1+
1—x?

Solution. Simplifying by means of 10 and 8, p. 1,

Y=

dy _

dx

3 [log (1 + %) — log (1 — 2%)].

d d
it ] 2y %142
Hzt+2) za z?)

2| T 1rer  1—at

x + rx 2z Ans
14+a2 1—a22 11—zt :

by VIIIa

. by VIII a, etc,



RULES FOR DIFFERENTIATING 51

In differentiating an exponential function, especially a variable
with a variable exponent, the best plan is first to take the logarithm
of the function and then differentiate. Thus Illustrative Example 5,
p- 50, is solved more elegantly as follows:

ILLusTRATIVE ExampLe 3. Differentiate y = z¢*.

Solution. Taking the logarithm of both sides,

logy = exlogw. By9,p. 1
Now differentiate both sides with respect to x.
dy
dx d d
7 = e“‘d—; (logz) + logmd—x (e%) by VIII and V

1
=ex-a—:+logm-ex,

dy

1
or, = ex. y(i + logva;)

= exxe” (% + log:c> . Ans.

IrrusTrATIVE ExampLE 4. Differentiate y = (422 — 7)2+Vaz—5,

Solution. Taking the logarithm of both sides,
logy = (2 +Va? — 5)log (422 — 7).

Differentiating both sides with respect to x,

1 (3 4V —5)—% 4 log(da?—T) — 2.
y dr

4t -7 Vaz—5
d_yzx(4x2_7)2+ oy 8(2+\/12—5)+10g(4x‘~’—7) . Ana.
422 -7 2 _ 5

In the case of a function consisting of a number of factors it is some-
times convenient to take the logarithm before differentiating. Thus,

ILvusTrRATIVE ExamperLe 5. Differentiate y =4 'w
(x—8)(x—49)

Solution. Taking the logarithm of both sides,
logy = 4 [log (x — 1) + log (x — 2) —log (x — 3) — log (x — 4)].
Differentiating both sides with respect to z,
1dy 1 [ 1 1 1 1 ]

ydz 2lz—1 z—2 z—8 z—4
. 222 —10z + 11
T E-DE-9@—3)@—4)
2 —_
or, d_y: 2 10z —11 Ans.

@ o ple—nle—sle-ot
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EXAMPLES
Differentiate the following:
1. y=log(x + a) y_ 1,
’ b dc z+4+a
2. y = log (az + b) __o
S y=8 ‘ az aw+b
1+ 22 dy ' 4z
3. = lo, . —_—= .
4 gl—:;z;2 de 1—axt
2x 41
4, = lo; 2 . . = .
y =log (2? + ) ' V=%iz
© 322 —2
5. y=1 3 —2 5). (= P,
> v 0g (@ z+5) Y »¥—2x+5
, 2.+ 322
6. y:10g0(21) +$3). ' Y :logae-m
7. y=uzlog®. y =logx + 1.
8. f(x) = log 3. f(x) :§ ‘
9. f(z) = log? z. Py =3log’e,
Hint. log3x = (logx)3. Use first VI, v =logx, n=3; and then VIIIa.
(I,+:l)
10. f(z) =1o ‘(x) = .
@ =1ogit 2. rE =
11. f(@) = log @ + VI T 29). ) = .
V14 22
12. —d—e”:aeax. 17. 9 et gt
dr dx
13. ie‘”ﬁ“”:‘lfz4’¢+5. 18. ia‘ogf’:lalog"loga.
dx a6 [4
d d ' .
14. — a3* = 8a3+loga. 19. — b =2slogh.bs.
dx ds
i
15. Llog @320y = 2 20. L ges = 97,
i £_3 v 2o

2
dlo 1+y 2

16. — log = . 21. iaﬂ’:loga-ae"-eﬂﬁ.
dy 11—y 1—1y2 dx
22, y = T +2z, ¥ =2log7- (z + 1) 72" +2x,
23, y = ca* 2%, ¥ =—2zlogc.ca®—,
24. y = log e . d_y:_l_
- 14 ex dr 1+ e

25. ;_w[ex(l__:ﬂ)] =e(1— 22 — 7).

: d fex—1 2 ex d
26, —|——)=——- 27. 2 (z2ee%) = zeox (az + 2).
dm‘(e‘+l> (e= + 1)2 : dm(x ) = wex (az + 2)
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a = _=
28. y==(ee—e 9).
2
29. Y= ﬂt.
e+ e
30. y = xra®.
31. y =a~.
1
32, y ==
33. y = zlog=,

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

14y
y) = log _—
Y () =logy|T— ”
F@)=logXET1=®
° Vai4+ 142
HinT. First rationalize the denominator.
1
Yy = xl?g_:—c-
Yy = e**,
ca?
Y= v
€@ nx
-
n,
w = v,
a\t
Z2=1|-]-
()
y = a=
Yy =
1
y=a a2—a2

49.

fly)=logy-ev.
log s

F@ ==

f(x) =log (log x).

F () = log? (log 7).

¢ () = log (log* 7).

x x
Z—Z = %(ea + e—;').
dy 4

& e
¥ = a*z"—1(n+ x log a)
¥ =a*(logz + 1).
1
v= z% (1 thlog )
Yy = loga? . glogz—1,

S'y)=e (log ¥+ ;) .

1—slogs
f’(s):Tg.
oy 1
f(w)—aclog:r,.
3 (log
F,(z):4log (loba:).
zlogz
4
¢'(x) = :
zlogx
o1
\l/(y)~1_y2-
2
Ty = — —mmee-
Vita?
W_y,
dz
dy

— =e"(1 4+ log z,
W (14 10g )2

2 (5 )
dx x T
oo (v
dx n, n,
@U_: pe'er (M}.
dv v

dz _
dt
dy =z +r-1(nlogz + 1).
dz o

t
(%l) (loga —logt —1).

dy

dy ‘zyloga

dx (a2 — x2)%

= = x*%x® <log x + log?x +£)
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50. Differentiate the following functions:

(a) (% x2logx.

®) & @1t
3z + 1

d
_] o
(c) og z13
— x?

(d) d;locr\/ +:c.

(e) . :c\/;.

(& +1)?

51. Y= ——(x n 2)3 (w n 3)4.

(0)
(i) %log ¥ V1 + 22,

dx z logx

d d
(f) d_aceIIOg z. (k) d—wlog (a® + %)
d s d 2
(8) -3 () —logy (& + 52).
1 d 24 22
(m )dx R

() d_z (@2 + a?) e + o,

0 () ©) & @+ 4

dy _ (@+1) (52 + 14z + 5)
e @+2t@+3)p

Hint. Take logarithm of both sides before differentiating in this and the following
examples.

52. y:___(’”_—.l)%_, di/:__(w—l)%(7w2+30:c—97)'
@-2te—9¥ d 12@—2t@—9"
1—z dy 24 a—5a?
53. y=zV1i—wz(l+x). L= T
e 9v1—g
2 2 _ 9o
B4, y=2LH ) dy _1+32%— 2%
V1—a? dx (1_x2)g
4 i

55. y = a%(a + 8x)% (¢ — 2x)2. e 5zt (a + 3x)2 (a — 22) (a2 + 2ax —1222),

48. Differentiation of sin v. A
Let ‘ y =sin v.

By General Rule, p. 29, considering v as the independent variable,
we have

FirsT STEP. Yy +Ay =sin (v +Av).

SEcoND StTEP. Ay =sin (v +Av) — sin v*

. Av\ . Avf
_2vcos<v+7> sin—-.

]

*If we take the third and fourth steps without transforming the right-hand member,
there results : . .
A_y=s1n (v+ Av)—sin v,

Third step.
ird step o Ao v
Fourth step. ;—'Z=6, which is indeterminate (see footnote, p. 46).
1Let A=v+Av A=v+Av
and B=v B=v
Adding, A+B=2v+ Av Subtracting, A4-B=Av
Therefore = (A +B)=v+ % %(A - B)= A?v.

Substituting these values of 4, B, } (4+ B), % (4 — B) in terms of -»v and Av in the formula
from Trigonometry (42, p. 2),
sin 4 —sin B=2cos } (4 + B) sin } (4- B),
we get sin (v + Av) — sinv =2 cos (v+%) sm%}
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A A sin%’
TuHirD STEP. Z% = CcOos <v+—2-> —E— .
2
FourTH STEP. @ = COoS ?.
dv

. AV H
limit s 2 limit av
0 O _ )=
Since aw=0| 35 |= 1, by §22, p.21, and A = 0 €08 (o + 5 ) COSs v.

9

2

Since » is a function of x and it is required to differentiate sin v
with respect to 2, we must use formula (4), § 42, for differentiating
a function of a function, namely,

dy _dy B,
de dv dx
Substituting value Z——% from Fourth Step, we get
dy dv
Eﬁ; = COS v 7
A d . dv
. — (sinv) = cos v—-
X1 PG e

The statement of the corresponding rules will now be left to the
_student.

49. Differentiation of cos v.

Let Y = CcOS .

By 29, p. 2, this may be written

¥ =sin <—g— — v)-

Differentiating by formula XI,

[Slnce cos (g - v): sin v, by 29, p. 2.]

d . dv
X e —(COSV) =—SINV—-
dx( ) dx
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50. Differentiation of tan v.

Let y=tanw,

By 27, p. 2, this may be written
__sinw
"~ cosv

Differentiating by formula VII,

ad . .d .
COs V= (sin v) — sinv - (cusv)

_ d
dz cos?v
~ cos?v % + sin?v %
- cos?v
dv
= @ _ sec?v @
cos*v dx
d dv
XIII .. —(tanv) = sec’v —-
dx< ) dx
51. Differentiation of cot v.
Let y = cot v.
By 26, p. 2, this may be written
1
. y= tan v
Differentiating by formula VII,
d
— (t
Qy dx( an v)
dz tanZv
. dv
sec’y —
=— de__ csc?v dv
tan®v dz
d dv
XI .. —(cotv) = — csctv —-
v ot ax
52. Differentiation of sec v.
Let Y = secv.
By 26, p. 2, this may be written
1
Y= cosv



RULES FOR DIFFERENTIATING

Differentiating by formula VII,

d
dy T (cos v)
dz cos™
sin v @
_ dx
- cos’v
1 sinv @
" coswcosvdz
= secv tanv dv
dz
d dv
.. — (secv)=secvtanv—-
XV I (secv) I
53. Differentiation of csc v.
Let 4 = CSC v,
By 26, p. 2, this may be written
1
y= sin v
Differentiating by formula VII,
4 (sin v)
dy . dz
dr sin®v
cos v gl_v
_ dx
o sin®»
= — ¢scv cotv dv
dx
d dv
. — (cscv) = — cscv cotv —--
XVI r (cscv) o

54. Differentiation of vers v.
Let. Y = Vers o. ,
By Trigonometry this may be written

y=1—cosv.

°
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Differentiating,
dy _ sin v d
de d:
.4 (versv) = sinvd—v
XVII S =sinv—-

In the derivation of our formulas so far it has been necessary to.
apply the General Rule, p. 29 (ie. the four steps), only for the

following : .
dv dw

d .
II1 T (u+v—w)= dx — Algebraic sum.
v (u ) =1u @ + !%- Product.
v au_ u L
VII a <E> _ %P Guotient.
dz\v/) v?
v
d .
VIII e (log,v) =log,e - Logarithm.
a . dv .
XI e (sinv) = cos v o Sine.
XXV @ dy dv TFunction of a function.
de  dv dz
XXVI 1& = l Inverse functions.
de  da

dy
Not only do all the other formulas we have deduced depend
on these, but all we shall deduce hereafter depend on them as
well. Hence it follows that the derivation of the fundamental
formulas for differentiation involves the calculation of only two
limits of any difficulty, viz.,

limit sin v _ )
Mgt by § 22, p. 21

and Mmit (14 ) —e. By § 23, p. 22
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EXAMPLES
Differentiate the following : ’ )
1. y =sinazx?. .
W _ cos az? 4 (ax?)
dx dz
(v=axt.]
= 2 ax cos ax?.
2. y=tanV1—u. )
W e vi— 2L 1— oyt
dx dx

[v=v1-z]
—se?Vi—z-y(1—2) ¥=1)
—
__sectvVl—uz
2Vl—z
3. y = cosdz.
This may also be written
y = (cosx)3.

% = 3(cosx)? % (cos )

[v=cosx and n=3.]
= 3 cos?x (— sinx)
=— 3sinz cos?z.
4. y = sinnz sinrx.
dy . d . . d .
& sin nx — (sinz)? + sin*x — (sin nx)
dr dx dx

[ = sinnz and v=sin?z.]

59

by XI

by XIII

by VI

by XII

by V

=sinnz . n(sing)r—1 % (sinx) + sin®z cosnx ;— (n) by VI and XI
] XL

= nsinnz - sin®—1x cosx 4 n sin*x cos nx
= nsin*—1z (sin nx cosx + cosnx sinx)
=nsinn—1zsin(n 4+ 1)z.

5. y =secax. Ans. ‘_I?Z = a sec az tan ax.
dy
6. y = tan (ax + b). a:asec2(ax+b).
7. s =cos 3 ax. iif:——:?»asin?mm:.
‘de
ds
8. s=cot(2¢% + 3). E£=—4tcsc2(2t2+3).
9. f(y) =sin2ycosy. f(¥) =2cos2ycosy —sin2ysiny.
- 10, F(z) = cot?5x. F’(x) =— 10 cot bz cse?bx.
11. F(f) = tanf — 4. F’(6) = tan24.
12. f(¢) = ¢ sin¢ + cos¢. S/ () = ¢ cos .
13. f(t) = sin3t cost. . f7(t) = sin2¢ (3 cos?t — sin?t).
14. r = a cos 24. ﬂ:—2asi1120.

dg
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15. d%sinza::sin 22. 23. %cos%:t%sin%-
16. (—1% cos®z? = — 6 cos?x? sina?. 24. d% sin % =— % cosﬁ.
2 2 2
17. icsct— :—tcsct—cott—- 25. iesimﬂ:eﬂimﬁcosar:.
dt 2 2 2 dx
18. ia COS2S:——M- 26. isin(logm):w.
ds Veos2s dz z
2
19. d%a(l — cosf) = asind. ‘ 27. ‘%tan (logz) = w.
20. (%: (log cos ) = — tanzx. 28. % a singg = asin? g cosg
21 d (log tanz) = 29 d sin (cos &) = — sin « cos (cos a)
tdet C T sin2z " da -
d d tanz —1
22. — (log sin?x) = 2 cotx. 30. ——— =si .
7 (log sin?x) cotx p— sina + cos
31‘y:10g\/1+si11:1;‘ dl: 1 .
1—sinz dx cosx
dy 1
32. ¥ = log ta T 3;). N .
. Y g n(4 + 2 dx cosz
33. f(z) =sin(z + a)cos (x — a). S/ (x) = cos 2.
34. y = qtannz, . Yy’ = nat*nn® sec? nz log a.
35, y = ecoszging. Yy’ = ecosz(cos T — sin?x).
36. y = e* logsinz. Yy’ =e*(cotz + log sin ).
37. Differentiate the following functions:
@) % sinbz2 - ) &% ese (05 (k) %ea_bcm_
(b) d%: cos (a — bz). (g) % sin32 x. 1) % sin é cos2§ .
(c) % tan a_;c . (h) % cos? (log x). (m) d% cotb% .
(d) 4 cot Vaz. (i) 4 tan2 V1 — a2, (n) a V14 cos?g.
dx de do
d o a . d -
(e) — seces=, (i) — log (sinZax). (0) — log V1 — 2sin2s,
dx -dx ds
d A .
38. — (xresinz) = gn—lesinz (p + x cost).
dx
d . .
39. i (e** cos mx) = ea* (@ cos mx — m sin mx).
14 coséd 2sind
40. f(0) = ———- ) =———.
76) 1— cosd 7@ (1—cos6)? .
__e* (asing — cos ¢) , .
41. f(¢) = — eyl S’ (¢) = e2d'sin ¢.
42. f(s) = (scot s)2. J’(s) = 2scots(cots — s cse?s),



RULES FOR DIFFERENTIATING 61

43. r =} tan®d— tand + 6. dd—; = tant4.
. ' dy . [sinx
44. y = xsinz, — —gsinx{___ 4 logzcosz).
dr T
45. y = (sinx)=. y’ = (sinz)* [log sinx + x cot x].
46. y = (sin x)ten=, "y = (sinx)tan*(14-sec2x log sinx)
g
d . d .
47. Prove — cosv = — sinv &, using the General Rule.
dr dx
d dv . 0S vV
48. Prove — cotv = — csc2v — by replacing cotv by c_ .
dz de sinv
55. Differentiation of arc sin v.
Let y=arcsinv;*
then v=siny.
Differentiating with respect to y by XI,
d_ cosy;
dy ’
d 1
therefore . . By (C), p. 46
dv  cosy
But since v is a function of z, this may be substituted in
d, dy dv
dy _dy (), p. 45
dr dv dz
ivin dy__1 v
giving de cosy dz
1 dv
Vi—2dz
cos y =V1—sin?y =V1 - o2, the positive sign of the radical being taken, Y/lz
since cosy is positive for all values of y between —g and g inclusive. b/
dv
XVII 4 (arc sin v) = — NG
Seo— = — ) |
dx Vi—® 2P
OB v
' —171M 1
* Tt should be remembered that this function is defined only for values of v ofldr
between —1 and +1 inclusive and that y (the function) is many-valued, there 2
being infinitely many arcs whose sines all equal ». Thus, in the figure (the N
locus of y=arc sinv), when v=OM, y=MPy, MPy, MP3, ..., MQy, MQg,+--. &
In the above discussion, in order to make the function single-valued, only i
values of y between —g and g inclusive (points on arc QOP) are considered; _ o IQ2
that is, the are of smallest numerical value whose sine is v. '
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56. Differentiation of arc cosv.

Let y=arccosv;*
then ¥ = COS ¥.

Differentiating with respect to y by XII,

. v
; ‘(TZ/' —_ Sin z/ s
dy 1
therefore = By (©), p. 46
dv sin y y (©,p
But since v is a function of z, this may be substituted in the
formula dy  dy d
49 .2, (4), p. 45
dz  dv dx
givin dy __ 1 dv
siving dz siny dx
N
Vi—tda
siny =V1—cos* v ;\/m, the plus sign of the radical being taken,
since sin y is positive for all values of y between 0 and = inclusive.
dv
d dx
XIX oo —(arccos v) = — —-
, dx V1—
57. Differentiation of arc tan v.
) Let y =arc tanv;t
“ then v=tan y.
| v ~Differentiating with respect to y by XIV,
& & =sec’y;
I dy y b
o S
> IP therefore dy_ 1 . By (C), p. 46
Mo v dv  sec’y
"? o, Ql * This function is defined only for values of v between —1 and +1 inclu-
= 1

i sive, and is many-valued. In the figure (the locus of ¥ = arc cos v), when
v=0M, y=MPy, MPg, -+, MQ, MQg,"*". .
I In order to make the function single-valued, only values of ¥ between
| 0 and = inclusive are considered; that is,
\sf'z the smallest positive arc whose cosine is v.
|
|

Y

Hence we confine ourselves to arc QP of T
‘ the graph. — B
t This function is defined for all values of v, and is many- 2| _—
valued, as is clearly shown by its graph. In order to make it

single-valued, only values of 7 between —%r and g are con-

sidered ; that is, the arc of smallest numerical value whose —]
tangent. is v (branch 40B).
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But since v is a function of z, this may be substituted in the formula

d dy dv
ﬁzé.%, A4), p. 45
1vin: @—_1_@
giving dz  sec’y dx
1w
T 14t dr
[sec?y =1+ tan2y =1+ v2.]
dv
d dx
S — t = —
xx dx(arc an v) 10

58. Differentiation of arc cot v.*

Following the method of the last section, we get

dv
XXI . i(arc cotv) = — ——:.
dx 1427
59. Differentiation of arc sec v.
Let 4/ = arc sec v .t
then v = sec ¥.

* This function is defined for all values of », and is many-valued,-as is seen from its
graph (Fig. ). In order to make it single-valued, only values of y between 0 and r are
considered ; that is, the smallest positive arc whose cotangent is »v. Hence we confine our-
selves to branch 4B.

Fic. a TFic. D

1 This function is defired for all values of v except those lying between —1 and +1, and is
seen to be many-valued. To make the function single-valued, ¥ is taken as the arc of smallest
numerical value whose secant is ». This means that if » is positive, we confine ourselves to

points on arc 4B (Fig. ), ¥ taking on values between 0 and ;—r (0 may be included); and if v is
negative, we confine ourselves to points on arc DC, y taking on values between — 7 and —g

(=7 may be included).
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Diffefentiating with respect to y by XV,

@——sec tan v ;
dy_ y Z/’

dy 1

heref _
therefore dv secytany

By (C), p. 46

But since v is a function of 2, this may be substituted in the formula

dy dy dv
a9y _ 2y ov (4), p. 45
dr dv do
.. dy 1 dv
1vVin —_— e —
gwing dr secytany dz
. 1 dv
vVor—1 dz
sec ¥y =v, and tan y = Vsec?y — 1= Vo2 —1, the plus sign of the
radical being taken, since tan y is positive for all values of y
between 0 and % and between — 7 and — —;—- » including 0 and — 7.
dv
d dx
XXII .. —(arcsecv) = ———.
dx vV —1

60. Differentiation of arc cscv.*

Let 4y =arccscv;
then ¥ = CSC Y.

Differentiating with respect to y by XVI and following the method

¥ of the last section, we get
e SRR
dv
b d dx
————— ——==== XX — (arccscv)=— ———-
7 dx vVri—1
bl
-1 0 1 If * This function is defined for all values of v except those
o lying between —1 and +1, and is seen to be many-valued. To
D)-3 ‘make the function single-valued, ¥ is taken as the arc of small-
(o2 ) est numerical value whose cosecant is v. This means that if v is
= ] positive, we confine ourselves to points on the arc 4B (Fig. a), v
- taking on values between 0 and 1—; <g may be included); and
I - if v is negative, we confine ourselves to. points on the arc CD, y

. LY .
F16. a taking on values between — 7 and — 2 (— g may be 1nc}ude(l>.
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61. Differentiation of arc vers v.
Let y =arc versv; *

then : = vers y.

Differentiating with respect to y by XVII,

glg =siny;
dy - ys
dy 1
- = . By (0), p. 46
therefore v sny y (), p
But since » is a function of z, this may be substituted in the formula
dy dy dv
&9 27 27 A), p. 45
dr dv dz “), p
ivin. glg _ 1 . @
gving dz  sin y dx
. 1 dv )
CVoy—rdr

sin y="1—-costy="V1—(1—versy)2="2v—v?, the plus sign of the radical
being taken, since sin y is positive for all values of y between 0 and 7 inclusive.

dv
XXIV d ( )} dx
LS, —(arcvers V) = ——————-
dx Vev —?
EXAMPLES
Differentiate the following :
1. y = arc tan ax?.
P di (ax?)
Solution. w_ & by XX
dr 14 (ax?)?
[v=ax.]
_ 2az
T 14 a2zt
2. y=arcsin(3z — 428%).
Y]
i = Bx—4ad)
Solution. &_ —_— by XVIII e
dz  /1— 3z — 4282
[v=3x—423]
_ 3 — 1222 _ 3 T P
V1—92? + 242t —162° V1—2?
* Defined only for values of v between 0 and 2 inclusive, and is many- r7)
valued. To make the function continuous, y is taken as the smallest positive °

arc whose versed sine is v; that is, ¥ lies between 0 and m inclusive. Hence
we confine ourselves to arc OP of the graph (Fig. a). Fi1c. a
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3

Sol

- 23,

DIFFERENTIAL CALCULUS .

232
Yy = arc sec

x2

()
@_ de \x2 —1

14. f(x) =2z Va?—2? + a? arcsin‘g.

ution. = by XXII
dx x2+1J z2+1)2~1
2 —1 (ﬁ—l
2241
[v=xﬂ—1‘]
x2—1)22— (2 +1)22
_ (x> —1)2 __ 2
- 2+1 2z o241
2;2—1 2 —1

d X 1 d 1
. —are sin - = ———. 9, —arctanvVl—g=— ——nv——,
dz Va? — 2 dx 2V1i—z(2—1x)
2 are cot (% — 5) —_—2r 10. L arc cosec S = 2.

dr 14 (22— 5)? dz 2% /9 — da2

d 2z 2 d 222 2
. —arctan = . 11. —arc vers = .

dx 1—x?2 14 22 dx 1422 1422

d 2 d T a
. — arecosec ——— = ————. 12. —arctan=-= ———.

dx 222 —1  /1— 2 dx a a4
. iarc vers 222 = —2 13. ia,rc sin % +_1 = il_
dx V1—z? dx V2 V1—2z —2?

f(x) =2Va?—a2

) —x\}¥
15. f(x):w/a2——a:‘l+aarcsin‘7—5. f’(x):<a I) .
a a+x
16. @ = rarcvers? — Va2ry — y2. @:;.
" dy 2y —y?
17. § = arcsin(8r —1). gﬁ:;_
& Vor—om
18.¢:arctanr+a. d.i’: 1 .
1—ar. dr 14172
ds 1
19. s = arcsec . =
ot V1-—1t2 dt \/l——t2
20. i(w arc sinz) = arcsinz + i
dx 1— a2
d tan @
21. — (tan @ arc tan ) = sec?d arc tan § .
a5 ) S e
22 Ef[lotf(arc cost)]—————]—
Codt arc costV1— &2
' 1
S (y) = arc cos (log ). ) =—

24. f(#) = arcsin Vsin .

yVi— (0gv)
F @) =3V1+eschd .
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25. f(g) = arc tan JL—cos¢ f’(q;):l.
14 coso 2
26. p = ewotns dp _ et
dg  1+¢°
27. u:arctaner_ —* @:—2—
dv e+ e-v
t . e—1t
28. s = arc cos® . @:_L.
et + et dt et 4 e—t
29. Y= qarc sin-’l’. y/ — gare sina <w ]QL_:’I}) .
z V1— a2
30. y = e*arc tan, ¥ = ef‘[—Hl ; T ararctana (14 log x)]
@
31. y = arcsin (sinz). =1 "
32. y:arctanﬂ. y':;.
3 4+ 5cosz 54 3cosx
2
33.y:arccotg+log zT—a, L
z T+ a zt—at
14\t 1 P
34. y =lo, — —arc tan . Y=
Y g<1—x> 2 L
zarcsinz
35. y=V1—2?arcsinz — x. Y =—"—".
V1—z2
36. Differentiate the following functions :

(a) 4 arc sin 2 22,
i :

(b) 4 arc tan a’z.
dx

(@) 4 2 arc cosx.
dz

d
(g) a earc tanat |

d x
(c) —arcsec—-
dz a

(e) 4 2% arc cot a.
dz

) 4 {3 arc sin L
dt 3

(h) d%; tan ¢2 - arc tan ¢¥.
(i) d% arc sina’.

G4). d% arc tanVv1+ 62.

(k) a arcsin vV1— g2,
dy :
0} 4 arc tan (log 3 az)
dz ° ’
d s
m) — (a® + s?)a —.
(m) s (a? + s?%) rcs4302
(n) 4 arc cotg—a-
da 3

d —
(0) = V1= aresint.

Formulas (4), p. 45, for differentiating a function of a function, and (C), p. 46,
for differentiating inverse functions, have been added to the list of formulas at the
beginning of this chapter .as XXV and XXVI respectively.

I . .
In the next eight examples, first find dy and & by differentiation and then
substitute the results in v dz

¢ to fin

dy _dy

dz~ dv
*
a %,
dz

= by XXV
dx

* As was pointed out on p. 44, it might be possible to eliminate v between the two given
expressions so as to find y directly as a function of , but in most cases the above method
is to be preferred.
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In general our results should be expressed explicitly in terms of the independent

. . dy. de de .
variable; that is, iz in terms of z, @ in terms of y, 0 in terms of 4, etc.

37. y=2v¥ —4,v=8x2+1.

dy dv e s
i 4v; e 6z ; substituting in XXV,

dy

—=4v.6x =242 (322 +1).

iz 822 +1)

38. y =tan 2w, v=arctan(2z —1).
d—y:2sec22v;@:_;
dv de 2a2—2x+1

dy 2sec?2v 9 tan?2v+1  2a2— 2z +1

; substituting in XXV,

de ™ 222 —2x+1 " 2z2—2z4+1 2(x— 2?2

[Since v=arctan(2x—1), tanv=2x -1, tan 2v=il—- ]

2z —2x%
39, y=812 —4v+5,v=21—5. Z—y:72x5—204w2.
x
2v T dy- 4
40. y = y V= . — = .
Y 3v—2 22 —1 . de~ (x—2)®
. dy
41. y = log(a? — v?), v = asinz. d—:—2taua:.
x
42. y = arc tan(a + v), v = €% d—y:—et—.
dr 14 (a+ e)?
. > dr
43. r=e254+'¢s, s = log (t — 1%). E:4t3—6t2+1.

In the following examples first find Z—x by differentiation and then substitute in
Y

dy 1
— = by XXVI
d dz 4
to ﬁndd—y. dy
dx .
dy 2V14y 2
4. z=yV1 . —= = .
v tv dr 243y 2y 4+ 3y
45. x = V14 cosy. @:—2\/1:" cosy:_ 2 .
dr siny V2 _—z2
‘ 2
46. z=—Y . dy _ (1+logy)?
B 1+ logy dx logy
2 _ 22 2 _ 2
o7, 5= alog PTYE— y__yVe -y
. Vi dil', a2
48. x:rarcvel‘sg—v2ry—y2. dy _ ATy,
r dx Y

49. Show that the geometrical significance of XXVI is that the tangent makes
complementary angles with the two codrdinate axes.
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62. Implicit functions. When a relation between 2 and y is given
by means of an equation not solved for y, then y is called an implicit
JSunction of z. For example, the equation

2—4y=0

defines y as an implicit function of 2. Evidently z is also defined by

means of this equation as an implicit function of y. Similarly,
Pty +—a’=0
defines any one of the three variables as an implicit function of the
other two.
It is sometimes possible to solve the equation defining an implicit
function for one of the variables and thus change it into an explicit
function. For instance, the above two implicit functions may be solved

for y, giving 2
T4
and y=tVa*—2*— 2

the first showing y as an explicit function of z, and the second as an
explicit function of 2 and 2. In a given case, however, such a solution
may be either impossible or too complicated for convenient use.

The two implicit functions used in this article for illustration may
be respectively denoted by F(@ y)=0

and F(z, y, 2)=0.

63. Differentiation of implicit functions. When y is defined as an
implicit function of 2 by means of an equation in the form

4 : S(@ =0,
it was explained in the last section how it might be inconvenient to
solve for y in terms of z; that is, to find y as an explicit function of =
so that the formulas we have deduced in this chapter may be applied
directly. Such, for instance, would be the case for the equation

(B) ar® + 22%y — y'x—10 = 0.

We then follow the rule:

Differentiate, regarding y as a function of x, and put the result equal
to zero.* That is,

© E‘i-f(x, y)=0.

* This process will be justified in § 7. Only corresponding values of z and y which
satisfy the given equation may be substituted in the derivative.

—
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Let us apply this rule in finding d_y from (B).

d—(ax6+2z3y—y’x—10)=0; by (€)

L @+ @ep -2 n—L ao=~o;

bax+2x3%+be y—?xy"j’y 0;

(2x8—7xy“)—/— =y — 6 a2’ — 6 2%;

dy _y "— 6 az’— 6 2%
dz 22°—T7 2y’ Ans.

The student should observe that in general the result will contain
both z and y.

EXAMPLES
Differentiate the following by the above rule : -
1. y2 =4 pzx. d—y:@.
de y
dy T
2. 22 2 — 92, g __ Y.
+ ¥ iz 7
dy bz
3. b2 + a’y? = a2b2. —
+ oy =a & ay
dy 2a
4. ¥ —3y+2axr=0. L= .
viosus i 3(1— )
d
5. :c*+y’}:a’}. ﬁ:—\/é.
de z
I W__ ofy
6. 2% 4y ad. ar 5.
2 N dy _ 3bbayt
g 2t
dy y
Ly — 2 = 0. —_—=—
8. ¥ 2xy + b i
dy ay—m2
9. 28 4+ y3 —8axy = 0. P o

dy _y*—ay logy
de~ 2 —zylogx
dp  a?sin26

10. zv = y=.

11. p2 = a%cos 24.

- p
) dp  8a2cos36 + p?sind
2 = a2 Frv i ’
12. p2?cosd = a?sin 34. a9 2pcosf
3 du ¢+ usin (uv)
13. cos (uv) = cv. dv ~ —wvsin (uv)
a6 __ _sn@+e)

14. 8 = cos (8 + ¢). cz_¢:—1+'sin(0+¢)
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15. Find 3_39/; from the folléwing equations:

(a) =% = ay. ) zy + 42 + 4z =0. (k) tanz + y3 = 0.
(b) 22 + 4y% = 16. (g) yx? —y3 =b. (1) cosy + 322 = 0.
(¢) b%? — a%y? = a2l?. (h) a2 — 228 =33, (m) zcoty 4+ y = O..
d) ¥*=2%+a. (i) =?y® + 4y = 0. (n) % =logx.

(e) x2 —y2 =16. () ¥ =sin2z. (0) e +2y% = 0.

16. A race track has the form of the circle 2 + % = 2500. The directions OX and
0Y are east and north respectively, and the unit is 1 rod. If a runner starts east at
the extreme north point, in what direction will he be going

— I
(a) when 25V 2 rods east of OY ? Ans. Southeast or southwest.
(b) when 252 rods north of OX ? Southeast or northeast.

(c) when 30 rods west of OY ? ! E. 36° 52"12” N. or W. 36°52'12” N.
(d) when 40 rods south of OX ? : . :
(e) when 10 rods east of OY ?

17. An automobile course is elliptic in form, the major axis being 6 miles long and
running east and west, while the minor axis is 2 miles long. If a car starts north at
the extreme east point of the course, in what direction will the car be going

(a) when 2 miles west of the starting point ?
(b) when } mile north of the starting point ?

MISCELLANEOUS EXAMPLES

Differentiate the following functions :

S —2
1. arcsin V1 — 422, Ans, ———.
V1—4a?
2. zer, e (222 +1).
v v
3. logsin—. = cot—.
8502 22
4. arc cos? a
y ¥V — a?
5 — . .
P — 2 (a2 — z2)%
6 z . logz )
"1+ logz 1+ logx)?
7. log sec (1 — 2). —2tan(1 — 2x).
8. z%e2—3x, xe2—3%(2 — 37x).
9. log \/l—_c(ﬂt csc t.
1+ cost
10. arcsin V} (1 — cos ). - 3.
11 ta 2s 2
. arc N —- ——
Ve —1 (-5 Ve —1
R
12. @z —1) ]2 . i‘i\/ 2 .
14+ 3(1+2) Vit z
1s. 23 arcsine + (24 2) V1—a?, 22 arcsinz.-
3 9 ‘
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14.
15.
16.
17.
18.

19.
20.

21.

22.
23.
. e* log sin ax.
25.

26.
217.
28.
29.

30.

DIFFERENTIAL CALCULUS

[/ 4
tan2 — loe sec2 —.
an 3+ og sec? 3

arc tan } (e2= + e—2%),

3\2z

(-

gtanz,

@+t @ -1t
$%

esec (1—3x),

arc tan V1 — a2

z2
cosz

etana?,

log sin? 1 6.

sind ¢ cos ¢.

a
2V — camym
m+x egmarc tanx
tan2 x — log sec?x.

3log (2 cosx + 3sinzx) + 2z

13
x—a,

a,rccota+lo
T g T+ a

31
32

33.

34.
35.
36.

37.

38.
39.

40.

41.
42.

43.

45.

46.

47.

. (log tan 3 — z2)3,
o_gttyad e

(1+a)(1—22)(2 +2)
B+x)(2—3x)

arc tan (log 3 ).

log V(@ — baA)m.

log A /yz_"'l
¥ —1
earcsec26,
@ — 32)°
1+4x
Va2 — g2

cos ™

e*log sin ..

. T
arc sin ———.
V14 a2
arc tan a®,

. asinzmac.

cot? (log az).

1
(1— 3a?)em,




CHAPTER VI
SIMPLE APPLICATIONS OF THE DERIVATIVE

64. Direction of a curve. It was shown in § 82, p. 81, that if

y=r(
is the equation of a curve (see figure), then

Y

1 -

g‘lf::tanr = slope of line tangent to the curve at any point P.

The direction of a curve at any point is defined to be the same as
the direction of the line tangent to the curve at that point. From
this it follows at once that

dy .
o tan 7 = slope of the curve at any point P.

At a particular point whose codrdinates are known we write
d .
[—“l—/] = slope of the curve (or tangent) at point (x;, y,).
xX=x
y=y,

At points such as D, F, H, where the curve (or tangent) is parallel

to the axis of X, d
7 = 0°; therefore Y_o.
dx

At points such as 4, B, @, where the curve (or tangent) is per-
pendicular to the axis of X,
7 =90°; therefore @ = 0.
dx

73
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At points such as %, where the curve ¢s rising,*

7 = an acute angle; therefore Z_ilc = a positive number.

The curve (or tangent) has a positive slope to the left of B,
between D and F, and to the right of G.
At points such as C, where the curve s falling,*

d
7 = an obtuse angle; therefore ay = a negative number.

The curve (or tangent) has a negative slope between B and
D, and between F and G.

3

by ILLusTRATIVE Exampre 1. Given the curvey = ¥ _ 242
(see figure). 8
& i/ g () Find 7 when z =1.
D / (b) Find 7 when = = 3.
o (c) Find the points where the curve is parallel to OX.

(d) Find the points where 7 = 45°.
(e) Find the points where the curve is parallel to the line
4 2x — 3y =6 (line 4B).
Solution. Differentiating, Z—y = x? — 22 = slope at any point.
x

(a) tanT = [%] =1—2=—1; therefore 7 = 135°. Ans.
=1

(b) tanT = [3—?/] =0—-06= 3; therefore 7 = arc tan3. Ans.
Llx=3

d
(¢) T=0°tanT = d_y = 0; therefore 2 — 22 = 0. Solving this equation, we find
x
that x = 0 or 2, giving points C' and D where the curve (or tangent) is parallel to OX.
(d) T =45° tanT = Z—Z— =1; therefore 22 — 22 =1. Solving, we get =1+ V2,

giving two points where the slope of the curve (or tangent) is unity.
(e) Slope of line = %; therefore 2% — 2z = 2, Solving, we get z =1 :I:\/g, giving
points E and F where curve (or tangent) is parallel to line A B.

Since a curve at any point has the same direction as its tangent at
that point, the angle between two curves at a common point will be
the angle between their tangents at that point.

. ILLusTrATIVE KxamerLe 2. Find the angle of intersection of the circles
(4) 24y —4x =1,
(B) 2?4y -2y =09.

* When moving from left to right on curve.
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Solution. Solving simultaneously, we find the points of intersection to be (3, 2) and
(’17 - 2)'

d~y = -z from (4). By § 63, p. 69 Y
dx
dy (3,2)
—_—flom B By § 63, p. 69
= (B). ¥ §63, p ~
[2 ; x] =— 1 = slope of tangent to (4) at (3, 2). -2 T
i - %
[ :1: ] =— 3 = slope of tangent to (B) at (3, 2). RIS
l1—ylx=3
y=
The formula for finding the angle between two lines whose slopes are m, and m, is
tang = M2 55, p. 3
14+ mm, .

_%_;_3

3
2

This is also the angle of intersection at the point (1, — 2).

Substituting, tan § = =1; therefore § = 45°, Ans.

EXAMPLES

The corresponding figure should be drawn in each of the following examples: -

1. Find the slope of y = :c — at the origin.' Ans. 1=tanr.
14 22

2. What angle does the tangent to the curve %2 = a®(x + y) at the origin make
with the axis of X ? Ans. T =135
3. What is the direction in which the point generiting the graph of y = 32 — 2
tends to move at the instant whenx =1°? Ans. Parallel to a line whose slope is 5.

4. Show that Z— (or slope) is constant for a straight line.

5. Find the points where the curve y = x® — 322 —9x + 5 is p‘uallel to the axis

of X. Ans. 2 =38,z =—1.
6." At what point on y2 = 2 28 is the slope equal to 8 ? Ans. (2, 4).
7. At what points on the circle 2 4 y2 = #? is the slope of the tangent line equal

to —4°? 3r 4r
» . Ans. (j: 3 i?,‘)
8. Where will a point moving on the parabola y = 22 — 7z 4+ 3 be moving paral-
lel to the line y = 5z + 2?2 Ans. (6, — 8).
9. Find the points where a particle moving on the circle 22 + y2 = 169 moves per-
pendicular to the line 5z + 12y = 60. Ans. (412, F5).

10. Show that all the curves of the system y = logkx have the same slope ; i.e. the
slope is independent of k.

11. The path of the projectile from a mortar cannon lies on the parabola y =
2x — x?; the unit is 1 mile, OX being horizontal and OY vertical, and the origin
being the point of projection. Find the direction of motion of the projectile

(a) at instant of projection ;
(b) when it strikes a vertical cliff 1} miles distant.
(c) Where will the path make an inclination of 45° with the horizontal ?
(d) Where will the projectile travel horizontally ?
Ans. (a) arctan2; (b) 135°; (c) (3, §); (d) (1, 1).
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12. If the cannon in the preceding example was situated on a hillside of inclination
45°, at what angle would a shot fired up strike the hillside ? Ans. 45°

13. At what angles does a road following the line 3y — 2 — 8 = 0 intersect a rail-
way track following the parabola y* = 8. Ans. arctan$, and arc tan .

14. Find the angle of intersection between the parabola y2 = 6z and the circle
z? + 3% =16. Ans. arctang V3.

2 2
15. Show that the hyperbola x? — y% = 5 and the ellipse x—8 + %— =1 intersect at

right angles. 1

28

a—x

16. Show that the circle 22 4 ¥2 = 8 ax and the cissoid y2 = 3
(a) are perpendicular at the origin ;
(b) intersect at an angle of 45° at two other points.
17. Find the angle of intersection of the parabola z2=4ay and the witch
8ad

= . Ans. arctan8 = 71° 33°.9.
z2 + 4a?

Y

18. Show that the tangents to the folium of Descartes 3 + y3 = 8 axy at the points
where it meets the parabola y2 = ax are parallel to the axis of Y.

19. At how many points will a particle moving on the curve y = a8 — 222 + 2 — 4
be moving parallel to the axis of X ? What are the points ?

Ans. Two; at (1, — 4) and (3, — L%4).

20. Find the angle at which the parabolas y = 322 — 1 and y = 222 4 3 intersect.

Ans. arctan 4.

21. Find the relation between the coefficients of the conics a,2% + b;%%> =1 and

a,2? + byy? = 1 when they intersect at right angles. Ans 1 1 1 1
Tap b oay

65. Equations of tangent and normal, lengths of subtangent and
subnormal. Rectangular codrdinates. The equation of a straight
line passing through the point (#, y,) and having the slope m is

y—y,=m(@—=z). 54, (), p.3

If this line is tangent to the curve 4B at the

point P (z, y,), then from § 64, p. 73,

*
m:tan'r:[iy—] =%-

dz dx,

V=

Hence at point of contact B (z, y,) the equation of the tangent
line TR is

dy,
1
(1) y_y1=_(x—x1)-
: dx,
* By this notation is meant that we should first find % » then in the result substitute 2;
4
for x and y; for y. The student is warned against interpreting the symbol % to mean the
T1

derivative of yy with respect to x, for that has no meaning whatever, since x; and ¥y, are
both constants. :
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The normal being perpendicular to tangent, its slope is
1 dx,

_Ez—c@l' By 55, p. 8

And since it also passes through the point of contact Rz, y), we
have for the equation of the normal EN

@ L y—y=—B@—x).

That portion of the tangent which is intercepted between the point
of contact and OX is called the length of the tangent (= TF), and its
projection on the axis of X is called the length of the subtangent (=TM).
Similarly, we have the length of the normal (= EN) and the length of
the subnormal (= MN).

. MR
In the triangle TRM, tan 7 = le}; therefore

3) TM* = ME =y, fﬁ = length of subtangent.
tan 7 dy,

; therefore

MN
In the triangle MEN, tan =
n the triang 1N, tan T P

1

) MN't =MPE tan T=y, % = length of subnormal.

1
The length of tangent (= T'F) and the length of normal (= EN)
may then be found directly from the figure, each being the hypotenuse
of a right triangle having the two legs known. Thus

TP,= VI + HE = J(yld >+(2/1)

(5) =Y, \ f(ixl> + 1 =length of tangent.
dy,
N T . dy.\*
BN =V IN =)+ (1, 52)
111
. dyl 2
(6) =y, |1+ =) = length of normal.

1.
The student is advised to get the lengths of the tangent and of
the normal directly from the figure rather than by using (5) and (6).
When the length of subtangent or subnormal at a point on a curve
is determined, the tangent and normal may be easily constructed.

* 1f subtangent extends to the right of 7, we consider it positive; if to the left, negative.
t If subnormal extends to the right of M, we consider it positive; if to the left, negative.

S S
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EXAMPLES

1. Find the equations of tangent and normal, lengths of subtangent, subnormal

: : . N a3
tangent, and nermal at the point (@, @) on the cissoid y? =

2a—z
dy  8azx?— 2?3
dr y@a—z)?
d d; 3a’— a®
Hence ol [_y] = 2T =% _ 9 _glope of tangent.
dz, dx s a(2a— a)?
Y y=a .
Substituting in (1) gives

Solutisn.

¥ = 22 — a, equation of tangent.
llaa) Substituting in (2) gives
& % 2y + z = 3 a, equation of normal.

Substituting in (3) gives

S

M N

TM = g = length of subtangent.
Substituting in (4) gives
MN = 2a = length of subnormal.

CAlso PT=+/(TM)?+ (MP)2=

\/azd +a?= g\/g = length of tangent,

and PN =V(MN)2 + (MP)? = V4a? + ¢ = o V5 = length of normal.
2. Find equations of tangent and normal to the ellipse 2 4+ 292 — 22y — z = 0 at
the points where z = 1. Ans. At (1,0),2y=2—1,y+ 22 =2.

At (1,1),2y=z+1,y+22=3
3. Find equations of tangent and normal, lengths of subtangent and subnormal
at the point (z,, ,) on the circle 2% 4 y> = r2.*

i
Ans. .z + y,y =12, Zy——_/lx_o -z, —_1

. w1
4. Show that the subtangent to the parabola 3% = 4 pz is bisected at the vertex,
and that the subnormal is constant and equal to 2 p.

5. Find the equation of the tangent at (z,, ¥,) to the elllpse - + — =

Ans. f+y'y 1.

a? v?

6. Find equations of tangent and normal to the witch y = i —at the point

wherex = 2a. @+

Ans. x+2y=4a,J:2az—3a

7. Prove that at any point on the catenary y = —(ul +e ") the lengths of sub-
2x _ 2z

2
normal and normal mei (c*—e @) and £ lespectlvely.
a

8. Find equations of tangent and normal, lengths of subtangent and subnormal, to
cach of the following curves at the points indicated :

(a) y ==%at (}, ). (e) ¥y =9 —2a%at (— 3, 0).

(b) ¥2=4zat (9, — 0). (f) 22=06y where z =— 0.

(c) 22+ 592 =14 where y = 1. @) 22—y +22—9=0, (3,2).
(d) 22 + 92 = 25at (— 3, — 4). (h) 222 — y2 =14 at (3, — 2).

* In Exs. 3 and 5 the student should notice that if we drop the subscripts in equ.xtxons of
tangents, tliey reduce to the equations of the curves themselves.
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9. Prove that the length of subtangent to ¥ = = is constant and equal to —1\ .

oga
10. Get the equation of tangent to the parabola y2 = 202 which makes an angle
of 45° with the axis of X. Ans. y=x + 5.

HinT. First find point of contact by method of Illustrative Example 1, (d), p. 74.
11. Find equations of tangents to the circle 2% 4 y® = 52 which are parallel to the

line 2z + 3y = 6. Ans. 2z 4+ 3y + 26 =0.
12. Find equations of tangents to the hyperbola 4x2 — 9y> + 36 = 0 which are
perpendicular to the line 2y + 5z =10. Ans. 22 —5y 4+ 8=0.

13. Show that in the equilateral hyperbola 2zy = a® the area of the triangle
formed by a tangent and the codrdinate axes is constant and equal to a2.

14. Find equations of tangents and normals to the curve y2 =222 — z3 at the
points where z = 1. Ans. At(1,1),2y=2+1,y + 22 =3.
At(1,—1),2y=—2—-1,y — 22 =—38.
15. Show that the sum of the intercepts of the tangent to the parabola
dygdodd
on the codrdinate axes is constant and equal to a.
16. Find the equation of tangent to the curve 2% (z + y) = a? (x — ¥) at the origin,
Ans. y =,

17. Show that for the hypocycloid z% + yg‘ =af that portion of the tangent

inciuded between the codrdinate axes is constant and equal to a.
x
18. Show that the curve y = ae¢ has a constant subtangent.

66. Parametric equations of a curve. Let the equation of a curve be

4) F(z,y)=0.

If z is given as a function of a third variable, ¢ say, called a param-
eter, then by virtue of (4) y is also a function of ¢, and the same func-
tional relation (4) between z and y may generally be expressed by
means of equations in the form

x=f(t),
y=o;
each value of ¢ giving a value of z and a value of y. Equations (B)
are called parametric equations of the curve. If we eliminate ¢ between
equations (B), it is evident that the relation (4)
must result. For example, take equation of circle 7
0

P+ yt=r%or y="Vr*—al /
Let z=rcost; then

y=rsint, and we have K

) {x:reost,

y=rsint,

NN
<
"o

be

as parametric equations of the circle in the figure, ¢ being the parameter.
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If ‘we eliminate ¢ between equations (C') by squaring and add-
ing the results, we have

'+ y* = r*(cos’ t + sin®¢) = 7%,

the rectangular equation of the circle. It is evident that if ¢ varies
from 0 to 2, the point P («, y) will describe a complete circumference.

In § 71 we shall discuss the motion of a point P, which motion
is defined by equations such as

:f(t)’
y=9¢(:.

We call these the parametric equations of the path, the time ¢ belng

* the parameter. Thus in Ex. 2, p. 93, we see that

x:vocosw~t,

y=—5%g'+v sina-t
are really the parametric equations of the trajectory of a projectile,
the time ¢ being the parameter. The elimination of ¢ gives the rectan-
gular equation of the trajectory
- gzi
=ztan ¢ — —F———.
y 2vicos’a

Since from (B) y is given as a function of ¢, and ¢ as a function of

z, we have
’ dy dy dt
de~ dt dz by xxv
_% 1.
= E‘Z__x’ by XXVI
dt
that is,
dy
dy dt ¢. @
@) ar dx fI(t)
dt

Hence, if the parametric equations of a curve are given, we can find
equations of tangent and normal, lengths of subtangent and subnor-

mal at a given point on the curve, by first finding the value of % at
X

that point from (D) and then substituting in formulas (1), (2), (3),
(4) of the last section.
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IiLustraTive Examere 1. Find equations of tangent and normal, lengths of
sabtangent and subnormal to the ellipse

T = a cos ¢,
y = bsin ¢,*

(£)

at the point where ¢ = %
Solution. The parameter being ¢, @ =—asing,
d_y = b cos¢.
d¢

l
Substituting in (D), dy —_ Dcosé

= slope at any point.
dx asin ¢ i yp

Substituting ¢ = T in the given equations (E), we get ‘a—_, —b_ as the point of
4 V2 /2

contact. Hence

dy, 9
dzx, T a
b} b a
Substituting in (1), p. 76. Yy— ——=—- <x — ___.>,
B va o\ 3
or, bz + ay =V 2 ab, equation of tangent.

b _a a
Substituting in (2), p. 77, ¥ ——==-(z——),
ve b\ V2

or, V2 (ax — by) = a? — b2, equation of normal.

Substituting in (3) and (4), p. 77,

Il

L (_ 9) — _E: = length of subnormal.
V2 a, aV2

2 (_ ‘_1) -2 - length of subtangent.

VAT A

* As in the figure draw the major and minor auxiliary circles of the ellipse. Through
two points B and C on the same radius draw lines parallel to the axes of codrdinates.
These lines will intersect in a point P (x, y) on the v
ellipse, because

; B
2=0A4=0Bcos¢=acosd
and y=AP=0D=0Csing=Dbsin ¢, D% 1§
x Y_
or, E—cos¢andb sin ¢. A
[@] A p-q

Now squaring and adding, we get

2 Y2 .
a—2+b—2=cos2¢+sm2¢=1,

the rectangular equation of the ellipse. ¢ is sometimes
called the eccentric angle of the ellipse at the point P.

Y
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. ILLusTRATIVE Examprr 2. Given equation of the cycloid * in parametric form
{a) =a(f — sinf),
y=a(l— cosb),
6 being the variable parameter; find lengths of subtangent, subnormal, tangent,

and normal at the point where § = 7—;
dx dy .
Solution. —=a(l—cosd), — = asinf.
olution b7 ( ), b7 i
e dy sin 4 . -
Substituting in (D), p. 80, —= = -——— = slope at any point.
: dr 1—cosé —

Since 4 = I, the point of contact is (7r_a — a, a), and —dy—I: 1.
2 2 dx

1
Substituting in (3), (4), (5), (6) of the last section, we get

length of subtangent = a, length of subnormal = a,
length of tangent = ave, length of normal =aV2. Ans.
EXAMPLES

Find equations of tangent and normal, lengths of subtangent and subnorma,l to
each of the following curves at the point indicated :

Tangent Normal Subt. Subn.
lz=2y=t;t=1 r—4y+1=0, 8x+2y—9=0, 2 1.
2 o=t y=108;t=2. 122 —y—16=0, z+12y—98=0, %  96.
o=, y=8;t=1 -8 —2y—1=0;, 20+3y—5=0, %, 3.
4.z=2el,y—e— t=0. z+2y—4=0, 2x2—y—3=0, -2, —3
5.m=sint,y=cos2t;t:%. 2y+42—8=0, dy—22—-1=0, —%, —1

* The path described by a point on the circumference of a cirele which rolls without
sliding on a fixed straight line is called the cycloid. Let the radius of the rolling circle be a, P
the generating point, and M the point of contact with the fixed line OX, which is called the

—=_ 4]

Ol N

base. If arc PM equals OM in length, then P will touch at O if the circle is rolled to the left.
‘We have, denoting angle PCM by 6,

2=O0OM~-NM=ab-asinf=aq(f—sinb),
y=PN=MC—-AC=a-acosf=a(l—-cosf),

the parametrlc equations of the cycloid, the angle 6 through which the rolling circle turns
being the parameter. OD=2ma is called the base of one arch of the cycloid, and the point ¥V’
is called the vertex. Eliminating 6, we get the rectangular equation

=aare cos(a;y)—'\/2 ay—y2.
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6. z=1—t y=1*;1t=3. 11.m=cost,y:sin2t;t:7§r.
T.2=8t,y=6t—12; t=0. 12. x=8et,y=2¢; t=0.

8. x=8B,y=t;t=2. 13.a::sint,yzécost;t:7zr.
Qoe=8y=;t=—1. 14.9::4cost,y:3sint;tzz2.
10 t=2—t,y =312 t=1. 15. x=log(t +2), y =t; t=2.

In the following curves find lengths of (a) subtangent, (b) subnormal, (c) tangent,
(d) normal, at any point :

z = a(cost + tsint),
16. The curve )
Ly = a(sint — tcost).

Ans. (a) ycott, (b) y tant, (c) ‘L, (d) Y.
sint " " cost

. X z=4acost,
17. The hypocycloid (astroid) { .
y = 4 asindt.

Ans. (a) —ycott, (b) — ytant, (c) ‘_y_t’ (d) Y
sin

cost
. (® = r cost,
18. The circle JL k
. . y = rsint.
. z = a(2cost— cos2t),
19. The cardioid { . R
y=a(2sint — sin2t).
'9: 1
. Tias
20. The folium P
' 3
SRR TR
T = % cost,
21. The hyperbolic spiral 3 ]
Y= % sin ¢,

C

67. Angle between the radius vector drawn to a point on a curve
and the tangent to the curve at that point. Let the equation of
the curve in polar codrdinates be p =f(6).

Let P be any fixed point (p, 0) on the curve. LN
If 8, which we assume as the independent vari- P
able, takes on an increment A#, then p will ¢
take on a corresponding increment Ap. Denote
by @ the point (p+ Ap, 6 + Af). Draw PR perpendicular to 0Q. .
Then 0Q = p + Ap, PR = psin Af, and OR = p cos Af. Also,

PR PR p sin Af

PQR=-2_ = .
D = = 00— Ok p+ Ap— p cos A

A
<~ T X
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Denote by + the angle between the radius vector OP and the
tangent P7. If we now let Af approach the limit zero, then
(a) the point Q@ will approach indefinitely near P ;

(b) the secant PQ will approach the tangent PT as a limiting posi-
tion ; and

(¢) the angle PQR will approach { as a limit.

Hence
limit p sin Af
t =
an ¥ Af=0 p+ Ap—pcos Af
EXY  limit psin A8
b A=0
r 2p si112A—0 + Ap
8 T X 2
[Since from 39, p. 2, p—pcosA0=p (1 - cos AO)=2p sinz%’ ]
psin A0
__ limit Al
TA0=0 .Af
2 psin®*=—
2 + Ap
Al A6
[Dividing both numerator and denominator by A6.]
sin Ad
_ limit P Ao
TA0=0 ]
sim —
in — - 2 ﬂ)
PR "RKG TAd
)
. limit /Ap\ _dp limit /. Af\_ . . limit /sin A6\
Since A9=0<E>_E@ and Af—o |52 5 =0, also N v =1
. A8
fimit sin — A
imi 4 _ 9 ,
and AO— 0" 1 by § 22, p. 21, we have
2
L.
4) tanyr = &
de

From the triangle OPZ' we get

(B) T=9+llf.
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Having found 7, we may then find tan 7, the slope of the tangent
to the curve at P. Or since, from (B),

tan T = tan (0 + '\If‘) — tan 6 -+ tan ‘\Ir

1—tan 6 tan \[r,
we may calculate tan ¢ from (4) and substitute in the formula

tan @ + tan ¢

(€)  slope of tangent = tanr = 700 G

IrrustraTivE Exampre 1. Find y and 7 in the cardioid p = a (1 — cosf). Also

find the slope at § = % .
Solution. Z—Z = asind. Substituting in (4) gives
a 9) 2 @ sin? g P
p _a(l—cosf) .
tany =--= = =tan_. By39,p. .
an¥ dp a sin @ 9 6 . *“‘2 y 39,'p. 2, and 37, p. 2

- 2asin - cos—

dag 2 2

4 6_ 36

Since tan y = tan 2 Y= g Ans. Substituting in (B), 7 = 6 + 373" Ans.

tanT = tan{ =1. Ans.

To find the angle of intersection ¢ of two curves € and €' whose
equations are given in polar codrdinates, we may proceed as follows :

angle 7P7T' = angle OPT'— angle OPT,
or, ¢ =+' — . Hence
! —
(D) tang = tany' — tan ¢ ’
14 tany' tanyf
where tan ' and tan 4 are calculated by

(4) from the two curves and evaluated
for the point of intersection.

ILLustraTIVE ExamprLe 2. Find the angle of
intersection of the curves p = asin26, p = a cos24.

Solution. Solving the two equations simultaneously, we get at the point of inter-
section tan26 =1, 26 = 45°, § = 221°.
From the first curve, using (4),
tany’ = 1 tan26 = }, for § = 22}°.
From the second curve,
tany =— } cot260 = — }, for § = 224°.

1+1
1—}

Substituting in (D),
tan ¢ =

=4. .¢=arctan$, Ans.
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68. Lengths of polar subtangent and polar subnormal. Draw a line
NT through the origin perpendicular to the radius vector of the
N point P on the curve. If PT is the tangent and PN

the normal to the curve at P, then

P OT = length of polar subtangent,

o X and ON = length of polar subnormal

of the curve at P.

In the triangle OPT, tan r = or, Therefore

T
7 OT =p tanr = p* ? = length of polar subtangent.*
p

In the triangle OPN, tan+r = O_P]\7 Therefore

d
8) ON=—F— =P _length of pol .
8) fany a8 ength of polar subnormal
The length of the polar tangent (= PT) and the length of the polar
normal (= PN ) may be found from the figure, each being the hypot-
enuse of a right triangle.

IrrusTrATIVE Exampre 3. Find lengths of polar subtangent and subnormal to the
lemniscate p% = a? cos 26.

Solution. Differentiating the equation of the curve as an implicit function with
respect to 6,

dp
2 =—2a?sin 24
P a6 sin 24,
dp a?sin 20
or, -d—é = — —p .
.Substituting in (7) and (8), we get
3
length of polar subtangent = — _L,
a?sin 26
2o
length of polar subnormal = — (1—81:—29.

If 'we wish to express the results in terms of 6, find p in terms of § from the given
equation and substitute. Thus, in the above, p =+ aVcos 26; therefore length of
polar subtangent =4 a cot 26 Vcos26.

dé )
i * When 6 increases with p, ZZ; is positive and ¥ is an acute angle, as in the above figure.
Then the subtangent O T'is positive and is measured to the right of an observer placed at O and

a0 ..
‘ looking along OP. When - is negative, the subtangent is negative and is measured to the
left of the observer. ’
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EXAMPLES
I. In the circle p = rsind, find ¢ and 7 in terms of 4. Ans. ¢y =86, v=24.
2. In the parabola p = a sec? g, show that T + y = w.

3. In the curve p? = a2 cos 26, show that 2y = m + 44.

4. Show that y is constant in the logarithmic spiral p = e®®. Since the tangent
makes a constant angle with the radius vector, this curve is also called the equi-
angular spiral.

5. Given the curve p = a sin® g » prove that 7 = 4y.

6. Show that tan y =@ in the spiral of Archimedes p = af. Find values of ¥

when # = 2 and 4. Ans. ¥ = 80°57 and 85° 27",
7. Find the angle between the straight line p cos§=2a and the circle p =
5asind. Ans. arctani.

8. Show that the parabolas p = a sec? g and p = b csc? g intersect at right angles.

9. Find the angle of intersection of p = a sinfd and p = a sin 24.
Ans. At origin 0°; at two other points arc tan3 V3.

10. Find the slopes of the following curves at the points designated :

- (@) p=a(l— cosb). '0:? Ans. —1.
(b) p= asec?d. p=2a. 3.
(c) p=asin4d. ‘ origin. 0, 1,0, —1.
(d) p?=a?sin4d. origin. 0,1, 0, — 1.
(e) p=asin34. origin. 0,V3, — V3
(f) p=acos36. origin.
(g) p=acos24. origin.
(h) p=asin24. 0:’74'.
(i) p=asind4. 9:%.
i) p=ab. 6=".
(@) p=af 3
k =da. 6= .
(k) pf=a 3
() p=ef. 6=0.

11. Prove that the spiral of Archimedes p = af, and the reciprocal spiral p = %,
intersect at right angles.

12. Find the angle between the parabola p = a sec? 4 and the straight line
psinfd=2a. 2 Ans. 45°.

13. Show that the two cardioids p = a(l + cosf) and p = a(l— cosd) cut each
other perpendicularly.

14. Find lengths of subtangent, subnormal, tangent, and normal of the spiral of
X — ad. 2
Archimedes p = af Ans. subt. = %, tan. = s Vaz + p?,

subn. = @, nor.= Va? + p2.

The student should note the fact that the subnormal is constant.
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16. Get lengths of subtangent, subnormal, tangent, and normal in the logarithmic

spiral p = af. ,
P Ans. subt. = L, tan. = p4/1+ —1—,
loga log? a

subn.= p loga, nor. = p V1 + log2a.

When a = e, we notice that subt. = subn., and tan. = nor.

16. Find the angles between the curves p = a (1 + cos6), p = b (1 — cos#).
. Ans. 0andZ.
17. Show that the reciprocal spiral p = 3 has a constant subtangent. 2

18. Show that the equilateral hyperbolas p? sin 26 = a2, p? cos 26 = b2 intersect at
right angles.

69. Solution of equations having multiple roots. Any root which
occurs more than once in an equation is called a multiple root.
Thus 3, 3, 3, — 2 are the roots of

4 2 — T2+ 92>+ 272 — 54 =0;
hence 3 is a multiple root occurring three times.
Evidently (4) may also be written in the form

(z—3)*(z+2)=0.
Let f(2) denote an integral rational function of z having a multiple
root a, and suppose it occurs 7 times. Then we may write

B f@)=(—a)"$(2),
where ¢ () is the product of the factors corresponding to all the roots
of f(z) differing from a. Differentiating (B),
or, fl@=@—=a"¢' @)+ ¢@mz—a)",

) f@=@=a)" [(z=a)$' @+ (@) m].

Therefore f'(#) contains the factor (z— a) repeated m —1 times
and no more; that is, the highest common factor (H.C.F.) of f(z)
and f'(z) has m —1 roots equal to a.

In case f(z) has a second multiple root 8 occurring r times, it is
evident that the H.C.F. would also contain the factor (z — 8) %, and
so on for any number of different multiple roots, each occurring once
more in f(z) than in the H.C.F.

We may then state a rule for finding the multiple roots of an equation
S (@) =0 as follows:

First Stee. Find f'(z).

Seconp Step. Find the H.C.F. of f(z) and f'(z).

Tuirp Step. Find the roots of the H.C.F. Each different root of the
H C.F. will occur once mmore in f(x) than it does in the H.C.F.
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If it turns out that the H.C.F. does not involve 2, then f(z) has
no multiple roots and the above process is of no assistance in the
solution of the equation, but it may be of interest to know that the
equation has no equal, i.e. multiple, roots.

ILLusTRATIVE ExamrrLe 1. Solve the equation 2 — 822 + 182 — 6 = 0.

Solution. Place fx)=2®—822 4+ 13x — 6.
First step. f(x) =322 —16x + 13.
Second step. HCF.=z-—1.

Third step. r—1=0. ..x=1.

Since 1 occurs once as a root in the H.C.F., it will occur twice in the given equa-
tion ; that is, (x — 1)2 will occur there as a factor. Dividing 3 — 822 4 18z — 6 by
(x — 1)% gives the only remaining factor (x — 6), yielding the root 6. The roots of
our equation are then 1, 1, 6. Drawing the graph of the function, we see that at
the double root = 1 the graph touches OX but does not cross it.*

EXAMPLES

Solve the first ten equations by the method of this section:

1. 23 — 722 4+ 162 —12=0. Ans. 2,2, 3.

2. 2t — 622 — 8z — 3 =0. —-1,—1,~1,38.

3. 2t — 723 + 922 4 27 — 54 = 0, 3,3,8, —2.

4, zt — 523 — 922 4 81z — 108 = 0. 3,3,3, —4.

5. 2t 4+ 6a3 + 22— 24+ 16=0. 1,1, — 4, — 4.

6. xt — 93 4 2322 — 3 —36=0. 3,38, —1, 4.

7. 2t —6a3 + 1022 — 8 = 0. 2,2 1+V3.

8. 25—zt —bx3 4+ 224+ 8x+4=0. —-1,-1,—-1,2, 2.

9. 25— 1523 + 1022 + 60z — 72 = 0. 2,2,2 —8, —8.

10. 25 — 8t — 528 4+ 1322 + 242 + 10 = 0. —-1,-1,—1,83+vV—1

Show that the following four equations have no multiple (equal) roots:
11. 23 + 922+ 22 — 48 = 0.
12, 2t — 1522 — 102 + 24 = 0.
13. zt — 823 — 622 4+ 14 4+ 12=0.
14. z» — a» = 0.
15. Show that the condition that the equation
22+ 38qx+r=0
shall have a double root is 4¢3 4 72 = 0.

16. Show that the condition that the equation . ¥]
22+ 3px2+r=0
shall have a double root is r (4p3 + r) = 0. 1 6
O, X

* Since the first derivative vanishes for every multiple root, it
follows that the axis of X is tangent to the graph at all points corre-
sponding to multiple roots. If a multiple root occurs an even number
of times, the graph will not cross the axis of X at such a point (see
figure) ; if it occurs an odd number of times, the graph will cross.
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70. Applications of the derivative in mechanics. Velocity. Recti-

linear motion. Consider the motion of a point P on the straight line

. 4B. Let s be the distance meas-

i 2 PASP, % ured from some fixed point as 4

to any position of P, and let ¢

be the corresponding elapsed time. To each value of ¢ corresponds

a position of P and therefore a distance (or space) s. Hence s will
be a function of ¢, and we may write

8 =S(0).

Now let ¢t take on an increment At; then s takes on an increment
As,* and
As .
@) AL the average velocity

of P during the time interval At. If P moves with uniform motion,
the above ratio will have the same value for every interval of time
and is the velocity at any instant.

For the general case of any kind of motion, uniform or not, we
define the wvelocity (time rate of change of s) at any instant as the

limit of the ratio % as At approaches the limit zero; that is,

p— limit As
T At=0A¢
or,
ds
9 V= —.
(9) a

The velocity is the derivative of the distance (= space) with respect
to the time.

To show that this agrees with the conception we already have of
velocity, let us find the velocity of a falling body at the end of two
seconds.

By experiment it has been found that a body falling freely from rest
in a vacuum near the earth’s surface follows approximately the law

B) s=16.1¢#

where s = space fallen in feet, ¢ = time in seconds. Apply the Gen
eral Rule, p. 29, to (B).

* As being the space or distance passed over in the time At.
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First StEP. $+As=16.1(t+At)*=16.18*+32.2¢- At+16.1(At)%
SECOND STEP. As=32.2¢-At+16.1 (AD
As

THIRD STEP. Al 32.2¢416.1 At = average velocity throughout
the time interval At.
Placing ¢ = 2,
D) % = 64.4 +16.1 At = average velocity throughout the

time interval At after two seconds of falling.

Our notion of velocity tells us at once that (C) does not give us
the actual velocity at the end of two seconds; for even if we take At
very small, say 145 or 14'gg of a second, (C) still gives only the
average velocity during the corresponding small interval of time. But
what we do mean by the velocity at the end of two seconds is the
limit of the average velocity when At diminishes towards zero; that is,
the velocity at the end of two seconds is from (), 64.4 ft. per second.
Thus even the everyday notion of velocity which we get from experi-
ence involves the idea of a limit, or in our notation

v= Ahtmzlto <%§> = 64.4 ft. per second.

The above example illustrates well the notion of a limiting value.
The student should be impressed with the idea that a lmiting value
is a definite, fized value, not something that is only approximated.
Observe that it does not make any difference how small 16.1 At may
be taken ; it is only the limiting value of

64.4 +16.1 Ag,
when At diminishes towards zero, that is of importance, and that
value is ezactly 64.4.

71. Component velocities. Curvilinear motion. The coordinates z
and y of a point P moving in the XY-plane are also functions
of the time, and the motion may be defined by means of two

equations,
4 z=f®, y=9$O*
These are the parametric equations of the path (see § 66, p. 79).

* The equation of the path in rectangular codrdinates may be found by eliminating ¢
between these equations.
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The horizontal component v, of v * is the velocity along OX of the
projection M of P, and is therefore the time rate of change of z.
Hence, from (9), p. 90, when s is replaced by z, we get

dx

10 V, = —:¢
10) *=

In the same way we get the vertical com-
ponent, or time rate of change of y,
dy
Vv, = —-.
voodt

5
M X ay

Representing the velocity and its components by vectors, we have
at once from the figure
¢

2
=040}

or, : )
’ ds ’ dx\?* /[dy\?
12 == — =},
@2 'S <dt> +<dt>

giving the magnitude of the velocity at any instant.
If 7 be the angle which the direction of the velocity makes with
the axis of X, we have from the figure, using (9), (10), (11),

@ & dy
v, dt v dt v, dt
13) sinr=Y=—; cos7T="2=—; tanr =2 =—-
13) T v ds T v y T ” dx
dt o dt dt
72. Acceleration. Rectilinear motion. In general, » will be a function
of ¢, and we may write v = (2).
Now let ¢ take on an increment At¢, then » takes on an increment
Avw, and
Av

i the average acceleration of P during the time interval At.

We define the acceleration a at any instant as the limit of the ratio
Av

v as At approaches the limit zero; that is,

o = limit (Av)
At=0\A¢
dv
a=—.
dt
The acceleration is the derivative of the velocity with respect to the time.

or,
(14)

* The direction of v is along the tangent to the path.
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73. Component accelerations. Curvilinear motion. In treatises on
Mechanics it is shown that in curvilinear motion the acceleration is
not, like the velocity, directed along the tangent, but toward the
concave side of the path of motion. It may be resolved into a tan-

“gential component, @, and a normal component, ,, where
dv v
14a G=—; a,=—.
( ) t dt ? “n R
(R is the radius of curvature. See § 103.)

The acceleration may also be resolved into components parallel to
the axes of the path of motion. Following the same plan used in § 71
for finding component velocities, we define the component accelerations

parallel to OX and OY,
(15) ax=—x ya —dv". Also,

o =G+ (@)

which gives the magnitude of the acceleration at any instant.

.

EXAMPLES

1. By experiment it has been found that a body falling freely from rest in a vac-
uum near the earth’s surface follows approximately the law s = 16.1 {2, where s = space
(height) in feet, ¢ = time in seconds. Find the velocity and acceleration (a) at any
instant; (b) at end of the first second ; (c) at end of the fifth second.

Solution. 4) s=16.1¢.
(a) Differentiating, (B) %s: 32.21t, or, from (9), v = 32.2tft. per sec.
dv

Differentiating again, (C) i 32.2, or, from (14), a = 32.2 ft. per (sec.)?,

which tells us that the acceleration of a falling body is constant ; in other words, the
velocity increases 32.2 ft. per sec. every second it keeps on falling.
(b) To find v and « at the end of the first second, substitute ¢ =1 in (B) and (C) ;
v = 32.2 ft. per sec., a = 32.2 ft. per (sec.)2.
(c) To find v and @ at the end of the fifth second, substitute ¢ = 5 in (B) and (C);
v = 161 ft. per sec., a = 32.2 ft. per (sec.)?.
2. Neglecting the resistance of the air, the equations of motion for a projectile are
r=v,cos¢p-t, y=v sing.t—16.11%; v
where v; = initial velocity, ¢ = angle of projection with hori- v
zon, t = time of flight in seconds, £ and ¥ being measured in 4
feet. Find the velocity, acceleration, component velocities, OI
and component accelerations (a) at any instant; (b) at the end

of the first second, having given v, =100 ft, per sec., ¢ = 30°; (c) find direction of
motion at the end of the first second,

A4 X
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Solution. From (10) and (11),

(a) vy =V, C0S¢; vy =V, sing — 32.2¢.
Also, from (12), v= \/vf — 64.4tv; sin ¢ + 1036.8 £2.
From (15) and (16), az =0; ay =— 82.2; @ =— 32.2.
(b) Substituting t =1, v, =100, ¢ = 30° in these results, we get

v, = 86.6 ft. per sec. az = 0.

v, = 17.8 ft. per sec. a, = — 32.2 ft. per (sec.)2.

v = 88.4 ft. per sec. a =— 32.2 ft. per (sec.)?.

(c) T = arc tan% = arc tan ;ZS—?S =11° 36".6 = angle of direction

of motion with the horizontal.

3. Given the following equations of rectilinear motion. Find the distance, velocity,
and acceleration at the instant indicated:

(a) s=1B +28; t=2. Ans. s =16, v =20, a = 16.

(b) s=t2+42¢; t=3. 82}5,13:8,&:2.

(c) s=8—4t; t=4. s==13,v=—4, a=0.

d z=2t—13;t=1. r=1,v=0 a=—2.

() y=2t—13; t=0. y=0,v=2, a=0. .

(f) h=20t+16¢; t =10. h = 1800, v = 340, a = 32.

(g) 8= 2sint; t:’i: s:'\/ﬁ,U:\/ia:-—ﬁ.

(ll)yZGCOS?T—t;t::L y:g,w:—raﬁ,az—ﬂ-
3 2 6 18

(i) s=2€8t;1=0. §=2,v=0, «=18. i

G) s=2#—8t; t=2.
(k) z=44+1; t=38.
(1) y=>5cos2t; t:%"
(m) s:bsin%t; t=2.
(n) &= ae"2t; t=1.
() s:%+bt2; t=t,

(p) s=10log =1,

44t

4. Ifa projectile be given an initial velocity of 200 ft. per sec. in a direction

inclined 45° with the horizontal, find

- (a) the velocity and direction of motion at the end of the third and sixth seconds;
(b) the component velocities at the same instants.
Conditions are the same as for Ex. 2.
Ans. (a) Whent =38, v=148.3 ft. per sec., 7= 17° 3%,
when t = 6, v =150.5 ft. per sec., 7= 159° 63’;
(b) when t = 8, v, = 141.4 ft. per sec., v, = 44.8 ft. per sec.
when ¢ = 6, v, = 141.4 ft. per sec., v, =— 51.8 ft. per sec.

5. The height (= s) in feet reached in ¢ seconds by a body projected vertically
‘upwards with a velocity of v, ft. per sec. is given by the formula

s=1vt— 1618
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Find (a) velocity and acceleration at any instant; and, if v;= 300 ft. per sec., find
velocity and acceleration (b) at end of 2 seconds; (c) at end of 15 seconds. Resist-
ance of air is neglected. © Ans. (a) v=v; — 82.2¢, a =— 32.2;
(b) v = 285.6 ft. per sec. upwards,
a = 32.2 ft. per (sec.)? downwards;
(c) v =183 ft. per sec. downwards,
a = 32.2 ft. per (sec.)? downwards.

6. A cannon ball is fired vertically upwards with a muzzle velocity of 644 ft. per
sec. Find (a) its velocity at the end of 10 seconds; (b) for how long it will continue
to rise. Conditions same as for Ex. 5. Ans. (a) 322 ft. per sec. upwards;

(b) 20 seconds.
7. A train left a station and in ¢ hours was at a distance (space) of
s=13 421248t '
miles from the starting point. Find its acceleration (a) at the end of ¢ hours; (b) at
the end of 2 hours. : Ans. (a) a=61t+ 4;
(b) a =16 miles per (hour)2.

8. In ¢ hours a train had reached a point at the distance of 1#* — 413 4 16¢? miles
from the starting’point. (a) Find its velocity and acceleration. (b) When will the
train stop to change the direction of its motion ? (c) Describe the motion during the
first 10 hours. Ans. (a) v =1 —12¢ 4+ 32¢, a = 3¢2 — 24t + 32;

(b) at end of fourth and eighth hours;

(c) forward first 4 hours, backward the next
4 hours, forward again after 8 hours.

9. The space in feet described in ¢ seconds by a point is expressed by the formula
s =48t —1612.

Find the velocity and acceleration at the end of 1} seconds.

. Ans. v =0, a =— 32 ft. per (sec.)2.
10. Find the acceleration, having given .

(a) v=102+2¢; t=3. Ans., a=8,

(b) v=38t—1t8; t=2. a=—9.
.t

(c) v=4s1n§; t:%. a=3.

(d) v=acos3¢; t:%. a=—3a.

(e) v="56e; t=1. a=10¢.

11. At the end of ¢ seconds a body has a velocity of 3¢2 + 2¢ ft. per sec.; find its

acceleration (a) in general ; (b) at the end of 4 seconds.
Ans. (a) a= 61t + 2 ft. per (sec.)?; (b) a = 26 ft. per (sec.)?
12. The vertical component of velocity of a point at the end of ¢ seconds is
v, = 32 — 2¢ + 6 ft. per sec.

Find the vertical component of acceleration (a) at any instant; (b) at the end of 2
seconds. Ans. (a) ay=6t—2; (b) 10 ft. per (sec.)?

13. If a point moves in a fixed path so that

s=V1,

show that the acceleration is negative and proportional to the cube of the velocity.
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14. If the space described is given by
s = aet + be—?,
show that the acceleration is always equal in magnitude to the space passed over.
15. If a point referred to rectangular codrdinates moves so that
T =acost+ b, and y = asint 4 c,
show that its velocity has a constant magnitude.

16. If the path of a moving point is the sine curve

© = at,
y = bsin at,

show (a) that the z-component of the velocity is constant ; (b) that the acceleration

of the point at any instant is proportional to its distance from the axis of X,

17. Given the following equations of curvilinear motion, find at the given instant
Ugy Vyy U} Qzy @y, a; position of point (codrdinates); direction of motion. Also find

the equation of the path in rectangular codrdinates.

@e=ry=t;t=2. (g) * =2sint, y =3cost; t=m.
P e=ty==0;t=1 (h). ¢ = sint, y = cos 2¢; t=".
z=0ry=1;t=3. : 4

(@ z=2t,y=12+38;t=0. () z=24y=3e;1=0.
@ e=1-y=2l1=2 o () z=38¢ y=logt; t=1.
(f) x = asint, y = a cost; tz-i—. k) z=t, y=12¢-1; ¢t =3,



CHAPTER VII
SUCCESSIVE DIFFERENTIATION

74. Definition of successive derivatives. We have seen that the
derivative of a function of z is in general also a function of 2. This
new function may also be differentiable, in which case the derivative
of the first derivative is called the second derivative of the original
function. Similarly, the derivative of the second derivative is called
the third derivative; and so on to the nth derivative. Thus, if

y =38z
dy

2 =1223
dz s

d [dy .
3 2
dz <dz> b,

d[d (dy\]_qe
dz [da: <dx>] =72, ete.

75. Notation. The symbols for the successive derivatives are
usually abbreviated as follows:

d (dy dzy

dz\dz)~ da?
a[d (dy\]_d (dy)_dY
da dx) da\da?) ~ da*’

i dn -1 y dny
de\da"~1)" da"
If y =f (), the successive derivatives are also denoted by

f'@, f1(@), [ (@), f1(@)s - f@);

1

Yo ¥ Y Y e Y

o Liw, Liw, Liaw, L, o L.

97
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76. The nth derivative. For certain functions a general expression
involving # may be found for the nth derivative. The usual plan is to
find a number of the first successive derivatives, as many as may be
necessary to discover their law of formation, and then by induction
write down the nth derivative.

ILLustrATIVE ExampLE 1. Given y = eox, find Zz_ny
n
Solution. - Z_i’ = aeaz,
d%y
ar =
duy
L —= = anear, Ans.
dxnr
. dry
ILLusTRATIVE ExamprLe 2. Given y = logz, find aan
dy 1
Solution. — =
dv =
dzy 1
ozt
dy 1.2
et~ 2?
dty  1-2.3
et @t
dny n—1
== (=11 . Ans.
dxn ( ) xn
. . dry
ILLustrATIVE ExamprLE 3. Given y =sinz, find T
Solution (—ig = cosx = sin (z + Z)
. dz = = 2 )
d2y—isin (a',+ E)— cos(a: + 7r> = sin (az + 2—‘"-)
dz? ~ dz 2/~ 2/~ 2 )
3
%:%sin(x+271r>:cos(m+2?7r>:sin(z+%’r)

Z;Z = sin <m + %r) . Ans.

77. Leibnitz’s Formula for the nth derivative of a product. This
formula expresses the nth derivative of the product of two variables
in terms of the variables themselves and their successive derivatives.
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If  and v are functions of z, we have, from V,

——(uv)_d—v+u%

Differentiating again with respect to ,

dw dudv  dudv  dw  du dudv  d

Vet et e e w w
Similarly,
d d®u d*u dv dwdv  _dudw  dud® d®
it R e P Ml e Al P
_d’u d*u dv du d®v d’
auay  gauav
~ ' Ve et w

However far this process may be continued, it will be seen that the
numerical coefficients follow the same law as those of the Binomial
Theorem, and the indices of the derivatives correspond to the expo-
nents of the Binomial Theorem.* Reasoning then by mathematical
induction from the mth to the (m +1)th derivative of the product,
we can prove Leibnitz’s Formula

d‘udv n(n—1)d*udv
dx"—! dx IE dx"—? dx?
du d*—'v d™

Py

dr d™u
17 —(uw)=—v+4n
a dx"() dx"+
+n

3
ILLusTrATIVE ExampLe 1. Given y = e*logz, find % by Leibnitz’'s Formula.

Solution. Let u=-e% and v=Ilogx;
then du _ ex dv_1
= A&
2u d2v 1
= e’c’ —_— =,
dx? dx? x?
ddu v 2
@ W
Substituting in (17), we get
d3y 3er 3er 2ex 3 3 2
E_e“logm+—x-—?+—?_e1(logx+——x—2 E)
0y 0
* To make this correspondence complete, « and v are considered as — and —
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. ar P
ILLusTtrATIVE ExaMpPLE 2. Given y = x%e2®, find ﬁ by Leibnitz’s Formula.

Solution. Let u=2% and v=ew;
then Z—z =2z, % = qex,
d?u d%
_ = - — a2
iz 2, S = aPeo,
ddu 3
_ —_ — ad
@ @ v

dru dry

— =0,

dz» dxn
Substituting in (17), we get

% = z?ame™® + 2na"—lre® + n(n — 1) an —2e® = qn—2e [x2a2 + 2 nax + n(n — 1)].

78. Successive differentiation of implicit functions. To illustrate the
2
process we shall find % from the equation of the hyperbola
b — a’y* = o’V
Differentiating with respect to z, as in § 63, p. 69,
2 dy
2% —2a'y -2 =0,
TR

o dy B
y T

A g_2*,

(4) =

Differentiating again, remembering that y is a function of z,

. dy
iy a*yb® — bza® 7

de a‘ly'l
Substituting for % its value from (4),
a’by — a*b'x <62_x>
ﬂ _ 112,9 __ bz(bzxz_ a2y2) )
dx‘z a4y2 a4y8

But from the given equation, #z*— a’y*= a®>

d?y bt

d 332 a2 y8

..



SUCCESSIVE DIFFERENTIATION

Differentiate the following :
“1.y=423— 622+ 4+ 7.

23

2. f(x) = s
3. f(y) =95,

4. y =z%logx.

5. y:i.
xn
6. ¥y = (x — 3)e2% + 4ze* 4 .
7. 9y= g(e‘; +e 9.
2
8. f(x) = ax? + bx + c.
9. f(x) =log(x + 1).
-10. f(x) = log (e* 4+ e—=).

11. r = sinaf.

12. r = tan ¢.

13. r = log sin ¢.
14. f(t) = e~ tcost.
15. f(d) =Vsec26.
q

16. p = (¢ + a?)arc tana.
17. y = a=.

18. y =log (1 + ).

19. ¥ = cosazx.

20. y =27 —1llogz.

EXAMPLES

d?y

S =12@z—1).

iv = Ié
f(e) = T
Sri(y) =16.

a6

det 2

¥y = xnt2 :

Y =4e[(x —2)e +  + 2].

= — (et e ¢)==.
4 2a( + ) a?

77 (@) =0. .
W)= — ——— .
0 ==
sy (€5 — e~ %)
R
d_‘*r = a*sin ad = atr
gt~ " -
dsr
d_¢§ = 6sect¢p — 4 sec2¢.

77 = 2 cot ¢ csc? ¢.
JV({E) =—4e-tcost =— 4f(¢).
J7(6) =3[ (6)1° 1 (6).

[n= a positive integer.]

Pp__da
dg ~ (a® + q2)2'
dr
daz = (log a)»a>.

n—1
dﬂy: (— -1 [n—1 .
dxn 1+ z)»
ary . nwr
il cos(a:c-{-?)-
any [n—1
den ~ @
n n
Y _ g 1)n———|— .
dar (14 zyn+1

HinT. Reduce fraction to form —1+ % before differentiating.
x

. dzy dy
22. If y = exsinx, prove that — — 2= 4+ 2y = 0.
Y Inx, prove tha a2 dm+ Y

2.
23. If y = a cos (log z) + bsin (logx), prove that x? ZTZ + x% +y=0.

101
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Use Leibnitz’s Formula in the next four examples:

24. y = x%a®. % =a*(loga)"—2[(zloga + n)2 — n]
25. y = e Y _ ez 4 m).
.Y =em. T
26. f(z) = e*sinz. Fo@) = (V2)nersin (:c + n_”>
_ (@ + (@+bn
27. f(f) = cosaf cosbd. J®™(G) = cos | (a + b)8 +
(a — b)» [ ]
A — b6 4+ —|.
+ 3 cos | (a )6 + 2
28. Show that the formulas for acceleration, (14), (15), p. 92, may be written
s ey
Tae’ Tt A’ YT ae
2. 2
29. 2 =4azx. dy:__4_a.
dx? y®
d2y bt ddy 3 bz
30. b2x2 2y2 = a2b2, —_——=—— = .
+ @'y @ dx? a2y ’ dxd atys
_ d2y _ 7-2
31. 22 4 y2 =2, @_—E'
d3y 24
32, y2 4y =2x2% =
v+y o Treny
d2y hZ — ab
33. az? + 2 hx by =1 —_———
+ Y + by & (1 gy
2 2 3y
34. % — 22y = a?. dy__ @ dy__ 3d%
da;2 (y m)& dzs (y —_ m).’)
2 26 — tan?
35. sec ¢ cosf = c. M:w.
de¢? tan3d
dse 2(5 4+ 862 4+ 36%)
36. 0 =t 0 . —_—-_—_—— .
an (g + 6) a5 -
37. Find the second derivative in the following :
(a) log(u + v) = u—v. (e) ¥y3 4+ 28 — Sazy = 0.
(b) e* + u=e"+ v. ) v*—2may + 22 —a = 0.
(c) s=1+ tes. () y =sin(z + v).
d) e+st—e=0. (h) ex+v =gy,




CHAPTER VIII
MAXIMA AND MINIMA. POINTS OF INFLECTION. CURVE TRACING

79. Introduction. A great many practical problems occur where
we have to deal with functions of such a nature that they have a
greatest (maximum) value or a least (minimum) value,* and it is
very important to know what particular value of the variable gives
such a value of the function. For instance, suppose that it is required
to find the dimensions of the rectangle of greatest area that can be
inscribed in a circle of radius 5 inches. Consider the circle in the
following figure :

Inscribe any rectangle, as BD.

Let CD =z ; then DE =V100 — 2% and the area of the rectangle is

evidently
@ A=2V100 —2~

That a rectangle of maximum area must exist may be seen as follows:
Let the base CD (= =2) increase to 10 inches (the diameter); then
the altitude DE=v100 —2* will decrease to
zero and the area will become zero. Now let

the base decrease to zero; then the altitude B . E
will increase to 10 inches and the area will ,//’ Eiz
again become zero. It is therefore intuitionally 2. 3
evident that there exists a greatest rectangle. < — = D

By a careful study of the figure we might sus-
pect that when the rectangle becomes a square
its area would be the greatest, but this would at best be mere guess-
work. A better way would evidently be to plot the graph of the
function (1) and note its behavior. To aid us in drawing the graph
of (1), we observe that

(a) from the nature of the problem it is evident that  and 4 must
both be positive ; and

(b) the values of z range from zero to 10 inclusive.

* There may be more than one of each, as illustrated on p. 109.
103
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Now construct a table of values and draw the graph.
What do we learn from the graph?

8
LN

9.9
19.6
28.6
36.6
43.0
48.0
49.7 151
48.0 101
39.6

0.0

\gc

Ny
P .

© © 00U WY -O

—

=
=

W —————

= U Y
ol—-— e ——

Whm—m e

r——
) P

-~
IaY

10 X

(a) If carefully drawn, we may find quite accurately the area of
the rectangle corresponding to any value of 2 by measuring the length
of the corresponding ordinate. Thus,

when z = OM = 3 inches,

then A =MP = 28.6 square inches ;

and when = ON = 4} inches,

then A =NQ@ =about 39.8 sq. in. (found by measurement).

(b) There is one horizontal tangent (RS). The ordinate 7H from
its point of contact 7' is greater than any other ordinate. Hence this
discovery: One of the inscribed rectangles has evidently a greater area
than any of the others. In other words, we may infer from this that
the function defined by (1) has a mazimum value. We cannot find
this value (= HT) exactly by measurement, but it is very easy to
find, using Calculus methods. We observed that at 7' the tangent was
horizontal ; hence the slope will be zero at that point (Illustrative
Example 1, p. 74). To find the abscissa of 7" we then find the first
derivative of (1), place it equal to zero, and solve for . Thus

@ A=2V100 — 2,
d4 _100—22*
dr V100 — 22
100——2x2=O.
V100 —2
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Solving, z=>5V2. -
Substituting back, we get DE=V100 —a*=5V2.

Hence the rectangle of maximum area inscribed in the circle is a
square of area

A=CDxDE=5V2x 5V2=50 square inches. The length of
HT is therefore 50. .

Take another example. A wooden box is to be built to contain
108 cu. ft. It is to have an open top and a square base. What must
be its dimensions in order that the amount of material required shall
be a minimum ; that is, what dimensions will make the cost the least ?

Let z=length of side of square base in feet,
and y = height of box.
Since the volume of the box is given, how- |

ever, y may be found in terms of z. Thus
108 -

2'/'2

volume = 2%y =108; ... y =

We may now express the number (= M) of square feet of lumber
required as a function of = as follows:

area of base = 2* sq. ft.,

and area of four sides = 4 zy = 432 sq. ft. Hence
xr

432
() M=a"4+22
x
MA
1
= |
52
X M Lo
2007 | 1
1 433 sl !
2 | 220 b
3 | 158 ‘ wor 1Y
4 | 124 w1 j i
5 | 111 wl | -
6 | 108 AR
7 111 wroo| | : o bl E
8 | 118 A O I O A
9 | 129 Pl b
10 | 143 B Pl
[ | L [ | ! o
O 1 2 38 4& 5 6 7 8 9 10 x

is a formula giving the number of square feet required in any such box
having a capacity of 108 cu. ft. Draw a graph of (2).
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What do we learn from the graph?

(a) If carefully drawn, we may measure the ordinate correspond-
ing to any length (=) of the side of the square base and so deter-
mine the number of square feet of lumber required.

(b) There is one horizontal tangent (&S). The ordinate from its
point of contact 7' is less than any other ordinate. Hence this dis-
covery: One of the boxes evidently takes less lumber than any of the
others. In other words, we may infer that the function defined by
(2) has a mindmum value. Let us find this point on the graph ex-
actly, using our Calculus. Differentiating (2) to get the slope at any

point, we have dM 432
=2z — .
dz z*

At the lowest point 7' the slope will be zero. Hence
432

x2

2z

0;

that is, when z = 6 the least amount of lumber will be needed.
Substituting in (2), we see that this is

M=108 sq. ft.

The fact that a least value of M exists is also shown by the follow-
ing reasoning. Let the base increase from a very small square to a
very large one. In the former case the height must be very great and
therefore the amount of lumber required will be large. In the latter
case, while the height is small, the base will take a great deal of
lumber. Hence M varies from a large value, grows less, then
increases again to another large value. It follows, then, that the
graph must have a “lowest” point corresponding to the dimensions
which require the least amount of lumber, and therefore would involve
the least cost. :

We will now proceed to the treatment in detail of the subject of
maxima and minima.

80. Increasing and decreasing functions.* A function is said to be
increasing when it increases as the variable increases and decreases as
the variable decreases. A function is said to be decreasing when it
decreases as the variable increases and increases as the variable
decreases.

*The proofs given here depend chiefly on geometric intuition. The subject of Maxima
and Minima will be treated analytically in § 108, p. 167.
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The graph of a function indicates plainly whether it is increasing
or decreasing. For instance, consider the function a® whose graph
(Fig. a) is the locus of the equation

y=a" a>1
As we move along the curve from left to right the curve is rising ;

that is, as # increases the function (= y) always increases. Therefore a®
is an increasing function for all values of z.

Y|
Ay
Y 1)
/
Ay
ﬁ 7 O\ x
9] X
Ve
Fic. a Fic. b

On the other hand, consider the function (@ —2)® whose graph
(Fig. b) is the locus of the equation

y=(a—2)"

Now as we move along the curve from left to right the curve is
falling ; that is, as z increases, the function (=y) always decreases.
Hence (a—z)® is a decreasing function for all
values of . : v

That a function may be sometimes increas-

ing and sometimes decreasing is shown by the

B
graph (Fig. ¢) of
_ 3 __ 2 _ T T
y=22"— 92 +122—3. /é ar N
As we move along the curve from left to right Fra. ¢

the curve rises until we reach the point 4, then
it falls from 4 to B, and to the right of B it is always rising. Hence

(a) from z=— oo to x =1 the function is increasing ;
(b) fromz=1 to x =2 the function is decreasing ;
(©) fromz= 2 to x =+ oo the function is increasing.
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The student should study the curve carefully in order to note the
behavior of the function when z=1 and z= 2. Evidently 4 and B
are turning points. At 4 the function ceases to increase and com-
mences to decrease; at B, the reverse is true. At 4 and B the tan-
gent (or curve) is evidently parallel to the axis of X, and therefore
the slope is zero.

81. Tests for determining when a function is increasing and when
decreasing. It is evident from Fig. ¢ that at a point, as C, where a

function
y=rf(@)

is tnereasing, the tangent in general makes an acute angle with the
axis of X; hence

slope = tan T = j—llg = f!(@) = a positive number.
z

Similarly, at a point, as D, where a function is decreasing, the tan-
gent in general makes an obtuse angle with the axis of X; therefore

slope =tan T = % = f(®) = a negative number.*

In order, then, that the ful}ction shall change from an increasing to
a decreasing function, or vice versa, it is a necessary and sufficient
condition that the first derivative shall change sign. But this can only
happen for a continuous derivative by passing through the value zero.
Thus in Fig. ¢, p. 107, as we pass along the curve the derivative
(=slope) changes sign at 4 and B where it has the value zero. In
general, then, we have at turning points

(18) Z—Z = f'(X) =0,

The derivative is continuous in nearly all our important applica-
tions, but it is interesting to note the case when the derivative
(= slope) changes sign by passing through oo.t This would evidently

*Conversely, for any given value of x,
if f/(x) =+, then f (x) is increasing ;
if f/(x) = —, then f (x) is decreasing.

‘When f“(x) = 0, we cannot decide without further investigation whether f(z) is increas.
ing or decreasing.

1 By this is meant that its reciprocal passes through the value zero.
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happen at the points B, E, G in the following figure, where the
tangents (and curve) are perpendicular to the axis of X. At such
exceptional turning points '

% =Jf'(2) = 03

or, what amounts to the same thing,
1
'@
82. Maximum and minimum values of a function. A mazimum
value of a function is one that is greater than any values immediately
preceding or following.

A minimum value of a function is one that is less than any values
immediately preceding or following.

g °

Fic. d

For example, in Fig. ¢, p. 107, it is clear that the function has a
maximum value M4 (=y = 2) when 2 =1, and a minimum value NB
(=y=1) whenz=2.

The student should observe that a maximum value is not neces-
sarily the greatest possible value of a function nor a minimum value
the least. For in Fig. ¢ it is seen that the function (= y) has values
to the right of B that are greater than the maximum M4, and values
to the left of 4 that are less than the minimum NB.

A function may have several maximum and minimum values.
Suppose that the above figure represents the graph of a function
F(@.

At B, D, G, I, K the function is a maximum, and at C, E, H, J a
minimum. That some particular minimum value of a function may
be greater than some particular maximum value is shown in the figure,
the minimum values at C and H being greater than the maximum
value at K.
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At the ordinary turning points C, D, H, I, J, K the tangent (or
curve) is parallel to OX; therefore

R
slope = T S'(x)=0.

At the exceptional turning points B, ¥, G the tangent (or curve) is
perpendicular to OX, giving

Y ey
slope—dx = fl(x) =oo.

One of these two conditions is then necessary in order that the
function shall have a maximum or a minimum value. But such a con-
dition is not sufficient ; for at F the slope is zero and at 4 it is infinite,
and yet the function has neither a maximum nor a minimum value at
either point. It is necessary for us to know, in addition, how the
function behaves in the neighborhood of each point. Thus at the
points of maximum value, B, D, G, I, K, the function changes from an
tncreasing to a decreasing function, and at the points of minimum value,
C, E, H, J, the function changes from a decreasing to an increasing func-
tion. It therefore follows from § 81 that at mazimum points

slope = gl/ = f'(x) must change from + to —,

z

and at minemum points
slope = gg = f!(&) must change from — to +

x

when we move along the curve from left to right.
At such points as 4 and ¥ where the slope is zero or infinite, but
which are netther mazimum nor minimum points,

slope = dy _ S!(z) does not change sign.

de
We may then state the conditions in general for maximum and
minimum values of f (z) for certain values of the variable as follows:

(19) f(x) is a maximum if f'(x) =0, and f'(x) changes from +
to —.

(20) f(x) is a minimum if f'(») = 0, and f'(x) changes from —
to 4. '

The values of the variable at the turning points of a function are
called eritical values; thus x =1 and z = 2 are the critical values of
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the variable for the function whose graph is shown in Fig. ¢, p. 107.
The critical values at turning points where the tangent is parallel to
0X are evidently found by placing the first derivative equal to zero
and solving for real values of z, just as under § 64, p. 73.*

To determine the sign of the first derivative at points near a par-
ticular turning point, substitute in it, first, a value of the variable just
a little less than the corresponding critical value, and then one a
little greater.t 1f the first gives + (as at L, Fig. d, p. 109) and the
second — (as at M), then the function (= y) has a maximum value in
that interval (as at I).

If the first gives — (as at P) and the second + (as at ), then the
function (= ) has a minimum value in that interval (as at C').

If the sign is the same in both cases (as at @ and R), then the
function (= y) has neither a maximum nor a minimum value in that
interval (as at F).}

We shall now summarize our results into a compact working rule.

83. First method for examining a function for maximum and mini-
mum values. Working rule.

First Stee. Find the first derivative of the function.

Seconp Stee. Set the first derivative equal to zero$ and solve the
resulting equation for real roots in order to find the eritical values of the
variable.

THirp StEP. Write the derivative in factor form ;. if it is algebraic,
write it in linear form.

Fourta Ster. Considering one critical value at a time, test the first
derivative, first for a value a trifle less and then for a value a trifle greater
than the eritical value. If the sign of the derivative s first + and then —,
the function has a maximum value for that particular critical value of the
‘variable ; but if the reverse is true, then @t has a minimum value. If the
sign does not change, the function has neither.

*Similarly, if we wish to examine a function at exceptional turning points where the tan-
gent is perpendicular to OX, we set the reciprocal of the first derivative equal to zero and
solve to find critical values.

1In this connection the term **little less,”” or ** trifle less,”” means any value between the
next smaller root (critical value) and the one under consideration; and the term **little
greater,”” or ** trifle greater,” means any value between the root under consideration and
the next larger one.

1 A similar discussion will evidently hold for the exceptional turning points B, E, and 4
respectively.

§ When the first derivative becomes infinite for a certain value of the independent vari-
able, then the function should be examined for such a ecritical value of the variable, for it
may give maximum or minimum values, as at B, E, or 4 (Fig. d, p. 109). See footnote on
p- 108.
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In the problem worked out on p. 104 we showed by means of the

graph of the function
A4=2V100 —2?

that the rectangle of maximum area inscribed in a circle of radius
5 inches contained 50 square inches. This may now be proved ana-
lytically as follows by applying the above rule.

Solution. f(@) =2 V100 — 22,
First step. frey =200 =22°
: V100 — z2
— 222
Second step. m:z =0,
V100 — 22
= 5'\/§,

which is the critical value. Only the positive sign of the radical is taken, since, from
the nature of the problem, the negative sign has no meaning.

2(5vV2—2)(5V2 +a)

Third step. J(@) = L
V(10 — 2) (10 + )
Fourth step. When z < 5\/5, S (x) = 2—(+—)ﬁ =+
V(+)(+)
When z>5V2, ra=200
V(+)(+)

Since the sign of the first derivative changes from + to — atz = 5\/5, the function
has a maximum value

7(6V2)=5v2.5v2=050. Ans.

84. Second method for examining a function for maximum and mini~
mum values. From (19), p. 110, it is clear that in the vicinity of a
maximum value of f(z), in passing along the graph from left to right,

S'(x) changes from + to 0 to —.
Hence f/(z) is a decreasing function, and by § 81
we know that its derivative, i.e. the second deriv-
ative [=f"(2)] of the function itself, is negative
Or Z€ro.
Similarly, we have, from (20), p. 110, that in the vicinity of a
minimum value of f(z)

S'(x) changes from — to 0 to +.

Hence f/(z) is an increasing function and by § 81 it follows that
JS"(x) is positive or zero.
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The student should observe that f/(z) is positive not only-at mini.
mum points (as at 4) but also at points such as P. For, as a point
passes through P in moving from left to right,

d, . , , .
slope=tan 7= E‘IZ = f(&) s an increasing function.
i

At such a point the curve is said to be concave Iot/l X
upwards.

Similarly, f”'() is negative not only at maximum points (as at B)
but also at points such as @. For, as a point passes through @,

slope = tan T = Z—'y = f(2) s a decreasing function.
z

At such a point the curve is said to be concave downwards.*
We may then state the sufficient conditions for maximum and mini-
mum values of f(z) for certain values of the variable as follows:

(1) f(x) is a maximum if f'(x) = 0 and f"'(x) = a negative number.

(22) f(x) is a minimum if f'(x) = 0 and f'"'(x) = a positive number.

Following is the corresponding working rule.

. First SteP. Find the first derivative of the function.
Seconp Strr. Set the first derivative equal to zero and solve the result-
ing equation for real roots in order to find the critical values of the variable.
TuirD StEP. Find the second derivative.
FourtH Step. Substitute each critical value for the variable in the
second derivative. If the result is negative, then the function is @ mazimum
Jor that critical value; if the result is positive, the function is @ minimum.

When f"(2) = 0, or does not exist, the above process fails, although
there may even then be a maximum or a minimum ; in that case the
first method given in the last section still holds, being fundamental.
Usually this second method does apply, and when the process of find-
ing the second derivative is not too long or tedious, it is generally the
shortest method.

Let us now apply the above rule to test analytically the function

M=a"+—
x
found in the example worked out on p. 105.

* At a point where the curve is concave upwards we sometimes say that the curve has a
positive bending, and where it is concave downwards a negative bending.
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432

Solution. f@y=12>*+ -
2
First step. f@)y=2x— 43‘, .
Second step. 2 — ﬁ% =0,
22
z = 6, critical value.
4

Third step. (@) =2+ §6?

x
Fourth step. S”(6) =+. Hence

JS(6) =108, minimum value.

The work of finding maximum and minimum values may frequently
be simplified by the aid of the following principles, which follow at
once from our discussion of the subject.

(a) The mazimum and minimum valies of a continuous function must
oceur alternately.

(b) When ¢ is a positive constant, c - f(x) is a mazximum or a minimum
Jor such values of z, and such only, as make f (%) a mazimum or a minimum.

Hence, in determining the critical values of z and testing for max-
ima and minima, any constant factor may be omitted.

When ¢ is negative, ¢-f(x) is a mazimum when f(x) is a minimum,
and conversely.

(c) If ¢ is a constant, F(@) and ¢+ f (z)
have maximum and minimum values for the same values of .

Hence a constant term may be omitted when finding critical values
of x and testing.

In general we must first construct, from the conditions given in
the problem, the function whose maximum and minimum values are
required, as was done in the two examples worked out on pp. 103—
106. This is sometimes a problem of considerable difficulty. No rule
applicable in all cases can be given for constructing the function, but
in a large number of problems we may be guided by the following

General directions.
(a) FHzxpress the function whose maximum or minimum i8 involved in
the problem. ’ )

(b) If the resulting expression contains more than one variable, the
conditions of the problem will furnish enough relations between the varia-
bles so that all may be expressed in terms of a single one.
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(¢) To the resulting function of a single variable apply one of our two
rules for finding maximum and minimum values.

() In practical problems it is usually easy to tell which critical value
will give a maximum and which a minimum value, so @t is not always
necessary to apply the fourth step of our rules.

(e) Draw the graph of the function (p. 104) in order to check the work.

PROBLEMS

1. It is desired to make an open-top box of greatest possible volume from a square
piece of tin whose side is @, by cutting equal squares out of the corners and then fold-
ing up the tin to form the sides. What should be the length of a side of the squares
cut out ?

R N
Solution. Let z = side of small square = depth of box ; x

then a — 2z = side of square forming bottom of box,

and volume is V=(a—22)%x; 8

which is the function to be made a maximum by varying z. a—2x__: |

Applying rule, . L v

First step. %:(a—2x)2—4m(a—2m):a2—8aa:+12m2.
Second step. Solving a? — 8 ax + 122% = 0 gives critical values z = % and g-

It is evident from the figure that x = g must give a minimum, for then all the tin
would be cut away, leaving no material out of which to make a box. By the usual

. . . 2a? .
test, & = gls found to give a maximum volume =7 Hence the side of the square to

be cut out is one sixth of the side of the given square.
The drawing of the graph of the function in this and the following problems is
left to the student.

2. Assuming that the strength of a beam with rectangular cross section varies
directly as the breadth and as the square of the depth, what are the dimensions of
the strongest beam that can be sawed out of a round log whose diameter is d ?

— Solution. If & = breadth and y = depth, then the beam will have

maximum strength when the function xy? is a maximum. From the
a figure, y* = d? — x2; hence we should test the function

f(x) =z (d? — x?).
x
First step. f(x)y=—222 + d? — a? = d? —8a?.
Second step. d? — 322 =10. .. z = 7 = critical value which gives a maximum.
3

Therefore, if the beam is cut so that

) (1épth :\@ of diameter of log,
and breadth =V % of diameter of log,

the beam will have maximum strength. !

RS L fe
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3. What is the width of the rectangle of maximum area that can be inscribed in
a given segment 044’ of a parabola ? ¥

Hint. If OC=h, BC=h-2and PP’=2y; therefore the area
of rectangle PDD’P’ is

a’(/ _
W///////

Ans. Width=3h "~ h """" a’

2(h=2)y.

But since P lies on the parabola y2=2px, the function to be

tested is
2 (h—-x)V2px.

4, Find the altitude of the cone of maximum volume that can be inscribed in a
sphere of radius r.

HinT. Volume of cone=4ma2y. Buta2= B(x CD=y (2r-y); there-
fore the function to be tested is

FW)=Zv @r-y).

Ans. Altitude of cone = 4.

5. Find the altitude of the cylinder of maximum volume that can be inscribed in

a given right cone. B
P x-
Hint. Let AC=r and BC =h. Volume of cylinder= wa2y.
But from similar triangles 4BC and DBG
rh-y) . h
txithih~y. Sox=
rie Y 7 D
Hence the function to be tested is y
F@=Sy G- s
Ans., Altitude =  &. r—>

6. Divide a into two parts such that their product is a maximum,
Ans. Each part = 2

7. Divide 10 into two such parts that the sum of the double of one and square of
the other may be 2 minimum. Ans. 9 and 1.

8. Find the number that exceeds its square by the greatest possible quantity.
Ans. 1.

9. What number added to its reciprocal gives the least possible sum?  Ans. 1.

10. Assuming that the stiffness of a beam of rectangular cross section varies directly
as the breadth and the cube of the depth, what must be the breadth of the stiffest beam
that can be cut from a log 16 inches in diameter ? Ans. Breadth = 8 inches.

11. A water tank is to be constructed with a square base and open top, and is to
hold 64 cubic yards. If the cost of the sides is $1 a square yard, and of the bottom
$2 a square yard, what are the dimensions when the cost is a minimum ? What is
the minimum cost ? Ans. Side of base = 4 yd., height = 4 yd., cost $96.

12. A rectangular tract of land is to be bought for the purpose of laying out a
quarter-mile track with straightaway sides and semicircular ends. In addition a
strip 35 yards wide along each straightaway is to be bought for grand atands, training
quarters, etec. If the land costs $200 an acre, what will be the maximum cost of
the land required ? Ans. $856.
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13. A torpedo boat is anchored 9 miles from the nearest point of a beach, and it is
desired to send a messenger in the shortest possible time to a military camp situated
15 miles from that point along the shore. If he can walk 5 miles an hour but row only
4 miles an hour, required the place he must land. Ans. 3 miles from the camp.

14. A gas holder is a cylindrical vessel closed at the top and open at the bottom,
where it sinks into the water. What should be its proportions for a given volume to
require the least material (this would also give least weight)

Ans. Diameter = double the helnht

15. What should be the dimensions and weight of a gas holder of 8,000,000 cubic
feet capacity, built in the most economical manner out of sheet iron % of an inch
thick and weighing 2} 1b. per sq. ft.?

Ans. Height =137 ft., diameter = 278 ft., weight = 220 tons.

16. A sheet of paper is to contain 18 sq. in. of printed matter. The marginsat the top
and bottom are to be 2 inches each and at the sides 1 inch each. Determine the dimen-
sions of the sheet which will require the least amount of paper. A4ns. 5in. by 10in.

17. A paper-box manufacturer has in stock a quantity of strawboard 30 inches by
14inches. Out of this material he wishes to make open-top boxes by cutting equal squares
out of each corner and then folding up to form the sides. Find the side of the square
that should be cut out in order to give the boxes maximum volume.  Ans. 3inches.

18. A roofer wishes to make an open gutter of maximum
capacity whose bottom and sides are each 4 inches wide and
whose sides have the same slope. What should be the width
across the top ? Ans. 8 inches.

19. Assuming that the energy expended in driving a steamboat through the water
varies as the cube of her velocity, find her most economical rate per hour when steam-
ing against a current running ¢ miles per hour.

HinT. Let v=most economical speed ;

then av® = energy expended each hour, a being a constant depenﬂing upon the partic-
ular conditions,
and v — ¢= actual distance advanced per hour.

3
Hence va—fc is the energy expended per mile of distance advanced, and it is therefore the

function whose minimum is wanted. '
: Ans. v=4#ec.

20. Prove that a conical tent of a given capacity will require the least amount of
canvas when the height is V2 times the radius of the base. Show that when the canvas
is laid out flat it will be a circle with a sector of 152° 9’ cut out. A bell tent 10 ft.
high should then have a base of diameter 14 ft. and would require 272 sq. ft. of canvas.

21. A cylindrical steam boiler is to be constructed having a capacity of 1000 cu. ft.
The material for the side costs $2 a square foot, and for the ends $3 a square foot.
Find radius when the cost is the least. 10

Ans. —— ft.
V3w

22. In the corner of a field bounded by two perpendicular roads a spring is situated
6 rods from one road and 8 rods from the other. How should a straight road be run
Oy this spring and across the corner so as to cut off as little of the field ag possible ?

Ans. 12 and 16 rods from corner.

‘What would be the length of the shortest road that could be run across ?

Ans. (6% + 8% rods.
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23. Show that a square is the 1ectanﬂle of maximum perimeter that can be inscribed
in a given circle. -

24. Two poles of height @ and b feat are standing upright and are c feet apart. Find
the pomt on the line joining their bases such that the sum of the squares of the distances
from this point to the tops of the poles is a minimum. Ans. Midway between the poles.

When will the suin of tliése distances be a minimum ?

26. A conical tank with open top is to be built to contam V cubic feet. Determine
the shape if the material used is a minimum.

26. An isosceles triangle has a base 12 in. long and altitude 10 in. Find the rec-
tangle of maximum area that can be inscribed in it, one side of the rectangle coincid-
ing with the base of the triangle.

27. Divide the number 4 into two such parts that the sum of the cube of one part
and three times the square of the other shall have a maximum value.

28. Divide the number ¢ into two parts such that the product of one part by the
fourth power of the other part shall be a maximum.

29. A can buoy in the form of a double cone is to be made from two equal circular
iron plates of radius r. Find the radius of the base of the cone when the buoy has the
greatest displacement (maximum volume). Ans. 'rx/g.

30. Into a full conical wineglass of depth a and generating angle a there is care-
fully dropped a sphere of such size as to cause the greatest overflow. Show that the
radius of the sphere is asina

sina 4+ cos2 a

31. A wall 27 ft. high is 8 ft. from a house. Find the length of the shortestladder that
will reach the house if one end rests on the ground outside of the wall. A4ns. 13V13.

32. A vessel is anchored 3 miles offshore, and opposite a point 5 miles further
along the shore another vessel is anchored 9 miles from the shore. A boat from the
first vessel is to land a passenger on the shore and then proceed to the other vessel,
What is the shortest course of the boat ? . Ans. 13 miles.

33. A steel girder 25 ft. long is moved on rollers along a passageway 12.8 ft. wide
and into a corridor at right angles to the passageway. Neglecting the width of the
girder, how wide must the corridor be ? Ans. 5.4 ft.

34. A miner wishes to dig a tunnel from a point 4 to a point B 300 feet below
and 500 feet to the east of 4. Below the level of A4 it is bed rock and above 4 is soft
earth. If the cost of tunnehnfr through earth is $1 and through rock $3 per linear foot,
find the minimum cost of a tunnel. Ans, $1348.53.

35. A carpenter has 108 sq. ft. of lumber with which to build a box with a square
base and open top. Find the dimensions of the largest possible box he can make.

Ans, 6 x 6 x 3.

36. Find the right triangle of maximum area that can be constructed on a line of

length % as hypotenuse. Ans. % = length of both legs.
2

37. What is the isosceles triangle of maximum area that can be inscribed in a
given circle ? Ans. An equilateral triangle.

38. Find the altitude of the maximum rectangle that can be inscribed in a right

triangle with base b and altitude k. Ans. Altitude = %I,
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39. Find the dimensions of the rectangle of maximum area that can be inscribed

in the ellipse b%2z? 4 a?y? = a?b®. Ans. a V2 and b V2 ; area = 2 ab.
40. Find the altitude of the right cylinder of maximum volume that can be inscribed
in a sphere of radius r. 2r

Ans. Altitude of cylinder = — -
V3

41. Find the altitude of the right cylinder of maximum convex (curved) surface
that can be inscribed in a given sphere. Ans. Altitude of cylinder = r V2.

42. What are the dimensions of the right hexagonal prism of minimum surface
whose volume is 86 cubic feet ? Ams. Altitude = 2 V'8; side of hexagon = 2.
43. Find the altitude of the right cone of minimum volume circumseribed about a
given sphere. Ans. Altitude = 4r, and volume = 2 X vol. of sphere.

44. A right cone of maximum volume is inscribed in a given right cone, the vertex
of the inside cone being at the center of the base of the given cone. Show that the
altitude of the inside cone is one third the altitude of the given cone.

45. Given a point on the axis of the parabola y2 = 2 px at a distance @ from the

vertex ; find the abscissa of the point of the curve nearest to it. Ans. x =a — p.
. 46. What is the length of the shortest line that can be drawn tangent to the ellipse
b222 + a?y? = a?b? and meeting the codrdinate axes ? Ans. a+b.

47. A Norman window consists of a rectangle surmounted by a semicircle. Given
the perimeter, required. the height and breadth of the window when the quantity of
light admitted is a maximum. Ans. Radius of circle = height of rectangle.

48. A tapestry 7 feet in height is hung on a wall so that its lower edge is 9 feet
above an observer’s eye. At what distance from the wal! should he stand in order to
obtain the most favorable view ? . Ans. 12 feet.

HinT. The vertical angle subtended by the tapestry in the eye of the observer must he
at a maximum. .

49. What are the most economical proportions of a tin can which shall have a
given capacity, making allowance for waste ?

Ans. Height = gﬁ) x diameter of base.
T

HinT. There is no waste in cutting out tin for the side of the can,
but for top and bottom a hexagon of tin circumscribing the circular
pieces required is used up.

Nore 1. If no allowance is made for waste, then height = diameter.

Note 2. We know that the shape of a bee cell is hexagonal, giving a certain
capacity for honey with the greatest possible economy of wax.

50. An open cylindrical trough is constructed by bending a given sheet of tin ot
breadth 2 a. Find the radius of the cylinder of which the trough forms a part when
the capacity of the trough is a maximum.

2a . . . s
Ans. Rad. = —; i.e. it must be bent in the form of a semicircle
T

51. A weight W is to be raised by means of a lever with the force F at one end and
the point of support at the other. If the weight is suspended from a point at a distance
a from the point of support, and the weight of the beam is w pounds

per linear foot, what should be the length of the lever in order that
W the force required to lift it shall be a minimum ?

AV
w . Ans. :c:‘[ ?DW feet.
’

A T U
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52. An electric arc light is to be placed directly over the center of a circular plot
of grass 100 feet in diameter. Assuming that the intensity of light varies directly as
the sine of the angle under which it strikes an illuminated surface, and inversely
as the square of its distance from the surface, how high should the light be hung
in order that the best possible light shall fall on a walk along the

circumference of the plot ? Ans. _59_ feot.
V2

53. The lower corner of a leaf, whose width is a, is folded over so
as just to reach the inner edge of the page. (a) Find the width of the
part folded over when the length of the crease is a minimum. (b) Find
the width when the area folded over is a minimum. Ans. (a) £a; (b) 3a.

54. A rectangular stockade is to be built which must have a certain area. If a
stone wall already constructed is available for one of the sides, find the dimensions
which would make the cost of construction the least.

Ans. Side parallel to wall = twice the length of each end.

55. A cow is tethered by a perfectly smooth rope, a
slip noose in the rope being thrown over a large square
post. If the cow pulls the rope taut in the directiort
shown in the figure, at what angle will the rope leave
the post ? Ans. 30°.

56. When the resistance of air is taken into account, the inclination of a pendulum
to the vertical may be given by the formula
6 = ae—*tcos (nt + ¢).
Show that the greatest elongations occur at equal intervals.'?: of time.

57. It is required to measure a certain unknown magnitude x with precision.
Suppose that n equally careful observations of the magnitude are made, giving the
results Gy Qg Gy cvvy G
The errors of these observations are evidently

T—Qy T— Oy T— Gy <oy L— Oy
some of which are positive and some negative.

It has been agreed that the most probable value of z is such that it renders the
sum of the squares of the errors, namely

@—a)?+ @—a) + (@ —ay)* + - + (@ — an)?,
a minimum. Show that this gives the arithmetical mean of the observations as the

most probable value of x. B

58. The bending moment at B of a beam of length I, uniformly Wf_x

loaded, is given by the formula 7
M=} wlke — w2,

where w = load per unit length. Show that the maximum bending moment is at the

center of the beam.

e

59. If the total waste per mile in an electric conductor is
; 2
W=c¥+ > [c = constant]
where ¢ = current in amperes, r = resistance in ohms per mile, and { = a constant

depending on the interest on the investment and the depreciation of the plant, what
is the relation between ¢, r, and ¢ when the waste is a minimum ? Ans. cr=t.
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60. A submarine telegraph cable consists of a core of copper wires with a covering
made of nonconducting material. If x denote the ratio of the radius of the core to the
thickness of the covering, it is known that the speed of signaling varies as

1
x2 log -
x

1
Show that the greatest speed is attained when z = 7
e

61. Assuming that the power given out by a voltaic cell is given by the formula
E?R
P=—,
(r + R)?
where E = constant electromotive force, r = constant internal resistance, R = exter-

nal resistance, prove that P is a maximum when r = R.

62. The force exerted by a circular electric current of radius a on a small magnet
whose axis coincides with the axis of the circle varies as
x

(a? + :cz)%

where = = distance of magnet from plane of circle. Prove that the force is a maxi-

a
mum when x = 3

63. We have two sources of heat at 4 and B with intensities @ and b respectively.
The total intensity of heat at a distance of x from A4 is given by the formula

a b
== 4 —.
:::Z-i_(d—:z:)2

Show that the temperature at P will be the lowest when
d—x Vb .
r Vg
that is, the distances BP and AP have the same ratio as the cube roots of the corre-
sponding heat intensities. The distance of P from 4 is

_ a%d )
JEE

64. The range OX of a projectile in a vacuum is given by the formula

B= vfsi112¢;
Ty

where v, = initial velocity, g = acceleration due to grav-

o] i X ty, ¢ = angle of projection with the horizontal. Find the
angle of projection which gives the greatest range for a given initial velocity.
Ans. ¢ = 45°.

65. The total time of flight of the projectile in the last problem is given by the
formula
_2v;sing
==
At what angle should it be projected in order to make the time of flight a maximum ?
Ans. ¢ = 90°

T
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66. The time it takes a ball to roll down an inclined plane AB is given by the
foriaula I a
a A
T=2 -\/—.—-
gsin2¢
Neglecting friction, etc., what must be the value of ¢ to make the
quickest descent ? Ans. ¢ =45° |[B

67. Examine the function (z— 1)2(z + 1) for maximum and minimum values.
Use the first method, p. 111.

Solution.  f(2) = (x — 1)2(z + 1)3.

First step. f/(@)=2@—1)(x +1* +3@x—1)2(z+ 1) =(@— 1)@z +1)2(5z—1).

Second step. (x—1) (@ + 1)*(bx —1) =0,

2 =1, — 1, 1, which are critical values.
Third step. f@)=5@—1)@+1)2@x—1}).
Fourth step. Examine first for critical valuex =1 (C in

figure).
When 2 <1, /(@) = 5(—) (+)*(+) = —.
When > 1, (&) = 5(+) (+)2(+) = +.
Therefore, when =1 the function has a minimum value f(1) = 0 (= ordinate of C).
Examine now for the critical value z = 4 (B in figure).
When 2 <, /() = 5(=) (+)2(~) = +.
When 2> 4, f/(z) = 5(=) (+)*(+) = —-
Therefore, when & = } the function has a maximum value f(3) = 1.11 (= ordinate

of B).
Examine lastly for the critical value x =— 1 (4 in figure).

When 2 < — 1, f/(z) = 5(=) (—)2(=) = +.
When &> — 1, /() = 5 (=) (+)*(=) = +.
Therefore, when = — 1 the function has neither a maximum nor a minimum value.

68. Examine the function ¢ — b (z — c)% for maxima and minima.
Solution. f@)=a—b@— 0)5”.

2b
Py = ——.
3@ — c);r Y
Since x = ¢ is a critical value for which f’(z) = o, but for
which f(z) is not infinite, let us test the function for maximum
and minimum values when o = c.

When < ¢, /() = +. ol
When z>c¢, f'(z) = —. '
Hence, when & = ¢ = OM the function has a maximum value f(c) = ¢ = MP.
Examine the following functions for maximum and minimum values:
69. (x — 3)%(x — 2). Ans. x = §, gives max. = 4
z = 3, gives min. = 0.
70 (z—1)3@ — 2)% © = &, gives max. = .03456;

z =2, gives min. = 0;
© =1, gives neither.



71.

72.

73.

74.

75.

76.

7.

78.

79.

80.
81.

82.

(z— 4)5( + 2)%.
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(@ —2)5@2e + 1)4

@+ @ — 5

2z — u)"v’(z — a)gt.

o —1)2(@ + 1)%

z(a + z)%(a — )3,

b+c(a:—a)§.

a——b(x——c)’}.

22 —Tx 4+ 6
r—10

(@ —z)®

a—2z

1—2z 422

142 —a?

2 — 3z 42

2243+ 2

22

a2 b2

Ans. ® =— 2, gives max.;

z = %, gives min.;

z = 4, gives neither.

z =— 1, gives max.;
= }3§, gives min.;
x = 2, gives neither.

¢ =}, gives max.;

¢ =—1and 5, give min,

2a .
T =—-, gives max.;
3
T = a, gives min.;

[, .
= 3 gives neither,

= 4, gives max.;

r=1and — 1, give min.;
x =— 1, gives neither.
a .
z=—a and 3’ give max.;
a . .
T =— 3’ gives min.;

z = a, gives neither,

z = a, gives min. = b.

No max. or min.

¢ = 4, gives max.;
z = 16, gives min.

a Lo

x =-, gives'min.
4 .

z =}, gives min.

© =V2, gives min. =12 V2 — 17:

© =—V2,givesmax, =— 12vV2 17,
z =—1, — 2, give neither.
2ab . (a — b)?
© = , gives max, = ~——=-—.
a+b ) 4 ab
a?
T = » gives min.;
a—b
a? .
r = ——, gives max.
a+b
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85. Examine 2% — 322 — 9z 4 5 for maxima and minima. Use the second method,

P- 113. 4Y
Solution. f(x)=2%—3a— 9z + 5. : ‘
First step. f(x)=382% — 6w — 9. i
Second step. 322 — 63 —9=0; . e
hence the critical values are z=—1and 3.
Third step. f7(x) =6x— 6.
Fourth step. f”(—1)=—12.
~. f(—1) =10 = (ordinate of A) = maximum value. !
JS7(8) =+ 12. .. f(3) =— 22(ordinate of B) = minimum value. B
86. Examine sin?z cosz for maximum and minimum values.
Solution. f(x) = sin?z cosx.
First step. f’(x) = 2sinx cos’z — sin®z. ¥
Second step. 2 singx cos*z — sindz = 0; “!/A\ c /f\o‘_
hence the critical values are T =nw 0 N S F X
and T = nw 4+ arc tan V2 =nr + a. B b
Third step. f7(x) = cosx (2 cos?x — T sin’zx).
Fourth step. f7(0)=+. .. f(0) =0 = minimum value at O.
f’(@)=—. .. f(@)=0=maximum value at C.
(@) =—. .. f(a)= maximum value at 4.

f’(r—a)=+. .. f(r— a)=minimum value at B, etc.

Examine the following functions for maximum and minimum values.

87. 3% — 922 — 2Tz + 30. Ans. x=—1, gives max, = 45;
¢ = 3, gives min, = — 51.
88. 223 — 2122 4 362 — 20. z =1, gives max. = — 3;
z = 6, gives min. = — 128,
3
89. %—2x2+3z+1. x =1, gives max. = };
z = 3, gives min. = 1.
90. 228 — 15722 4 362 + 10. ¢ = 2, gives max. = 38;
© = 3, gives min. = 37,
91, 23 — 922 + 1562 — 3. z =1, gives max. = 4;
z = 5, gives min, = — 28,
92, a8 — 822 4 6z 4 10. No max. or min,
93, 28 — 5zt 523 + 1. z =1, gives max. = 2,
z = 3, gives min. = — 26;

z = 0, gives neither.

94. 325 — 12528 + 2160z. z =— 4 and 3, give max.;
« =— 3.and 4, give min.

95. 223 — 3a% — 122 + 4. 98. zt — 4.

96. 228 — 2122 4+ 36 — 20. 99. a3 — 8.

97. xt — 222 4 10. 100. 4 — 8.



101,

102.

103.
104.

105.

106.
107.

108.

109.
110.

111.
112.

113.

114.

115.

85.

sinz (1 4+ cosz).

=z
logx

log cosz.

aekz 4 he—ka,

cosx + sinz.

sin2z — .

z 4 tanz.

sin®z cos x.

Z Cos .
sinz + cos22z.

2 tanx — tan?x.
sinx
14 tanz
z
14 ztanx
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Ans. € =2nmwr + 7—;, give max. =§\/§;

T . . 3

T=2nw — 3’ give min. =— Z\/5,
z = nmw, give neither.
T =e, gives min. = e;
z = 1, gives neither.
T = nm, gives max.

1 B s min. — 2/
z = -log 4 /-, gives min. = 2 Vab.

k a

1 . .
@ = 2 gives min.
T = e, gives max.

m .
T = 1 gives max. :\/5;
S5r .
T = =’ gives min. =—2.
T .
T = —, gives max.;
6
T . .
& =— —, gives min.
6
No max. or min.
T . 3
T =nmwr+ g, gives max. = E\/{—i,

T, . 3
X = nw — —, gives min. =——\/§'
3’8 6"

z = nw, gives neither.
Z = cotwx, gives max.

z = arcsin , gives max.;

T .

¢ = =, gives min.
2
T .

z = —, gives max.
4
T .

T = > gives max.

¢ = cosz, gives max.;
& =— cosz, gives min.

Points of inflection. Definition. Points of inflection separate arcs
concave upwards from ares concave downwards.* Thus, if a curve
y =f(z) changes (as at B) from concave upwards (as at 4) to con-
cave downwards (as at C'), or the reverse, then such a point as B is
called a point of inflection.

* Points of inflection may also be defined as points where

or

(b)

2y

@ i

dx?
#o_
dy?

0 and &y changes sign,
dax?

2 .
~ changes sign.
Y2
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From the discussion of § 84 it follows at once that at 4, f"(2) =+,
and at C, f""(¢)=—. In- order to change sign it must pass through
the value zero; * hence we have :

(3) at points of inflection, f''(x) = 0.

Solving the equation resulting from (23) gives the abscissas of the
points of inflection. To determine the direction of curving or direc-
tion of bending in the vicinity of a point of in-

Y|
. ¢ flection, test f”"(2) for values of x, first a trifle
A less and then a trifle greater than the abscissa
at that point.
0| X

If f'(2) changes sign, we have a point of in-
flection, and the signs obtained determine if the curve is concave
upwards or concave downwards in the neighborhood of each point
of inflection.

The student should observe that near a point where the curve is
concave upwards (as at 4) the curve lies above the tangent, and at
a point where the curve is concave downwards (as at ) the curve
lies below the tangent. At a point of inflection (as at B) the tangent
evidently crosses the curve.

Following is a rule for finding points of inflection of the curve whose
equation is y = f(«). This rule includes also directions for examining
the direction of curvature of the curve in the neighborhood of each
point of inflection.

First Stee. Find f"().

Secoxp Strr. Set f'(2) =0, and solve the resulting equation for real
r00ts.

Tuiep Stee. Write f''(x) in factor form.

Fourrn Ster. Test f''(2) for values of , first a trifle less and then'a
trifle greater than each root found in the second step. If f''(x) changes
- stgn, we have a point of inflection.

When f''(x) =+, the curve is concave upwards \4_-/.1‘

When f'(2) = —, the curve is concave downwards ~—.

* It is assumed that f/(x) and f*/(x) are continuous. The solution of Ex. 2, p. 127, shows
how to discuss a case where f/(x) and f/(x) are both infinite. Evidently salient points (see
p. 258) are excluded, since at such points f/(x) is discontinuous.

+ This may be easily remembered if we say that a vessel shaped like the curve where
it is concave upwards will hold (+) water, and where it is concave downwards will spill
() water.
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EXAMPLES

Examine the following curves for points of inflection and direction of bending.

1. y=38x*— 423 + 1. Y
Solution. f@) =38zt — 4% 4 1. A
First step. f"(x) =362 — 24z,
Second step. 3622 —242 =0 B
. ¢ = % and & = 0, critical values.
Third step. f(x) =36z (x — 2). ol X

Fourth step. When « <0, f(z) =+ ; and when >0, f”(z) =—.

-. curve is concave upwards to the left and concave downwards to the right of 2 = 0
(4 in figure).  When ¢ < 2, f”(x) =— ; and when >3, f”(¢) = +.

-, curve is concave downwards to the left and concave upwards to the right of
z = § (B in figure).

The curve is evidently concave upwards everywhere to the left of A, concave down-
wards between 4 (0,1) and B (,31), and concave upwards everywhere to the right of B.

2. (y—2)® = (& —4).

Solution. y=2+ (v — 4)%. Y|
. dy 1 _
First step. i x—4 ‘3‘, (4,2)
a2 3
U _Zp_ g o] X
da? 9
Second step. When a = 4, both first and second derivatives are infinite.

Third Wh PR R - i
ird step. en r < ’EE_+’ ut when = > ' G2

S =

We may therefore conclude that the tangent at (4, 2) is perpendicular to the axis
of X, that to the left of (4, 2) the curve is concave upwards, and to the right of (4, 2)
it is concave downwards. Therefore (4, 2) must be considered a point of inflection.

3. y==a2 ‘ Ans. Concave upwards everywhere.

4, y=5—2x —z2 Concave downwards everywhere.

5. y =a8. Concave downwards to the left and concave up-
wards to the right of (0, 0).

6. y=a*—322—9x 4 9. Concave downwards to the left and concave up-
wards to the right of (1, — 2).

7. y=a+ (x — b)s. Concave downwards to the left and concave up-
wards to the right of (b, a).

3
8. a?y = % — ax? + 2d3. Concave downwards to the left and concave up-

wards to the right of (a, 4—3(3)

9., y = a4, Concave upwards everywhere.
10. y =24 — 1223 4 4822 — 50.
Concave upwards to the left of * = 2, concave
downwards between = = 2 and = = 4, concave
upwards to the right of x = 4.

11. y =sinz. Points of inflection are = nar, n being any integer.
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12. y = tanz. Ans. Points of inflection are z =nmr, n being any integer.
13. Show that no conic section can have a point of inflection.
14. Show that the graphs of e¢* and logx have no points of inflection.

86. Curve tracing. The elementary method of tracing (or plotting)
a curve whose equation is given in rectangular codrdinates, and cne
with which the student is already familiar, is to solve its equation for
y (or z), assume arbitrary values of z (or y), calculate the correspond-
ing values of y (or ), plot the respective points, and draw a smooth
curve through them, the result being an approximation to the required
curve. This process is laborious at best, and in case the equation of
the curve is of a degree higher than the second, the solved form of
such an equation may be unsuitable for the purpose of computation,
or else it may fail altogether, since it is not always possible to solve
the equation for y or z.

The general form of a curve is usually all that is desired, and the
Calculus furnishes us with powerful methods for determining the
shape of a curve with very little computation.

The first derivative gives us the slope of the curve at any point;
the second derivative determines the intervals within which the curve
is concave upward or concave downward, and the points of inflection
separate these intervals; the maximum points are the high points and
the minimum points are the low points on the curve. As a guide in
his work the student may follow the

Rule for tracing curves. Rectangular coordinates.

First Step. Find the first derivative ; place it equal to zero ; solving
gives the abscissas of mazimum and minimum points.

SecoNp Strr. Find the second derivative; place it equal to zero ; solv-
ing gives the abscissas of the points of inflection.

Tuirp Stee. Caleulate the corresponding ordinates of the points whose
abscissas were found in the first two steps. Calculate as many mdre points
as may be necessary to give a good idea of the shape of the curve. Fill out
a table such as is shown in the example worked out.

Fourrr Step. Plot the points determined and sketch in the curve to
correspond with the results shown in the table.

If the calculated values of the ordinates are large, it is best to
reduce the scale on the Y-axis so that the general behavior of the
curve will be shown within the limits of the paper used. Coodrdinate
plotting paper should be employed.
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EXAMPLES

Trace the following curves, making use of the above rule. Also find the equations
of the tangent and normal at each point of inflection.

1l.y=a%—922 4+ 242 — 7.

Solution. Use the above rule.

First step. y =3a% — 18x + 24,
822 —18x + 24 =0,
=2, 4.
Second step. ¥’ =6z —18,
6r—18 =0,
r=3.
Third step.
x y v v’ REMARKS DIRECTION OF CURVE
g ;37 : : max } concave down
3 11 — 0 pt. of infl. ‘!,
4 9 0 + min. ¢ eoncave up
6 29 + + J

Fourth step. Plotting the points and sketching in the curve, we get the figure shown.

To find the equations of the tangent and normal to the curve at the point of inflec-
tion P, (3, 11), use formulas (1), (2), pp. 76, 77. This gives 82 + ¥ = 20 for the tangent
and 3y — @ = 30 for the normal.

2. y=1a%— 622 — 362 + 5. Y
Ans. Max. (— 2, 45); min. (6, — 211); pt. of infl.
(2, —83); tan. y + 482 — 13 = 0; mnor.
48y — x + 8986 = 0.

3. y=uat — 2a2 4 10.
Ans. Max. (0, 10); min. (+ 1, 9); pt. of infl.

(:!: 1 85>
V3 9
4. y=4z*—3a% + 2.
Ans. Max. (0, 2); min. (+ V3, — $); pt. of infl,

W — e e

B

(:l: la - %)‘
6z 0! € X
5. Yy=—--:
14 22
Ans. Max. (1, 3); min. (—1, — 8); pt. of infl. (0, 0), ‘
<:t V3, 4 3_3>
2

6. y =122 — a8, Ans. Max. (2, 16); min. (— 2, — 16); pt. of infl,

(0, 0).
7.4y 4+ a*—322+4=0. Max. (2, 0); min. (0, —1).



130 DIFFERENTIAL CALCULUS

8. y=x°—8x2—92 + 9. 20. y =3z — a8,
9. 2y4a3—9x +6=0. 21, y=a® — 922 4+ 152 — 3.
10. y =23 — 622 — 15 + 2. 22, 2?2y =4 4 z.
11. y(1+ 2?) ==. 23. 4y =zt — 622 4 5.
8ad a8
12, y=——m—. 24, y=—.
2. v x2 + 4a2 Y 22 + 3a?
18 y=e 25. y:sinm+g-
4+ ‘ 22 + 4
14. = . . = ——
Y x2 26. y [
15. y:(m+1)‘3‘(z—5)‘~’. 27, y=56x — 222 — } a8,
z 42 1+ a2
= . 28, y=—.
16. v p Yy oz
17. y = a8 — 322 — 24 . 29. y =x — 2sinx.
18. y =18 4+ 86x — a2 — 25, 30. y = log cosz.

19. y =z — 2cosx. 31. y =log(1 + 2?).



CHAPTER IX
DIFFERENTIALS

87. Introduction. Thus far we have represented the derivative of

¥ =f(x) by the notation
L =@
2z
We have taken special pains to impress on the student that the
symbol dy
dw

was to be considered not as an ordinary fraction with dy as numerator
and dz as denominator, but as a single symbol denoting the limit of
the quotient Ay

. Ax
as Az approaches the limit zero.

Problems do occur, however, where it is very convenient to be able
to give a meaning to dz and dy separately, and it is especially useful
in applications of the Integral Calculus. How this may be done is

_explained in what follows. '

 \.88. Definitions. If f/(2) is the derivative of f(z) for a particular
/value of 2, and Az is an arbitrarily chosen increment of x, then the differ-
\ential of f(x), denoted by the symbol df'(z), is defined by the equation

) A (&) = f'(x) Aa.
If now f(2) =, then f'(2)=1, and (4) reduces to
dr = Ax,

showing that when x is the independent variable, the differential of
x(= dz) is identical with Az. Hence, if y =f(z), (4) may in general
be written in the form

B dy = f'(x)dx.*

* On account of the position which the derivative f”(x) here occupies, it is sometimes
called the differential coefficient.

The student should observe the important fact that, since dx may be given any arbi-
trary value whatever, dx is independent of x. Hence, dy is a function of two independent
variables x and de.

131
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The differential of a function equals its dertvative multiplied by the
differential of the independent variable.

Let us illustrate what this means geometri-
cally.
Let f'(2) be the derivative of y =f(z) at P.
Take dz = P@, then
QT

dy :f’(:v)dx:tan'r-PQ=;6-PQZQT-

Therefore dy, or df (), is the increment (= @7T) of the ordinate of
the tangent corresponding to da.*
This gives the following interpretation of the derivative as a fraction.

If an arbitrarily chosen tncrement of the independent variable x for
a point P(z, y) on the curve y=f(x) be denoted by dz, then in the
derivative

Z%Z:f’(x): tan T,

dy denotes the corresponding increment of the ordinate drawn to the
tangent.

-89. Infinitesimals. In the Differential Calculus we are usually con-
cerned with the derivative, that is, with the ratio of the differentials
dy and dz. In some applications it is also useful to consider dz as
an infinitesimal (see § 15, p. 13), that is, as a variable whose values
remain numerically small, and which, at some stage of the investiga-
tion, approaches the limit zero. Then by (B), p. 131, and (2), p. 19,
dy is also an infinitesimal.

In problems where several infinitesimals enter we often make use
of the following

Theorem. In problems involving the limit of the ratio of two infinites-
tmals, either infinitesimal may be replaced by an infinitesimal so related
to 1t that the limit of their ratio is unity.

Proof. Let a, B, a/, 8 be infinitesimals so related that

oo B
) hmlt;_l and limit 3 =1.

* The student should note especially that the dii’ferentiz.tl (= dy) and the increment (= Ay)
of the function corresponding to the same value of dx (= Ax) are not in general equal. For,
in the figure, dy=QT, but Ay =QFP’,
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! '
We have %:%—, . (% % identically,
a I 2 4
= — . limit = - limit —
and limit — 3 nnlt ,3’ imi p imi 3
= hmlt—- 1.1,
BI
(D) limit% = limit %,
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Th. 11, p. 18

By (0)

Q.E.D.

Now let us apply this theorem to the two following important limits.
For the independent variable 2, we know from the previous section

that Az and dz are identical.

Hence their ratio is unity, and also limit %:1.
z

above theorem,

That is, by the

(E) In the limit of the ratio of Azx and a second infinitestimal, Az

may be replaced by dex.

On the contrary it was shown that, for the dependent variable y, Ay
and dy are in general unequal. But we shall now show, however, that

in this case also
limit2Y =1
A Y
: limit Ay _ 4 .
Since Ao—0Ap= S'(®), we way write

Ay _ 4
A:v_f(x)+€’

where € is an infinitesimal which approaches zero when Az =0.

Clearing of fractions, remembering that Az = dz,
Ay=f'(z)dz+ € Az,

or ‘ Ay=dy+e- Az
Dividing both sides by Ay,
1— dy Le iz
or Ay Y
dy _q_.. 4z
Ay Ay
limit glg 1
Az =0 Ay -
and hence limit Ay =1. That is, by the above theorem,

Az _Od

(B), p. 131

(F) In the limit of the ratio Qf' Ay and a second infinitesimal, Ay may

be replaced by dy.
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90. Derivative of the arc in rectangular coordinates. Let s be the
length* of the arc 4P measured from a fixed point 4 on the curve.
Denote the increment of s (=arc PQ) by As.
The definition of the length of arc depends on
the assumption that, as @ approaches P,

limit <M> _1.
arc P¢@

Ay

o7 T X
If we now apply the theorem on p. 132 to this, we get

(@) In the imit of the ratio of chord P and a second mﬁmteszmal
chord PQ may be replaced by are PQ(=As).

From the above figure

- (H) (chord PQ)*= (Az)*+ (Ay)>
Dividing through by (Az)? we get
chord P@Q 2
@ (5 (&)

Now let @ approach P as a limiting position ; then Az = 0 and we

have 2
» ds dy\
B =1 — ]

. limit (chord P@\ _ limit ds
[Smce sreo\"ag — )=Am=0 az) =z PY (@) ]

o ds / dy\?
(24) e E— 1+<Tx>-

Similarly, if we divide () by (Ay)® and pass to the limit, we get

' ds dx\?
dy dy
Also, from the above figure,
Az . Ay
cos=—""— sinf=—"<
chord PQ ’ chord PQ
Now as @ approaches P as a limiting position 6 = 7, and we get
. d
(26) cos'rzd—x, sm1-=—y.
ds
[Since from (G) limit cho:d g it %’—: - ‘fl_:, and limit cho:g g mit i_” = ;’: ]

* Defined in § 209.
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Using the notation of differentials, formulas (25) and (26) may be
written

dy\? 3
27 =1 —) | dx.
“ | @]
ax\t |
(28) ds = [<—> + 1] dy.
dy
Substituting the value of ds from (27) in (26),
4
(29) oS 7T = ; ’ sin 7 = dx

dy\? i dy\? i
1 — 1 =
(@] (@]
An easy way to remember the relations (24)—(26) between the
differentials dz, dy, ds is to note that they are
correctly represented by a right triangle whose

hypotenuse is ds, whose sides are dz and dy,
and whose angle at the base is 7. Then

ds = V(a2 ¥ (ap)}, ol X

and, dividing by dz or dy, gives (24) or (25) respectively. Also, from
the fi .
e dx . .
COST =— D ’
ds ds

the same relations given by (26).

91. Derivative of the arc in polar coordinates. In the derivation
which follows we shall employ the same figure and the same notation
used on pp. 83, 84.

From the right triangle PRQ

(chord PQ)* ‘
= (PRY + (RQ)’
=(psin A0)’+ (p 4+ Ap — p cos AB)2

0 7~ X

Dividing throughout by (A#8)?% we get

chord PQ\* ,/sin AG\*  /Ap 1— cos AG\?
< A6 >_P<A0 >+<E+P' A6 >
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Passing' to the limit as Af diminishes towards zero, we get *
ds\* ,  [dp\
(30)= (@)
ds dp\?
30 s
30) P \’P +< d0>

In the notation of differentials this becomes

ol (8]

These relations between p and the differentials ds, dp, and d@
are correctly represented by a right triangle

s Whose hypotenuse is ds and whose sides are
dp and pdf. Then

=V (pdd)’+ (dp)*
X and dividing by d6 gives (30).
Denoting by +» the angle between dp and ds, we get at once

tan {Jr = p—e,

which is the same as (4), p. 84.

IrrustrATivE Exampre 1. Find the differential of the arc of the circle x2 + 32 =72,
Solution. Differentiating, W__z
dx Y

To find ds in terms of & we substitute in (27), giving
2714 2 213 2%

ds:[1+“’—] da;:[y +m] da::[-r—] = 19

y? y2 y? V2 — g2
To find ds in terms of ¥ we substitute in (28), giving

ds = [1 ¥ ]%d = [“2 ;; yz]‘}dy = [;_Z]*: %;

IrLusTrRATIVE Exampre 2. Find the differential of the arc of the cardioid p =
a(1— cos @) in terms of 4.

Solution. Differentiating, Z—Z = asiné.
Substituting in (31), gives "
ds = [a?(1 — cosf)2+ a? sinZ(;’]‘}do =a[2—2 cos&]’} dg = a,[4 sin? g] dd=2a sin%cw.

« limit chord PQ _ limit As _Gds,

A0=0 Af T A9=0 A@ de By (G)y p. 134

limit %?‘L By §22, p.21
2 sin2 Ad in /¥

limit 1 =08 A8 _ 1imit 2 _limit i, A0 2

Ab=0 A6 26=0 " A AG=0 2 A7 =0-1=0. By39,p.2,and §22,p.21
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EXAMPLES

Find the differential of arc in each of the following curves:

1. y* =4z Ans. ds:ﬂlimdz.

2. y = ax?. ds =V1+ 4a2z2dx.
3. y=uad. ds =V1+4 9xtdx.
4. % = z2. ds=1V4+49ydy.
-
5. ot 4 4 = o, N
2 _
6. b2r? + a?y? = a?b?. ds = \/a_.ﬁdg;
a? — g2
2 _ b2
Hint. e2=2 ﬂb .
o2
7. evcosz =1. ds = secx dx.
8. p=acosé. ds = add.
9. p? =a?cos26. ds = aVsec26df.
10. p = aedeota, ds = p csca df.
11. p = as. ds = a8 V1 + logZadé.
12. p = af. ds:}l\/a2+p2dp.
13. (a) .’):Z—y;\: aZ. (h) «* + y¥ = ot
(b) 2% = 4ay. (i) 9% = aa.
(c)y=e+e = () v = logx.
d) zy = a. (k) 42 = 9>,
(e) ¥ = logsecz. W) p= aseceg,
(f) p=2atandsind. 2

20 (m) p =1+ siné.
(8) p = asec 3’ (n) pf = a.

92. Formulas for finding the differentials of functions. Since the
differential of a function is its derivative multiplied by the differen-
tial of the independent variable, it follows at once that the formulas
for finding differentials are the same as those for finding derivatives
given in § 383, pp. 34-36, if we multiply each one by dz.

This gives us

I d(e)=0.
1T d(z) = dz.
III d(u+v—w)=du+ dv— dw.
v d(ev) = cdv. »
A% d(uv) =udv + v du.

VI d(v*) =nv""'dv.
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Via d(z") = na" " da.
VII d<11,>___vdu-—2udv.
v v
VIl a d@) _
¢ ¢
VIII a(log,2) = log,e 2
IX d(a”) = a’log adv.
IXa d(e") = e dv.
X d(u)=vu "du + logu-u’. dv.
XI d(sinv) = cos vdv.
XII d(cos v) = — sin vdv.
XIII d(tan v) = sec’vdv, ete.
. dv
XVIII d(arc sin v) = s ete.
( ) V11—t

The term “differentiation” also includes the operation of finding

differentials.
In finding differentials the easiest way is to find the derivative as
usual, and then multiply the result by dz.

IrLusTrATIVE ExamprLe 1. Find the differential of

43
T 2248
2 _ 2
Solution. dy:d(a:+3):(a: 4+ 3)d(x + 3) — (x + 3)d (x? + 3)
x2 4 3, (22 + 8)2
(@ +38)dr—(z +8)2zdz (83— 6z —2?)dx Ans
- (? + 8)2 - (@ + 8)2 :
® ILLusTRATIVE ExampLe 2. Find dy from
222 _ g2y2 = a2b?.

Solution. 2b%xdr — 2 a?ydy = 0.

b2z

sdy = —dwx. Ans.

ay

ILvusTrATIVE Exampre 8. Find dp from
p% = a?cos24.
Solution. 2pdp =— a%sin26 . 2d6.
v dp=— @sn20,,
P
ILLusTrRATIVE Examere 4. Find d[arcsin(3¢— 41%)].
448

Solution. d[arcsin(8t — 48%)] = a@t—4¢) _ 34 Ans

Vii@t—4sE Vi-&
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93. Successive differentials. As the differential of a function is in
general also a function of the independent variable, we may deal with
its differential. Consider the function

y=S(@-
d(dy) is called the second differential of y (or of the function) and
is denoted by the symbol d?y.
Similarly, the third differential of y, d[d(dy)], is written
%y,
and so on, to the nth differential of y,
d'y.

Since dz, the differential of the independent variable, is independ-
ent of z (see footnote, p. 131), it must be treated as a constant when
differentiating with respect to z. Bearing this in mind, we get very
simple relations between successive differentials and successive deriva-

tives. For dy = f'(2) dz,
and &’y = f"(z) (dz)?,
since dz is regarded as a constant.

Also, d*y = f""(z) (dz)°®,
and in general d'y = f () (dx)™

Dividing both sides of each expression by the power of dz occur-
ring on the right, we get our ordinary derivative notation
d? d? dy n
d—x% = fI'(2), —x% =f"(z), --- = = f®(x).
Powers of an infinitesimal are called infinitesimals of a higher order.
More generally, if for the infinitesimals @ and B,

limit B =0,
@

then B is said to be an infinitesimal of a higher order than a.

IrLustrATIVE Exampre 1. Find the third differential of
y=ab—22% +3x— 5.
Solution. dy = (bxt — 622 + 3)dx,
d?y = (202 — 122) (dz)?,
dBy = (60x2 — 12) (dx)3. Ans.
Nore. This is evidently the third derivative of the function multiplied by the cube
of the differential of the independent variable. Dividing through by (dx)3, we get the

third derivative dsy

@: 6022 —12.
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EXAMPLES

Differentiate the following, using differentials:

1. y = ax® — ba? + cz + d.

2. y:2:c%—3x%+6a;—1+5.
3. ¥y = (a? — 2?)5,
4

Ans, dy = (3 ax? — 2bz + c)dex.
dy = (51;’%— 2m_%—6m—2)dx
dy =— 10z (a? — x?)*de.

ey *

.Y = 1+(E2. dy:—d(l}.
V14 x2

5.y — a2n dy — 9 nr2n—1

- y»“(1+z2)n y_(1_|_a;2)n+]
3ade

6. y =logV1—ad. dy = ———~" .
Yy =log Y 2@ —1)

T.y=(e+ e %%

dy = 2 (e2* — e~ 2%) dz,

8. y = evloga. dy:e’”(IOgm+£>dx,,
— et a2
9. s=t_ 2", ds=(6t e t)dt.
et + e? ot et
14 sing
10. p =tan¢ + sec ¢. d _Wd
11, r = } tan®6 + tané. dr = sectddd.
2
12. /(@) = (oga)". £y do = SUog2de,
2 2,
18, ¢() = —. sa= 308
-k 1— ok
xlogx log zdx
14. d| —=+log(1 — — .
[1—70 s x)] 1—2z)?
dy

15. dfarctanlogy] = ———— .
: 8= Tt (og ]

Y _ o yay
16. d[r arc vers = — 2mj—y2:|: — ..
r '\/2ry_y2

cos ¢ 1 ¢ de¢
dl—————-logtan— |=— ———.
17 [2 dintp 2 og tan 2] it



CHAPTER X
RATES

94. The derivative considered as the ratio of two rates. Let
y=s(
be the equation of a curve generated by a moving point P. Its coordi-
nates « and y may then be considered as functions of the time, as

explained in § 71, p. 91. Differentiating
with respect to ¢, by XXV, we have

dy dx
32 —_—— 4 X)—-
) dt 7 )dt
At any instant the time rate of change O X

of y (or the function) equals its derivative multiplied by the time rate of
change of the independent variable.

Or, write (32) in the form

Q

dt dy
33 — ! = —
(33) . S'(%) I

dt

The derivative measures the ratio of the time rate of change of y to

that of x.

% being the time rate of change of length of arc, we have from

12), p. 92,
N & (&)
dt . \\dt dt

which is the relation indicated by the above figure.
As a guide in solving rate problems use the following rule:

First Step. Draw a figure illustrating the problem. Denote by z, y, 2,
etc., the quantities which vary with the time.
Seconp StEP. Obtain a relation between the variables involved which

will hold true at any instant.
141
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Tuirp SteP. Differentiate with respect to the time.

Fourrr SteEe. Make a list of the given and required quantities.

Firra Step. Substitute the known quantities in the result found by
differentiating (third step), and solve for the unknown.

EXAMPLES

1. A man is walking at the rate of 5 miles per hour towards the foot of ‘a tower
60 ft. high. At what rate is he approaching the top when he is 80 ft. from the foot
of the tower ?

Solution. Apply the above rule.

“First step. Draw the figure. Letx = distance of the man from the foot and y = his
distance from the top of the tower at any instant.

Second step. Since we have a right triangle,

y2? = a2 + 3600.

Third step. Differentiating, we get o
21/(;—?;:2:0%, or, ) E%
(4) % = :—/"%—? » meaning that at any instant whatever i
(Rate of change of y) = @) (rale of change of x). M e
Fourth step. z = 80, P 5 miles an hour,

= & x 5280 ft. an hour.

y=Va? 43600 dy

?
= 100. dt
Fifth step. Substituting back in (4),
a = 8—0 X 5 x 5280 ft. per hour
dt 100

= 4 miles per hour. Ans.

2. A point moves on the parabola 6y = «? in such a way that when x = 6, the
abscissa is increasing at the rate of 2 ft. per second. At what rates are the ordinate
and length of arc increasing at the same instant ?

Solution. First step. Plot the parabola.

Second step. 6y = a2,

Third step. Z—?t/ = 2:1:% s+ OT,
dy « dx

(B) 2.z
dt 38 dt

This means that at any point on the parabola

(Rate of change of ordinate) = (g) (rate of change of abscissa).
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Fourth step. ((li—f =2 ft. per second.
r=26 (—ig =2?
dt
2 ds
= —= 6. -_—= ?
=% a
Fifth step. Substituting back in (B),
ql;y :§ X 2 = 4.ft. per second. Ans.
dt 38

Substituting in (34), p. 141,
% =V(2)?2+ 4)?=2 V5 ft. per second. Ans.

From the first result we note that at the point P (6, 6) the ordinate changes twice
as rapidly as the abscissa. d
If we consider the point P’ (— 6, 6) instead, the result is d—?z = — 4 ft. per second, the

minus sign indicating that the ordinate is decreasing as the abscissa increases.

3. A circular plate of metal expands by heat so that its radius increases uniformly
at the rate of .01 inch per second. At what rate is the surface increasing when the

radius is two inches ?

Solution. Let 2 = radius and y = area of plate. Then

y = wa?.

dy dx

— =27r—.
© a

Thav is, at any instant the area of the plate is increasing in
square inches 27z times as fast as the radius is increasing
in linear inches.
) de d
x:2,_:.01,—y:?
dt dt
Substituting in (C),

Z—Zt/ =27 X 2 X .0l = .04 wsq. in. per sec. Ans.

4, An arc light is hung 12 ft. directly above a straight horizontal walk on whick
a boy b ft. in height is walking. How fast is the boy’s shadow lengthening when he
is walking away from the light at the rate of 168 ft. per minute ?

Solution. Let z = distance of boy from a point directly ’ L
under light L, and y = length of boy’s shadow. From the
figure,

yiy+x::5:12,
H, 12

or y =4z

Differentiating, dy = Ed—z,

e Tdt M F

i.e. the shadow is lengthening # as fast as the boy is walking, or 120 ft. i)er minute.

5. In a parabola y2 = 12, if  increases uniformly at the rate of 2 in. per second,
at what rate is y increasing when z = 8 in. ? Ans. 2 in, per sec.
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6. At what point on the parabola of the last example do the abscissa and ordinate

increase at the same rate ? Ans. (3, 6).
7. In the function y = 223 4 6, what is the value of = at the point where y
increases 24 times as fast as z ? Ans. © =4 2.

8. The ordinate of a point describing the curve x2 + y? = 25 is decreasing at the
rate of 1} in. per second. How rapidly is the abscissa changing when the ordinate is

4 inch
inches ? Ans. d_“: = 2 in, per sec.

9. Find the values of x at the points where the rate of change of
23 — 1222 + 452 — 13

is zero. Ans. x =38andb.
10. At what point on the ellipse 16 2% 4+ 9 y2 = 400 does y decrease at the same rate
that z increases ? Ans. (3, 1F).
11. Where in the first quadrant does the arc increase twice as fast as the ordinate ?
Ans. At 60°.

A point generates each of the following curves. Find the rate at which the arc is
increasing in each case :

12. y2=2x;2—::2,m:2. Ans. %:\/5.
13. my=6;3—1::2,y:3. %:g'\/ﬁ
14.z2+4y2=20;dd—f=—1,y=1. %:\/5,
15.y=m8;‘;i:=3,x=—3. '

16. y2 = a3 %:4,;1/:8.

17. The side of an equilateral triangle is 24 inches long, and is increasing at the
rate of 3 inches per hour. How fast is the area increasing ? .

Ans. 363 sq. in. per hour.

18. Find the rate of change of the area of a square when the side b is increasing
at the rate of a units per second. Ans. 2ab sq. units per sec.

19. (a) The volume of a spherical soap bubble increases how many times as fast as
the radius? (b) When its radius is 4 in. and increasing at the rate of } in. per second,
how fast is the volume increasing ? Ans. (a) 4712 times as fast;

‘ (b) 327 cu. in. per sec.
How fast is the surface increasing in the last case ?

20. One end of a ladder 50 ft. long is leaning against a perpendicular wall stand-
ing on a horizontal plane. Supposing the foot of the ladder to be pulled away from the
wall at the rate of 3 ft. per minute; (a) how fast is the top of the ladder descending
when the foot is 14 ft. from the wall ? (b) when will the top and bottom of the ladder
move at the same rate ? (c) when is the top of the ladder descending at the rate of
4 ft. per minute ? Ans. (a) § ft. per min.;

(b) when 25 V2 ft. from wall ;
(¢) when 40 ft. from wall.

21. A barge whose deck is 12 ft. below the level of a dock is drawn up to it by
means of a cable attached to a ring in the floor of the dock, the cable being hauled in
by a windlass on deck at the rate of 8 ft. per minute. How fast is the barge moving
towards the dock when 16 ft. away ? Ans. 10 ft, per minute,
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22. An elevated car is 40 ft. immediately above a surface car, their tracks inter-
secting at right angles. If the speed of the elevated car is 16 miles per hour and of
the surface car 8 miles per hour, at what rate are the cars separating 5 minutes after
they meet ? Ans. 17.9 miles per hour.

23. One ship was sailing south at the rate of 6 miles per hour ; another east at the
rete of 8 miles per hour. At 4 p.m. the second crossed the track of the first where the
first was two hours before ; (a) how was the distance between the ships changing at
3 r.m.? (b) how at 5p.m.? (c) when was the distance between them not changing ?

Ans. (a) Diminishing 2.8 miles per hour;
(b) increasing 8.73 miles per hour;
(c) 8:17 p.m.

24. Assuming the volume of the wood in a tree to be proportional to the cube of
its diameter, and that the latter increases uniformly year by year when growing,
show that the rate of growth when the diameter is 3 {t. is 36 times as great as when
the diameter is 6 inches.

25. A railroad train is running 15 miles an hour past a station 800 ft. long,
the track having the form of the parabola
y? = 600 z,

and situated as shown in the figure. If the sun is just rising in the east, find how fast
the shadow S of the locomotive L is moving along the wall of the station at the instant-
it reaches the end of the wall.

Solution. y2= 60023 North
dt dt
or de v dJ
! at 300 dt

. dx |
Substituting this value of -d— in

T . v
dt dt dt
s\ [y dy)ﬂ <dy)2
D — ) =({—=— — —) .
D) (dt) (300 a) T\
d

Now

East

* = 15 miles per hour
dt

= 22 ft. per sec.
dy _

dt
Substituting back in (D), we get

e =g ) &)

or, Z—‘lt/ = 13% ft. per second. Ans.

=400 and —

26. An express train and a balloon start from the same point at the same instant.
The former travels 50 miles an hour and the latter rises at the rate of 10 miles an hour.
How fast are they separating ? Ans. 51 miles an hour,
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27. A man 6 ft. tall walks away from a lamp-post 10 ft. high at the rate of 4 miles
an hour. How fast does the shadow of his head move ? Ans. 10 miles an hour.

28. The rays of the sun make an angle of 30° with the horizon. A ball is thrown
vertically upward to a height of 64 ft. How fast is the shadow of the ball moving
along the ground just before it strikes the ground ? Ans. 110.8 ft. per sec.

29. A ship is anchored in 18 ft. of water. The cable passes over a sheave on the
bow 6 ft. above the surface of the water. If the cable is taken in at the rate of 1 ft.
a second, how fast is the ship moving when there are 30 ft. of cable out ?

Ans. 1% ft. per sec.

30. A man is hoisting a chest to a window 50 ft. up by means of a block and tackle.
If he pulls in the rope at the rate of 10 ft. a minute while walking away from the
building at the rate of 5 ft. a minute, how fast is the chest rising at the end of the
second minute ? Ans. 10.98 ft. per min.

31, Water flows from a faucet into a hemispherical basin of diameter 14 inches
at the rate of 2 cu. in. per second. How fast is the water rising (a) when the water
is halfway to the top ? (b) just as it runs over ? (The volume of a spherical segment
= 1wr2h + } w8, where 1 = altitude of segment.)

32. Sand is being poured on the ground from the orifice of an elevated pipe, and
forms a pile which has always the shape of a right circular cone whose height is equal
to the radius of the base. If sand is falling at the rate of 6 cu. ft. per sec., how fast
is the height of the pile increasing when the height is 5 ft. ?

33. An agroplane is 528 ft. directly above an automobile and starts east at the
rate of 20 miles an hour at the same instant the automobile starts east at the rate of
40 miles an hour, How fast are they separating ?

34. A revolving light sending out a bundle of parallel rays is at a distance of % a
mile from the shore and makes 1 revolution a minute. Find how fast the light is
traveling along the straight beach when at a distance of 1 mile from the nearest point
of the shore. Ans. 15.7 miles per min.

35. A Kkite is 150 ft. high and 200 ft. of string are out. If the kite starts drifting
away horizontally at the rate of 4 miles an hour, how fast is the string being paid out
at the start ? Ans. 2.64 miles an hour.

36. A solution is poured into a conical filter of base radius 6 cm. and height 24 cm.
at the rate of 2 cu. cm. a second, and filters out at the rate of 1 cu. cm. a second.
How fast is the level of the solution rising when (a) one third of the way up? (b) at
the top? Ans. (a) .079 cm. per sec.;

(b) .009 cm. per sec.

37. A horse runsg 10 miles per hour on a circular track in the center of which is an
arc light. How fast will his shadow move along a straight board fence (tangent to the
track at the starting point) when he has completed one eighth of the circuit ?

Ans. 20 miles per hour.

38. The edges of a cube are 24 inches and are increasing at the rate of .02 in. per
minute. At what rate is (a) the volume increasing ? (b) the area increasing ?

39. The edges of a regular tetrahedron are 10 inches and are increasing at the rate
of .3 in. per hour. At what rate is (a) the volume increasing ? (b) the area increasing ?

40. An electric light hangs 40 ft. from a stone wall. A man is walking 12 ft. per
second on a straight path 10 ft. from the light and perpendicular to the wall. How fast
is the man’s shadow moving when he is 30 ft. from the wall ? Ans. 48 ft. per sec.
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41. The approach to a drawbridge has a gate whose two arms rotate about the
same axis as shown in the figure. The arm over the driveway is 4 yards long and
the arm over the footwalk is
8 yards long. Both arms ro- [l ®
tate at the rate of 5 radians
per minute. At what rate is
the distance between the ex-
tremities of the arms chang-
ing when they make an angle
of 45° with the horizontal ? Ans. 24 yd. per min.

42. A conical funnel of radius 3 inches and of the same depth is filled with a solu-
tion which filters at the rate of 1 cu. in. per minute. How fast is the surface falling
when it is 1 inch from the top of the funnel ?

1
Ans. -— in. per min.
47 p

43. An angle is increasing at a constant rate. Show that the tangent and sine are
increasing at the same rate when the angle is zero, and that the tangent increases
eight times as fast as the sine when the angle is 60°.




CHAPTER XI
CHANGE OF VARIABLE

95. Interchange of dependent and independent variables. It is some-
times desirable to transform an expression involving derivatives of y
with respect to # into an equivalent expression involving instead deriv-
atives of z with respect to y. Our examples will show that in many
cases such a change transforms the given expression into a much
simpler one. O1 perhaps z is given as an explicit function of y in a

problem, and it is found more convenient to use a formula involving
dv d’ dy d’%
—» etc., than one involving 2, —=» ete. 'We shall now proceed
dy dy dz dx
to find the formulas necessary for making such transformations.
Given y =f(z), then from XXVI we have

dy 1 dz
35 =— 0
) ) dy 7
dy
.. dy. d:
giving d—i in terms of iyj Also, by XXV,
dy _d dy d (dy dy
de*  dw dy dz) dz’
or
d [1\dy
A _ﬁ L
D do*  dy|dx do’
dy
d (1 dy* dy 1
—=\=———; and F=—1f 35).
But 7| % <d_x>2’ and —- T rom (35)
dy dy dy
Substituting these in (4), we get
oz :
dy dy?
@) &= 7@y
(3)
148
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2 2
glvmg d_g/ in terms of g— and — &z Similarly,
da? :

olg/2
d3x dx 3 <d’x>2
3 dy® d; dy?
dx3

S

and so on for higher derivatives. This transformation is called changing
the independent variable from z to y.

IrLusTrATIVE ExamprLe 1. Change the independent variable from 2 to y in the

equation 3 < 2y>‘~’ dy d*y  d% (dy>2_ 0
de?) " dmode® da?\dz)

Solution. Substituting from (35), (36), (37),
A2z \2 d3x dx 3( %)‘-’ d?z

a? | /1 dfdy \a?) | [ _ @ {/1v_
&) <fd* &) @ \&)
dy, dy dy, dy. dy

Reducing, we get

diz + d’x
dyd  dy2
a much simpler equation.

96. Change of the dependent variable. Let

D ' y=J(@,
and suppose at the same time y is a function of 2, say
B , y=¢@:-
. 2 2
‘We may then express Zy, i—g, ete., in terms of g gi, etc., as

follows.

In general, # is a function of y by (B), p. 45; and since y is a func-
tion of z by (4), it is evident that z is a function of 2. Hence by
XXy we have

© e AT
avo (B =Ly et Byy
But Y@= P& L= % By xxv

@ w By (EY v 22
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Similarly for higher derivatives. This transformation is called
changing the dependent variable. from y to 2, the independent variable
remaining z throughout. We will now illustrate this process by
means of an example.

ILLusTraTive ExamprLE 1. Having given the equation

(&) Py _ .20+ (dy)
dx? 1492 \dr
change the dependent variable from y to z by means of the relation
(F) y = tanz.
Solution. From (F),
(Z = sec? ZZ, %: sec%% + 2secZztanz <Z—Z>2

Substituting in (E),
a2z dz 2(1 + tanz) dz\?
sec?z 2sec?z t =14 =% 25 %
C dx + 2sec?z anz( ) + <sec zda:) )

dx 1+ tan?z
2.
and reducing, we get @z _ 2 <dz> = cos?z. Ans.
dx? da

97. Change of the independent variable. Let y be a function of z,
and at the same time let 2 (and hence also ) be a function of a new
variable ¢. It is required to express

2
%7 %a;—z’ ete.,
in terms of new derivatives having ¢ as the independent variable.
By xxv dy _dyde
dt  dedt’
@
dy d
@ Fra
dt

@“

Also

.

d
dy_d <dy> <dy> dt dt <dx>
do?  dz \de dz dz

dt
But differentiating (4) with respect to ¢,

dy\ dedy dydw

d (dy) d|dt| dtd®  dtde
dt\dz)  dt\dz| <dz>2
dt dt
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Therefore

dy dt df*  dt dt*

@ Emy
(@

and so on for higher derivatives. This transformation is called changing
the independent variable from x to ¢t. It is usually better to work out
examples by the methods illustrated above rather than by using the
formulas deduced.

€))

ILLustrATIVE ExampLe 1. Change the independent variable from  to ¢ in the
equation.

dz d
© S+l ey=0,
by means of the relation
(D) T = et
Solution. i = et; therefore
dt
dt
—Z —e-t
(E} 7
dy dy dt
Al —= == —; therefore
50 d ddz
dy dy
F — —=e-t=.
&) ¢
2.
awo e k(W) B B A@NE b2
dx? dx \dt dt dx dt \dt)dz dt do

Substituting in the last result from (E),

PY_ g0V _ W,
@ @

Substituting (D), (F), (&) in (C),

Py _dy > ( dy>
2t(e—2t2 9 29 o2t t[e—-t 27 =0:
¢ (e a~at )T\ )=

: Py
and reducing, we get T +y=0. Ans.

Since the formulas deduced in the Differential Calculus generally
involve derivatives of y with respect to z, such formulas as (4) and
(B) are especially useful when the parametric equations of a curve
are given. Such examples were given on pp. 82, 83, and many others

will be employed in what follows.
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98. Simultaneous change of both independent and dependent variables.
It is often desirable to change both variables simultaneously. An im-
portant case is that arising in the transformation from rectangular to
polar codrdinates. Since
z=pcosd and y=psinb,

f@ =0
becomes by substitution an equation between p and 6, defining p as a
function of 6. Hence p, z, y are all functions of 6.

the equation

ILLustrATivE Exampere 1. Transform the formula for the radius of curvature

(42), p. 159, [1 N (dy) ]§
(4) p—L /1,
d%y '

da:‘l

into polar cosrdinates.
Solution. Since in (4) and (B), pp. 150, 151, ¢ is any variable on which z and y
depend, we may in this case let ¢t = 6§, giving

dy
dy _ dé

==, and

B T
ag

do &y dy
d?y df dg* df do?
©) 2= ————d_x)
dé/:
Substituting (B) and (C) in (4), we get
@)+ | G
dg do* db do*
R = + ) Or

(as) (aa)
[E-GT

T dx dly dy d ’

g ag® af dg
But since ¢ = p cosf and y = p sinf, we have

dx

+

D)

@z—ps1n0+ c050d0 E—pcos0+ smé’-—é
ﬂ—— cosf — 2sind p+cos:9dp dT/—— sind 4+ 2 cosd p+sm0
ae- P a8 a2’ a2 P af 6

Substituting these in (D) and reducing,

@1
PPtz <dg) %%’;’
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Change the independent variable from « to y in the four following equations:

(]

3

(@) T

1. R= Ans. R =—
&y dx
da? dy?
2,
(dy> 0. Pe_oy®_y.
dz dy? dy
2 3 2 2
xﬂ+<d—y)—@: mﬂ—1+(@>:0,
dz? dx, dx dy? dy,
2 3 20\ 2 3
dz? dz dz dz’ dy? dy dy?
Change the dependent variable from y to z in the following equations:
dy d2
5. (1+y)? (——2 >+<dy>—2<l+y> Yoy =22+ 22
de do dz? d3z dz d%z
’ Ans. (+1)-g=-- o +2 42z
d2y 2(1+y) (dy z d%z dz .
@_1+ 114 \a , ¥ =tanz. Ans. @_2(dz> = cos?z.
a d
7. y2gm% ( +2my2) < y) +2xy—+3m2y2 dﬁ+$3y8:0,y:ez.
d 2 d?z
Ans.@ @4.3 2—+x3—-0.

Change the independent variable in the following eight equations:

d?y x dy Y a2y
8. -4 _ = =0, z = costl. Ans. =0.
w l—fd 1-a " T
2. 2
9. (l—azﬂ)dy—'d—y:(), T = cosz. Ty _
dax? dx dz?
o du . d?u
10. (1— 92 q—yd—+a2u:0, y =sinx @+a2u:
, 2y . 1 d?y
ll.a:d—+ + J 0, x_;- d—z2+a2y:0.
5 A% a2y dv 3
12. 28 — + 322 — — =0 z = et i -
zd + :cdx2+xdx+v s e dt3+v 0
d%y 2z dy Y dzy
13. —= =0 - =tand. - =0
dm+1+mzd:c+(1+a:2)‘~’ ! Y
14. c(ll du +sec~s— 0, s=arctant.

ns. (1+ﬂ)%+(2t+uarctant)@+1:0.

dy  2dy
— t- a’y =0,
dz? zdz+ 4

m:l- Ans.

15, x* ﬁA + a2y =
da’ z
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In the following seven examples the equations are given in parametric form.

2.
Find d—y and d_g_/ in each case:
dx dax?

16.

17.

18.

19. =

20.
21.

24

4

slope <Z—i> in terms of polar codrdinates.

dy azy

— 2 — 2 4 L =1 —Z pu—
z=T+1, y=38+1—3t4 Ans.dm_l 6t2’da;2_ 6.
. d, . 2 . .
z = cott, y = sindt. Ans, d—i:—3sm4tcost, %:35111%(4— 5sin?t).
2.
2 =a(cost + tsint), y = a(sint — ¢ cost). Ans. Z—Z:tant, oy 1

da? = at cos’t
11—t 2t

BT e
=21 y=2—1t%

r=1—12 y=1,.

. & =acost, y=>bsint.

T —y

. Transform —————= by assuming = = p cos, y = p sinf.

2
14 (@)2 Ans. _P__ .
V' & e+ ()
P \ag
Let f(z, y) =0 be the equation of a curve. Find an expression for its

pcosf + sin&d—P
Ans dag

d

dz R dp’
— psing + cosf 2P
psing + cosf -



CHAPTER XII
CURVATURE. RADIUS OF CURVATURE

99. Curvature. The shape of a curve depends very largely upon
the rate at which the direction of the tangent changes as the point of
contact describes the curve. This rate of change of direction is called
curvature and is denoted by K. We now proceed to find its analytical
expression, first for the simple case of the circle, and then for curves
in general.

100. Curvature of a circle. Consider a circle of radius RB. Let
7= angle that the tangent at P makes with OX, and
7+ At = angle made by the tangent at a neighboring point P’

Then we say Y,

AT = total curvature of are PP

If the point P with its tangent be
supposed to move along the curve to
P!, the total curvature (=Ar) would
measure the total change in direction, ey
or rotation, of the tangent; or, what O ~ / X
is the same thing, the total change in
direction of the arc itself. Denoting by s the length of the arc of
the curve measured from some fixed point (as 4) to P, and by As
the length of the arc PP', then the ratio

At
As

measures the average change in direction per unit length of arc.*
Since, from the figure,

As=R.Ar,
Ar 1

or ar_ -,
As R

* Thus, if Ar= ;—r radians (=30°), and As=3 centimeters, then —‘Z—T = 118 radians per centi-
S

meter = 10° per centimeter = average rate of change of direction.
155
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it is evident that this ratio is constant everywhere on the circle. This
ratio is, by definition, the curvature of the circle, and we have

38 K=_.
(38) 7

The curvature of a circle equals the reciprocal of its radius.

101. Curvature at a point. Consider any curve. As in the last
section
’ AT = total curvature of the are PP/,

AT
and X, = average curvature of the are PP,
s

More important, however, than the notion of the average curvature
of an arc is that of curvature at a point. This is obtained as follows.
Imagine P’ to approach P along the curve; then the limiting value of

‘ AT
Y : the average curvature (= v P ap-
$

proaches P along the curve is defined as
the curvature at P, that is,
limit <AT> _dr

Curvature at a point = ==
P As=0\As ds

0] 39 .. K= d_r = curvature.
A ds

Since the angle At is measured in radians and the length of arc As
in units of length, it follows that the unit of curvature at a point is
one radian per unit of length.

102. Formulas for curvature. It is evident that if, in the last sec-
tion, instead of measuring the angles which the tangents made
with 0X, we had denoted by = and 7+ At the angles made by the
tangents with any arbitrarily fixed line, the different steps would
in no wise have been changed, and consequently the results are
entirely independent of the system of codrdinates used. However,
since the equations of the curves we shall consider are all given
in either rectangular or polar codrdinates, it is necessary to deduce
formulas for K in terms of both. We have

tant=%, § 82, p. 81
dz
or  r=arc tan %
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Differentiating with respect to z, using XX

Ty
d
) —Z—T - —xd- Also
()
dz
ds dy\* Tt » :
_B ] —_—= 1 —_ . .
(B o [ +<dx>] From (24), p. 184
Dividing (4) by (B) gives A ' o
dr Ty
dx dz*
ds d '
— Y
i [
dr
1 ,
But % . % =K. Hence
[ C
dz oy

If the equation of the curve be given in polar codrdinates, K may

be found as follows:

« B), p. 84 '
From (B), p. 84, 7 =0+ 4. Differentiating,

dr dyr

=1 .
© 8= tae
Bat tan yr = ;l,-)— From (4), p. 84

ap

de

‘. yr=arc tan ;lé-
do

Differentiating by XX with respect to ¢ and reducing,

dp d’p
d\[l‘ — P55 d92

D) 70 o < gg)
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Substituting (D) in (C), we get

d’ dp\*
o PP d0"’+2<d8>
(E) — = . Also
6 o (2PY
#+(2)
ds [, /dp\*]t
(F) ¥ [p +<@>] From (30),'p. 136

Dividing () by (F) gives
dr _dp dp
@ PPt 2<d0>

ds dp\?12
14
o [e(@)]

dr
df  dr
But —_——— =K.
u L’lf 7 K. Hence

a0 &y
PP t2( g

S T

YLLUSTRATIVE ExamprLe 1. Find the curvature of the parabola y2 = 4pz at the
upper end of the latus rectum.
2 2
Solution. @:2—1); (Q:_2_?d_y:_4_p_.
de y dz? v de v
4p?
e ]
@ + 4
giving the curvature at any point. At the upper end of the latus rectum (p, 2p)

2 2 *
K =— 417 =— 41’ =— 1 . Ans.

(4p2+4p2)% 162 p? 4V2p

Substituting in (40), K =—

IrLusTrATIVE ExampiLe 2. Find the curvature of the logarithmic spiral p = e20
at any point.

2
Solution. } Z—Z =ae® =ap; ZTF; = a?e®® = a?p.
1
Substituting in (41) K=—————. Ans.
' pV1+ a?

* While in our work it is generally only the numerical value of K that is of importance,
yet we can give a geometric meaning to its sign. Throughout our work we have taken the

2
positive sign of the radical \/ 1+ ( % « Therefore K will be positive or negative at the same
time asgz_‘;/ » that is (§ 85, p. 125): according as the curve is concave upwards or concave
2

downwards.
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|

In laying out the curves on a railroad it will not do, on account of
the high speed of trains, to pass abruptly from a straight stretch of
track to a circular curve. In order to make the change of direction
gradual, engineers make use of transition curves to connect the straight
part of a track with a circular curve. Ares of cubical parabolas are
generally employed as transition curves.

IrLustraTIVE ExampLE 3. The transition curve on a railway track has the shape
of an arc of the cubical parabola y = 1x%. At what rate is a car on this track changing
its direction (1 mi. = unit of length) when it is passing through (a) the point (3, 9)?
{b) the point (2, §)? (c) the point (1, 1) ?

2.
Solution. % =2, ZTZ =2z,
Substituting in (40), K= 2=
(1+ a4}
a) At (3, 9 K= radians per mile = 28" per mile.
9 1 . p
(82)
(b) At (2, §), K = radians per mile = 8° 16’ per mile. Ans. |
ant '
2 1 . . , . i
(c) At (1, }), K = — = — radians per mile = 40° 30" per mile. Ans. i
@F V2

103.  Radius of curvature. By analogy with the circle (see (38),
p- 156), the radius of curvature of a curve at a point is defined as the
reciprocal of the curvature of the curve at that point. Denoting the
radius of curvature by R, we have ’

pola
K’

or, substituting the values of K from (40) and (41),

[+ @T

42) R= 7y ;
dx?
(&)
[P+Qﬁ '
43) .

= _ dZP dp>2
z s— —
P—Pggt? (dﬂ

* Hence the radius of curvature will have the same sign as the curvature, that is, + or
—, according as the curve is concave upwards or concave downwards.

1 In §98, p. 152, (43) is derived from (42) by transforming from rectangular to polar
coOrdinates.
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IrrustraTivE ExamprLie 1. Find the radius of curvature at any point of the cate-
x

a,f _Z
naryy:E(ea+e ).

1 2 _z z =z
Solution. =3 (e —e 9); =—(e*+e 9.
Substituting in (42),

[ z  _=\?73 z  _ax\8
a_e a ea+e a
+ 2 2 _a(e“+e a) y?

R = = ==. Ans.
a

z =z _z 4
e e a ete @
2a 2a

18
8

If the equation of the curve is given in parametric form, find the
first and second derivatives of y with respect to z from (4) and (B),

pp- 1560, 151, namely : dy
dy di

(@ = i » and
dt

s ddl d P
() Ty

dx2 d—x 3
dt
and then substitute the results in (42).*

ILLustraTIVE Examprr 2. Find the radius of curvature of the cycloid
z=a(l— sint),

y =a(l— cost).

. dx dy .
Solution. i a(l— cost), i asint;
d2x . d%y
— = asint —= = q cost.
d ’ a2

Substituting in (@) and (H), and then in (42), p. 159, we get

dy _ sint d% _a(l—cost)acost—asintasint 1
dz 1—cost dz? a®(1 — cost)? T a(l— cost)?

sint \273
[”(1 ]
R:__—lcos—=—2av2—2cost. Ans.

s -
[G)(@)]

dt dez2  dt de

* Substituting (G) and (H) in (42) gives R=
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104. Circle of curvature. Consider any point P on the curve C.
The tangent drawn to the curve at P has the same slope as the curve
itself at P (§ 64, p. 73). In an analogous man-
ner we may construct for each point of the curve
a circle whose curvature is the same as the cur-
vature of the curve itself at that point. To do
this, proceed as follows. Draw the normal to the
curve at P on the concave side of the curve. Lay
off on this normal the distance PC =radius of
curvature (= R) at P. With C as a center draw the circle passing
through P. The curvature of this circle is then

K= —>»
Vit
which also equals the curvature of the curve itself at P. The circle
so constructed is called the circle of curvature for the point P on
the curve.

In general, the circle of curvature of a curve at a point will
cross the curve at that point. This is illustrated in the above
figure.

Just as the tangent at P shows the direction of the curve at P, so
the circle of curvature at P aids us very materially in forming a geo-
metric concept of the curvature of the curve at P, the rate of change
of direction of the curve and of the circle being the same at P.

In a subsequent section (§ 116) the circle of curvature will be
defined as the limiting position of a secant circle, a definition analo-

gous to that of the tangent given in

Y § 82, p. 31.

ILLUusTRATIVE ExaMPLE 4. Find the radius
of curvature at the point (3, 4) on the equilat-

eral hyperbola zy =12, and draw the corre-
sponding circle of curvature.

o 2,
Solution. Zﬁ =— g, Z% = 2—?,/
x T z?
dy 4 d¥y 8
For (3, 4), %= "3 @9

.'.R:-[l-‘-—lgi]g:l25

=55,
3 o4 2%

The circle of curvature crosses the curve at two points.
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EXAMPLES

1. Find the radius of curvature for each of the following curves, at the point indi-
cated ; draw the curve and the corresponding circle of curvature :

2
M) b%? + a?y? = a??, (a, 0). Ans. B = ¥,
a
2
(b) B22 + a2y = a2b?, (0, b). R= %
Me) y = ot — 4a? — 1822, (0, 0). B = 4.
(d) 16y = 4x*— x5, (2, 0). R=2. .
14928)2
(&) y=2a3, (x;, ¥y) R—_—( +921) .
6z,
) 12 =1? (4,8). R = }(40)%.
(8) v*= 8z, (3, 8). ‘ R =1}
2\2 . [y\% ) a2
h) (= 23 =1, (0, b). R=".
o &+ (©i=10m , z
(i) 22 = 4ay, (0, 0). R =2aqa.
() (v —=?)2=2f, (0,0). R=1. .
(k) b2x? — a%y? = a??, (z, ¥;). R = M.
. 4]t
() e = siny, (z;, ¥,)- (p) 9y =28, z=8. *
(m) y =sinz, (12_'”1)' (q) 4y?2 =23, = = 4.
(n) ¥ = cosz, (17;,\/5) (r) 22—y?2=a% y=0.
(0) y=logz,x=e. (s) 22+ 29%2=09, (1, — 2).
2. Determine the radius of curvature of the curve a2y = bx? + cx?y at the origin.
. 2
Ans. R = @,
2b
2 (q —
3. Show that the radius of curvature of the witch y2 = w at the vertex is g-

4. Find the radius of curvature of the curve y = log sec @ at the point (z,, ¥,)- '
Ans. R =secw,.
1

a2
—_—
2 (x+ y)2
6. Find R at any point on the hypocycloid z¥ + y% = as. Ans. R = 3(axy)%.

7. Find R at any point on the cycloid z = r arc vers y_ V2ry — y2. -
r Ans. R=2V2ry.

5. Find K at any point on the parabola 2t + y%—‘ = a‘lf. Ans. K =

2
3

Find the radius of curvature of the following curves at any point :

8. The circle p = asin §. Ans. R=3%-
9. The spiral of Archimedes p = af. R= M.
p%+ 2a?
10. The cardioid p = a (1 — cos §). R = &\/ﬁa_p.
11. The lemniscate p? = a?cos26. R= g—;.
12. The parabolap = a sec’%- R=2 asec3g.

[}

— asin8?. — in2
13. The curve p = asin®g B = }asin’s.
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a(b— 4cos0)§'

14. The trisectrix p = 2a cos§ — a. Ans. R =
9 — 6cosd
3
15. The equilateral hyperbola p? cos2 8 = a?. . Ans. R= B;
: a
—e? — e (1— 23
16. The conicp =- 21— %) | Ans. =20 =¢) (A —2ecosf+&)?
1—ecosd (1— ecosf)®
(x =312,
17. The curve \y=38t—0. t=1. A Ans. R =6.
. = a cos?t,
18. The hypocycloid {y =asindt. t=¢,. Ans. B =38asint, cost,.
. z = a(cost + tsint),
19. The curve {y =a(sint —tcost). t= g Ans. R = 1r_2a .

(2 = a(mcost 4+ cosmt),

iy =a(msint —sinmt). t=1¢,
Ans R = 4mal sin (m;— 1) toe

20. The curve

21. Find the radius of curvature for each of the following curves at the point
indicated ; draw the curve and the corresponding circle of curvature :

(@)z=2y=t;t=1. e)z=ty=06t"1;t=2.

by z=,y=28;t=1. - ) e=2e,y=et; t=0. -

(c) x =sint,y =cos2¢t; t =—. (g) ® =sint,y = 2cost; t =—.
6

@ ez=1—-ty=1;t=38. h)e=8y=02+2¢;t=1.

22. An automobile race track has the form of the ellipse 22 + 16 y2 = 16, the unit
being one mile. At what rate is a car on this track changing its direction
(a) when passing through one end of the major axis ?
(b) when passing through one end of the minor axis ?
(c) when two miles from the minor axis ?
(d) when equidistant from the minor and major axes ?
Ans. (a) 4 radians per mile ; (b) {4 radian per mile.

23. On leaving her dock a steamship moves on an arc of the semicubical parabola
4y% = a3. If the shore line coincides with the axis of y, and the unit of length is one
mile, how fast is the ship changing its direction when one mile from the shore ?

Ans. % radians per mile.

24. A battleship 400 ft. long has changed its direction 30° while moving through
a distance equal to its own length. What is the radius of the circle in which it is

moving ? Ans. 764 ft.
25. At what rate is a bicycle rider on a circular track of half a mile diameter
changing his direction ? Ans. 4 rad. per mile = 43’ per rod.

26. The origin being directly above the starting point, an agroplane follows
approximately the spiral p = 4, the unit of length being one mile. How rapidly is the
agroplane turning at the instant it has circled the starting point once ?

27. A railway track has curves of approximately the form of arcs from the follow-
ing curves. At what rate will an engine change its direction when passing through
the points indicated (1 mi. = unit of length):

(a) y =23, (2,8)? (@) y=em2=0?
(b) y=1223,9)°? (e) y=cosx,x=—7?
(c) 22— y2=8, (3,1)? ) pod=4,0=1?



CHAPTER XIII
THEOREM OF MEAN VALUE. INDETERMINATE FORMS

105. Rolle’s Theorem. Let y =f () be a continuous single-valued
function of , vanishing for z=a and z =¥, and suppose that f'(z)
¥ changes continuously when
P z varies from a to 8. The

function will then be rep-

X resented graphically by a

o [ . [“9 continuous curve as in the

figure. Geometric intuition

shows us at once that for

at least one value of x be-

tween a and b the tangent is parallel to the axis of X (as at P);
that is, the slope is zero. This illustrates Rolle’s Theorem :

If f () vanishes when v =a and x =10, and f(z) and f'(z) are con-
tinuous for all values of z from z=a to x =20, then f'(x) will be zero
Sor at least one value of x between a and b.

This theorem is obviously true, because as z increases from a to 8,
f(z) cannot always increase or always decrease as z increases, since
f(a)=0 and f(b)=0. Hence for at least one value of z between a
and b, f(2) must cease to increase and begin to decrease, or else cease
to decrease and begin to increase; and for that particular value of z
the first derivative must be zero (§ 81, p. 108).

That Rolle’s Theorem does not apply when f(z) or f“(z) are discontinuous is illus-
trated as follows:

Fig. a shows the graph

of a function which is
discontinuous (= ) for

¥ 1
|
|
|
|

: |
=c¢, a Vi in -

z =¢, a value lying be of el b/
i
|
I
i
|
|

Y

tween ¢ and b. Fig. b
shows a continuous func-
tion whose first derivative OI 7
is discontinuous (= )
for such an intermediate Fie. a Fre. b
value z = c¢. In either case it is seen that at no point on the graph between = = a
and x = b does the tangent (or curve) become parallel to 0.X.

164

X

=)
oh—— =

bN X




THEOREM OF MEAN VALUE 165

106. The Theorem of Mean Value.* Consider the quantity @ defined
by the equation

) IOJ@ _q,
® F®~f@—@-a)@=0.

Let F(z) be a function formed by replacing b by z in the left-hand
member of (B); that is,

) F)=f()—f(a)—(x—a)Q.
From (B), F()=0, and from (C), F(a)=0;

therefore, by Rolle’s Theorem (p. 164) F'(z) must be zero for at least
one value of z between a and b, say for . But by differentiating (")

we get Fi(@)=f'(x) — @
Therefore, since F'(x)) =0, then also f'(z) — @ =0,
and Q :f/(x1)‘

Substituting this value of @ in (4), we get the Theorem of Mean
Value, Fb) = F(a)
—f(a
(44) T =f'(x1), a < xl< b
where in general all we know about 2, is that it lies between a and b.
The Theorem of Mean Value interpreted Geometrically. Let the curve
in the figure be the locus of

y=F@- g
Take OC =a and OD = b; then
J(@)=C4 and f(b)= DB, giving ~
AE =b—a and EB=f(b)—f(a).
Therefore the slope of the chord
AB is Ol__Z_ PN IR 4

(D) tan BB =2E_ SO -S(@)
AE b—a

=f(®)-f(a)

There is at least one point on the curve between 4 and B (as P)
where the tangent (or curve) is parallel to the chord 4B. If the
abscissa of P is z, the slope at P is

E tan ¢t = f'(z,) = tan EAB.
( )

* Also called the Law of the Mean.
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Equating (D) and (E), we get
b)) —
HOE =@,

which is the Theorem of Mean Value.

The student should draw curves (as the one on p. 164) to show
that there may be more than one such point in the interval; and
curves to illustrate, on the other hand, that the theorem may not be
true if f(z) becomes discontinuous for any value of 2 between a and
b (Fig. a, p. 164), or if f/(2) becomes discontinuous (Fig. b, p. 164).

Clearing (44) of fractions, we may also write the theorem in the form

45) SO =@+ - f(x)-

Letb=a+4 Aa; then b — a= Aa, and since z, is a number lying
between @ and b, we may write

z,=a+60.Aq,
where 6 is a positive proper fraction. Substituting in (45), we get
another form of the Theorem of Mean Value.

(46) . f(a+ Aad)— f(a)=Aaf'(a+0- Aa). 0<o<1

107. The Extended Theorem of Mean Value.* Following the method
of the last section, let B be defined by the equation

@  SO-Sf@O-C-f(-;(¢-a)'B=0.

Let F(z) be a function formed by replacing & by « in the left-hand
member of (4); that is,

B F@=f®-f(®-@-a)f(®-}E-aE

From (4), F(b)=0; and from (B), F(a)=0;
therefore, by Rolle’s Theorem (p. 164), at least one value of z between
a and &, say z, will cause F'() to vanish. Hence, since

F'(@) =f'(2) — f'(a) - (& — a) B, we get
Fi(a) = f'(@) —f'(a) — (v, a) B = 0.
Since F'(z,) = 0 and F'(a) =0, it is evident that #'(z) also satisfies
the conditions of Rolle’s Theorem, so that its derivative, namely F'(z),

must vanish for at least one value of z between a and z, say «,, and
therefore z, also lies between a and 5. But

I''(x) =f"(x) — B; therefore F'(z)=f"(z,) —R=0,
and R=f"(z).

* Also called the Extended Law of the Mean.
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Substituting this result in (4), we get
© ﬂ@=ﬂ@+@—@ﬂ@+é@—@%@u a<z,<b
In the same manner, if we deﬁne S by means of the equation

SO —=Sf(@)— (b —a)f'(a)— 2 (b —a) f"(a) — B (b —a)’§=0,
we can derive the equation
@D fO=rf®+ (b —a)f'(a) + (b —a)’f"(a)
2
I: (b )’ f"(z,), a<z,<b

where , lies between a and b.
By continuing this process we get the general result,

w>mvmw%ﬁmw%ﬁm@

( )f"’(a)+ _|_(b a)" lfo Y(a)

+ ( —na) f(n)(xl), a< e < b

where z, lies between a and é. () is called the Kaxtended Theorem of
Mean Value.

108. Maxima and minima treated analytically. By making use of
the results of the last two sections we can now give a general discussion
of mazima and minima of functions of a single independent variable.

Given the function f(z). Let % be a positive number as small as
we please; then the definitions given in § 82, p. 109, may be stated
as follows:

If, for all values of z different from @ in the interval [a — &, a+ 4],

4 S (@) —f(a) = a negative number,
then f(z) is said to be a mazimum when z = a.

If, on the other hand,

(B) . J(@) —f(a) = a positive number,
then f(2) is said to be a minimum when = a.

Consider the following cases :

1. Let f'(a) # 0.

From (45), p. 166, replacing & by = and transposing f(a),

) Jf(@ —f(a)=(z—a)f (z). a<z<w



168 DIFFERENTIAL CALCULUS

Since f'(a) # 0, and f'(2) is assumed as continuous, 4 may be chosen
so small that f/(«) will have the same sign as f(a) for all values of =
in the interval [@ — A, a +A]. Therefore f'(x)) has the same sign as
f'(2) (Chap. III). But z — a changes sign according as z is less or
greater than a. Therefore, from (C), the difference

f@—f(@
will also change sign, and, by (4) and (B), f(a) will be neither a
maximum nor a minimum. This result agrees with the discussion in
§ 82, where it was shown that for all values of  for which f(z) s a
mazimum or o minimum, the first derivative f'(x) must vanish.

II. Let f'(a)=0, and f"(a)+ 0.
From (C), p. 167, replacing b by = and transposing f (),

@ F@ —f(a)=££|§a—)2f”(x2)- a<a<s

Since f"'(a) # 0, and f"'(z) is assumed as continuous, we may choose
our interval [a@ — %, a 4 h] so small that f"'(z,) will have the same sign
as f"(a) (Chap. IIT). Also (z — a)® does not change sign. Therefore
the second member of (D) will not change sign, and the difference

f@—f(®
will have the same sign for all values of z in the interval [a — &,

a+ L], and, moreover, this sign will be the same as the sign of f"(a).
It therefore follows from our definitions (4) and (B) that

(E) f(a)is a maxzimum if f'(a) =0 and f'"(a) = a negative number ;
(F) f(a) s a minimum if f'(a) =0 and f''(a) = a positive number.
These conditions are the same as (21) and (22), p. 113.

1. Let f'(a)=f"(a)=0, and f"(a)+ 0.

From (D), p. 167, replacing b by « and transposing f(a),

@ 1@ —f(@zé(w— ) F" (). a< o<z

As before, f"'(x,) will have the same sign as f'(a). But (z — a)’
changes its sign from — to 4 as z increases through a. Therefore

the difference J@ —f(a)

must change sign, and f(a) is neither a maximum nor a minimum,
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IV. Let f'(a)=f"(a)=---=f""P(a)=0, and f™(a)* 0.

By continuing the process as illustrated in I, II, and III, it is seen
that if the first derivative of f(z) which does not vanish for z =a is
of even order (= n), then

(47 f(a) is a maximum if f®(a) = a negative number;
(48)  f(a) is a minimum if f”(a) = a positive number.*
If the first derivative of f(#) which does not vanish for 2 = a is of

odd order, then f(a) will be neither a maximum nor a minimum.

ILLusTRATIVE ExamprLeE 1. Examine x3 — 922 4 242 — 7 for maximum and mini-
mum values.

Solution. f@)y=a%—9a% + 242 —1T.
f(x) =3x2 — 182 + 24.
Solving 322 — 18z +24=0
gives the critical valuesz =2 and z =4. ..f"(2)=0, and f"(4) = 0.
Differentiating again, S’ (x) = 6x —18.

Since f*(2) = — 6, we know from (47) that £(2) = 18 is a maximum.
Since f” (4) = + 6, we know from (48) that f(4) = 9 is a minimum.
ILLusTRATIVE ExAMPLE 2. Examine e* 4+ 2 cosx + ¢~ % for maximum and minimum
values.

Solution. f(x)=e*+ 2cosx + e 7,

f(@)=e¢*—2sinx — e~* =0, forz = 0,1

S’ (@) =e*—2cosx + e~* =0, forz =0,

S (x)=e*+ 2sinz — e=* =0, for z = 0,

Sfi(@)=e*+2cosx + e~*=4, forz =0.
Hence. from (48), f(0) = 4 is a minimum.

EXAMPLES

Examine the following functions for maximum and minimum values, using the
method of the last section :

1. 3zt —42% 4+ 1. Ans. ® =1 gives min. = 0;
z = 0 gives neither.

2. 28 — 622 4122 4 48. 2 = 2 gives neither.

3. (x—1)%(x +1)3. 2z =1 gives min. = 0;
z = } gives max.;

. i x = —1 gives neither.
4. Investigate 2 — bzt + 528 — 1, at & =1 and = = 3.

5. Investigate 23 — 322 + 3z + 7, at x = 1.

6. Show that if the first derivative of f(x) which does not vanish for = a is of
odd order (= n), then f(x) is an increasing or decreasing function when 2 = a, accord-
ing as f® (a) is positive or negative.

* As in § 82, a critical value = a is found by placing the first derivative equal to zero and

solving the resulting equation for real roots.
t =0 is the only root of the equation ex—2sinx —e—*=0,
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109. Indeterminate forms. When, for a particular value of the
independent variable, a function takes on one of the forms

?—), %’ 0.0, ©—, 0% o’ 1%
it is said to be indeterminate, and the function is not defined for that
value of the independent variable by the g1ven analytical expression.

For example, suppose we have
e _f@),
TF@
where for some value of the variable, as z = a,
SJ(@)=0, F(a)=0.

For this value of « our function is not defined and we may there-
fore assign to it any value we please. It is evident from what has
gone before (Case II, p. 15) that it is desirable to assign to the
function a value that will make it continuous when == a whenever
it is possible to do so.

110. Evaluation of a function taking on an indeterminate form. If
when z = a the function f(z) assumes an indeterminate form, then

limit
(l}l:la‘f(x)*
is taken as the value of f(x) for z=a.
The assumption of this limiting value makes f(2) continuous for

z=a. This agrees with the theorem under Case II, p. 15, and also
with our practice in Chapter I1I, where several functions assuming the

. . 0 .
indeterminate form 0 were evaluated. Thus, for 2 =2 the function

22— 4
assumes the form —, but

limit 2*— 4
z=22—29

r— 4

=4.

Hence 4 is taken as the value of the function for z=2. Let us
now illustrate graphimlly the fact that if we assume 4 as the value
of the function for z = 2, then the function is continuous for z = 2.
P—4
z—2

This equation may also be written in the form

ye—D=@—-2)(x+2);
or, (x—2)(y—z—2)=0.

* The calculation of this limiting value is called evaluating the indeterminate form.

Let Y=
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Placing each factor separately equal to zero, we have
z=2,and y=2+ 2.

In plotting, the loci of these equations are found to be the two
lines 4B and CD respectively. Since there are infinitely many points
on the line 4B having the abscissa 2, it is clear that when z=2
(=0M), the value of y (or the function) may be taken as any num-
ber whatever; but when z is different from 2, it is seen from the

graph of the function that the correspond- B

ing value of y (or the function) is always ¥ D

found from P
y=zxz+2,

the equation of the line CD. Also, on CD,
when 2 = 2, we get :
/ 0 MI X
A

y:]ﬂP::l, C

which we saw was also the limiting value of y (or the function)
for z=2; and it is evident from geometrical considerations that if
we assume 4 as the value of the function for x = 2, then the function
is continuous for z = 2.

Similarly, several of the examples given in Chapter III illustrate
how the limiting values of many functions assuming indeterminate
forms may be found by employing suitable algebraic or trigonometric
transformations, and how in general these limiting values make the
corresponding functions continuous at the points in question. The
most general methods, however, for evaluating indeterminate forms
depend on differentiation.

111. Evaluation of the indeterminate form g Given a function of
g the form J@ such that f(a)=0 and

F(z)

F(a)=0; that is, the function takes on

. . 0 .
the indeterminate form — when a is sub-

0
stituted for . It is then required to find

limit f(z)
=0 T()

Draw the graphs of the functions f(2) and F(2). Since, by
hypothesis, f(a)=0 and F(a)=0, these graphs intersect at (a, 0).
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Applying the Theorem of Mean Value to each of these functions
(replacing b by x), we get
f(x):f(a)-.l—(x—a)f’(xl), a<lz <w
F(z)=F(a)+(x— a) F'(z). a<z,<w
Since f(a)=0 and F(a)=0, we get, after canceling out (z— a),
J@ _ (@)
F(z) Fl(z)
Now let = a; then z =a, z,=a, and
limit limit
po S @ =@, [T F(z)=TF'(a).
limit SO _ (@
x=aF(x) F'(a)

(49) F'(a)+0

Rule for evaluating the indeterminate form 9, Differentiate the
numerator for a new numerator and the denominator for a new denom-
inator.* The value of this new fraction for the assigned value ' of the
variable will be the limiting value of the original fraction.

In case it so happens that ‘
- f'(@)=0 and F'(a) =0,
that is, the first derivatives also vanish for x = a, then'we still-have

. . .0 ~ .
the indeterminate form o and the theorem can be applied anew to
the ratio

)

Fl(z)

limit f(2) _ f"(a)
z=aF(z) I"(a)

giving us

When also /(@) = 0 and #"(a) =0, we get mn the same manner

limit f(2) (@) |
v=aF(@)  F'(a)

and so on.
It may be necessary to repeat this process several times.

* The student is warned against the very careless but common mistake of differentiating
the whole expression as a fraction by VII.

1 If @ = o0, the substitution == reduces the problem to the evaluation of the limit for
2=0. 7

_\1 <l)
limit /() _ limit <Z> 2 limit__\2/ _ limit /(@)
Thus r=0 = 2=0 “2=0 _ ; M
—® P #=0_ F,-(1> 1 2= F(}) = 1)
z z

22
Therefore the rule holds in this case also.
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f@y ¥ —-38x+2
F@) a8—a?—az+1

3 _ —
—;‘((11)) = :; 23a: +f 1] ~_1-3+2 _0 .*. indeterminate.
3 — 2 —x

when ¢ = 1.

IvvusTrATIVE Exampre 1. Evaluate

lution. = -
Solution o I—1—1+1 0

’ 2 __ -
fQa _ 322-3 =_8-3 _0 . indeterminate.
F() 822—2z—1l,_; 8—2—1 0

) _ 6ac]z I
F’(l) 6z—2L—; 6—2 2

limit €* — e~ % — 22
IiLusTtrATIVE ExamprLe 2. Evaluate b —_—.
2=0 g _sinz

JO) _e—er—2 a:l _1-1-0_0 .. indeterminate.
F(0) ¢ — sinx —o 0—-0 0
SO _eter— Z:L =1+1=2_90 irdeterminate.
F(0) 1—cosx —0 1-—-1 0

S0 _ e ‘_e_m] =1=1_9 . indeterminate.
F(0) sin®  z=o 0 0

Solution.

A <°>:8“+e“] =1t o ans.
F(0) COST r—o 1
EXAMPLES

Evaluate the following by differentiation : *

limit @2 —16 8 limit @ — arc sin @ 1
1. - . Ans. —. 9. —_— Adns. —-.
T=4g2 4 ¢ — 20 g =0 gin3g "
limit £ —1 1 e .
2. . ~. limit sinz — sin ¢
=1z _1 n 10. T=¢ w_9p coS ¢.
g limit logz 1 : .
Tr=lg_1 ) 17, limit ¢ +siny —1 9
"y=0 log(l ' )
o limip & — == . og(L+)
=0 ginz 19, limit tanf + secfd — 1 1
5, limit tanz — =z 2 "0=0tang —secd + 1 ’
‘2=0% _sinz '
z 51.111; 13 limit sec?¢ — 2tan ¢ 1
6. limit logsinz _1 "¢=T 14 cosde 2
:c:g(w—mc)z 8 4
- limit az — 2° 4
limit a* — b= a 14. .+ oo
7. L. log—. = —92a8 3 _
z=0" gz gy Z2=0qgt—2a32 4+ 20az8 — 24
= g, limit 7 — ar® — a’r 4 a* 0. 15, limit (ee— e T Get.
r=a r2 — q? 2=2@—4)e + e
16, limit2? +@ —2 1g, limit sin2z o0, limit logcos(@ —1)
r=1 gz2_1 =0 g z=1 . WL
1—sin—
2
17, limit a® 4+ 8 . 9. 1imitm—sinx. o7, limit tanm—sinas.
T =—2g5 4 32 z=0 28 =0 gindgx

* After differentiating, the student should in every case reduce the resulting expression
to its simplest possible form before substituting the value of the variable,
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112. Evaluation of the indeterminate form 2. In order to find

limit f(x)
s=aF ()
when Jimit £(2) =0 and M p(z) = oo,

that is, when for z = a the function

J@
F(2)

assumes the indeterminate form

©’ :
we follow the same rule as that given on p. 172 for evaluating the

indeterminate form —- Hence

0

Rule for evaluating the indeterminate form 2. Differentiate the
numerator for a new numerator and the denominator for a new denoms-
nator. The value of this new fraction for the assigned value of the vari-

able will be the limiting value of the original fraction.

A rigorous proof of this rule is beyond the scope of this book and
is left for more advanced treatises.

logzx
IrLusTrATIVE ExamprLe 1. Evaluate —== for 2 = 0.
csc

Solution. AQ), = log z] =%, . indeterminate. !
F0) cscxle—o ®
1
7 - 9
) = i = STZ 1 _9 .. indeterminate.
F’(0) —cscaxcotT|z—¢ rcosTl,—o O '
S70) 2sinx cos®

=— - ] =—-=0. A4Ans.
F(0) CoST — T sin® Jp—o 1

113. Evaluation of the indeterminate form 0.w. If a function
J(x)-¢(2) takes on the indeterminate form 0-oo for z = a, we write

the given function
@)@ =L2 [or =22

@\  f@

0 as to cause it to take on one of the forms % or 2, thus bringing it
under § 111 or § 112.
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ko
TrLusTRATIVE ExanprLeE 1. Evaluate sec3x cos 5z for x = 3

= o - 0. ..’indeterminate.

Solution. sec3zcosbx] =
z=3

. cosbx T
for sec 8z, the function becomes = J:(—)-

Substituti =
ne cos3x cos3x F(x)

F(-y_r) cos3x
2

2/ _ 008511 = 9 . indeterminate.
_T 0
T2

|
: T
‘ f’<_> i

2 _—511151,'5] "___é. Ans.

F,(g) —sin3x-3 . 3

!
l
|
l
114. Evaluation of the indeterminate form o — . It is possible in

\ . . . .
general to transform the expression into a fraction which will assume

either the form — or %

0

. T
IrnLustraTive ExamprLe 1. Evaluate secx — tanz for ¢ = 3"

Solution. sec — tan 2] 5= — . .. indeterminate.
=T
2 . .
1 sinz 1—sinz
By Trigonometry, secx — tanx = _snE_ - —SmE_ & .
cosST  CosT cosT F(x)
™
I 5) 1—sinx 1—-1 0 . .
—_— =—— =-. .. indeterminate.
=g 0 0 :

F (f) cosT
2

EXAMPLES

Evaluate the following expressions by differentiation : *

N 2 .. .
1, limit aa:» +b Ans. & 6. limit log sin2z Ans. 1.
T=owcx? 4 d c =0 logsinz
limit cot® limit tand . 3
2. ©=0logz % : 0:%1:&1130
T
g, limit logz 0 _log (¢ — ~)
‘r=o xn ) * 8. limit 2 . 0.
=21 tang
4, limit @ 0 2
‘r=wex : 9. limit 10g$. 0.
z=0cotx
limit _€*® limit .
5. t=owlogz @ ’ _.. 10. mlilomlogsm:c. 0.

* In solving the remaining examples in this chapter it may be of assistance to the student
to refer to § 24, pp. 23, 24, where many special forms not indeterminate are evaluated.
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lmit 1 18. Iimit[ 2 _ 1 ].A s 1.
11. @ cotme. Ans. = =1 —1 =z—1 ns.—3
19, limit ¥ 0. 19, limit[ 1 =z ] —1
Y = o eay z=1|logz logz
limit . -
18. .= % (r — 27)tanz. 2. 20. luin; [secd — tan d]. 0.
. =2
limit .
14. T sin-—. a.
T = o X 21 limit [ 2 _ 1 ] 1
15. ;‘ I:% anloga. [npositive] O, ¢ =0]sin?¢ 1—cos¢ 2
limit 99, limit [L _ _1_] 1
16. 0:§(1—tan0)sec20. 1. y=1ly—1 logy 2
e - 2 o e 2
17, limit (@ — ¢?) tan 72, da® 93, limit [l . L] i
p=a 2a T 2=0[4z 2z(emz+1) 8

115. Evaluation of the indeterminate forms 0°, 1°, »° Given a func-
tion of the form f@)H.

In order that the function shall take on one of the above three
forms, we must have for a certain value of z

f(@ =0, ¢(2)=0, giving 0°;

or, SJ(@)=1, ¢()=ow, giving 1°;
or, J(@)=w, ¢(2)=0, giving ="
Let ¥ =F(2)*D;

taking the logarithm of both sides,
log y = ¢ () log f(2)-

In any of the above cases the logarithm of y (the function) will
take on the indeterminate form
' 0.00.

Evaluating this by the process illustrated in § 113 gives the limit

of the logarithm of the function. This being equal to the logarithm
of the limit of the function, the limit of the function is known.*

IrvustraTivE ExamprLe 1. Evaluate * when ¢ = 0.
)

Solution. This function assumes the indeterminate form 0° for = 0.

Let Y =2a%;
then logy =xloge =0. — oo, when z = 0.
, log: —
By § 118, p. 174, logy = %‘ = T‘” when x = 0.
z

* Thus, if limit logey = a, then y = ea,
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1

By § 112, p. 174, logy:—lz—z:O, when z = 0.
(D2

Since y = 2=, this gives log.xz* = 0; i.e., x* =1. Ans.

IrLustraTIVE Exameie 2. Evaluate (1 4 x)* when z = 0.

Solution. This function assumes the indeterminate form 1° for x = 0.
1

Let y=(L+2)%;
then logy = %log 1+4+2)=0w-0, when z = 0.
1
By § 113, p. 174, logy = —Og—(iifl = g, when z = 0.
1
142 1
By.§ 111, p. 171, logy = T =1 I =1, when z = 0.

1 1 1
Since y = (1 + )7, this gives log. (1 + z)*=1; i.e. 1+ z)*=e. Ans.

IrLustraTIVE Exampre 3. Evaluate (cotz)sinz for z = 0.
Solution. This function assumes the indeterminate form «o® for z = 0.

Let y = (cot x)sinx;
then logy = sinz log cotx = 0. oo, when = = 0.
logcotz o
By § 113, p. 174, logy = %z = when 2 = 0.
— csc?a
cotx i
By § 112, p. 174, logy = = 5T _ A when z = 0.
—cscxcotxr  cosiz

Since y = (cotz)sin=, this gives log, (cot z)sin* = 0; i.e. (cotx)sinz =1, Ans.

EXAMPLES

Evaluate the following expressions by differentiation :

1
A 1
1. al;uiui zI—=, Ans. - 1. hml(t) (" + ’3)’” Ans. €.
1
limit (T\tn= 8. 4% (cotaylors. .
2. - . 1. T = e
r=0 T 1
limit
9. T (14 n2)= en
3, limit 7 (sin g)tane, 1. z=o! * m
6=3 10, limit tan’—'?) T L
¢ = 1 4 e
limit imi =
4w (1 + ) e 11. éu:mg (cosm@)e2, e i,
limit
5. 1m10 (1 + sin z)eote, e. 12. ;’1m1t (cot z)=. 1.

limit (2 z limit \tan 2= 2
6. g% (1) &. 15,0 (2- 2 .



CHAPTER XIV
CIRCLE OF CURVATURE. CENTER OF CURVATURE

116. Circle of curvature.* Center of curvature. If a circle be drawn
through three points B, B, £ on a plane curve, and if B and B be
made to approach E along the curve as a limiting position, then the
circle will in general approach in magni-
tude and position a limiting circle called
the circle of curvature of the curve at the
point E. The center of this circle is
called the center of curvature.

Let the equation of the curve be

€Y y=r(@);
and let z, x,, z, be the abscissas of the
points B, R, B respectively, (o', 8") the codrdinates of the center,

and R’ the radius of the circle passing through the three points.
Then the equation of the circle is

(@— &)+ (y— B = B

and since the codrdinates of the points B, B, B, must satisfy this equa~

(950_ (Z/>2—|— (yo_ ﬁl)2_ 15/2: 0’
2 (2,— )+ (y,— B)*— R"=0,
(xQ_ al)2+ (yz_Bl)ﬁ_]l)lIQ: 0.
Now consider the function of z defined by
F(@)=@—a)+@—B)—E"

in which y has been replaced by f(2) from (1).
Then from equations (2) we get

F(x)=0, F(z)=0, F(z)=0.

YP. (wg,ya)

1@1"91)

tion, we have

* Sometimes called the osculating circle. The circle of curvature was defined from
another point of view on p. 161.

178
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- Hence, by Rolle’s Theorem (p. 164), F'(x) must vanish for at least
two values of z, one lying between x and z, say 2/, and the other
lying between z, and z,, say 2" ; that is,

F'(z)=0, F'(z"=0.
Again, for the same reason, 7" (z) must vanish for some value of
o between 2’ and 2", say z,; hence
F''(x)=0.
Therefore the elements o', 8, R’ of the circle passing through the
points R, R, K, must satisfy the three equations
F(x)=0, F'(a)=0, F'(z)=0.

Now let the points B and E approach E as a limiting position ; then
z, z, 2, 2, z, will all approach z, as a limit, and the elements a, 8, B
of the osculating circle are therefore determined by the three equations

F(z)=0, F’(xo) =0, F”(a;o) =0;

or, dropping the subscripts, which is the same thing,

4 (= @)+ (y— B =,

(B) @—a)+(y—B) Z—'Z =0, differentiating (4).
N\ 2 2

(@) 1+ <%> +(y—~R5) Z_x% =0, differentiating (B).

2

2
Solving- (B) and () for z — @ and y — B, we get <d7‘7/ + 0>,

()]
YN (Y
dx + da
— = ———
@) dz?
1+ <i3>
y—LB=— ;Jx .
’ 7y
L . dz?
hence the coirdinates of the center of curvature are
2 ) 2
@] G
- B dx de/ | dx <ﬂ/ - O)
(E) a—x“-—d—zy-—, ﬂ—y-l-Ty' a0

pre &
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Substituting the values of z — @ and y — B from (D) in (4), and

solving for R, we get ;
dy 2]
Rey [1 + <dx>
ST d?y

da?
which is identical with (42), p. 159. Hence

Theorem. The radius of the circle of curvature eéuals the radius of
curvature.

117. Second method for finding center of curvature. Here we shall

make use of the definition of circle of

7T N curvature given on p. 161. Draw a

/ N\ figure showing the tangent line, circle

@0 of curvature, radius of curvature, and

/ center of curvature (@, 8) corresponding

N to the point P(@, y) on the curve. Then

Y

>, @=04=0D—AD=0D —BP=z— BP,
° 4D X B=AC=AB+BC=DP+BC=y+BC.

But BP=REsint, BC=Rcost. Hence

4 a=xz—RsinrT, B=y+RcosT.
From (29), p. 135, and (42), p. 159,

i (@]

2y o1 (%

do 1 [ e

T=_W7 COS'T:—dyE? R:T'
14(=2 14+(=2 —~Z
G )] =
Substituting these back in (4), we get
z+ (@) @
BT
a= — —————— ; = ——————— &
(90) 'y y o
dx® dax*

From (23), p. 126, we know that at a point of inflection (as @ in
the next figure)

a‘y —0
dz? ’
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Therefore, by (40), p. 157, the curvature K= 0; and from (42),
p- 159, and (50), p. 180, we see that in general @, B, R increase
without limit as the second derivative approaches
zero. That is, if we suppose P with its tangent
to move along the curve to P/, at the point of
inflection @ the curvature is zero, the rotation of
the tangent is momentarily arrested, and as the
direction of rotation changes, the center of cur-
vature moves out indefinitely and the radius of
curvature becomes infinite.

IrLustraTive Exampie 1. Find the codrdinates of the
center of curvature of the parabola %2 = 4 px corresponding
(a) to any point on the curve; (b) to the vertex.

2 2

Solution. d_y = 2_]); &y = 4p

de y  dx? Y3

(a) Substituting in (E), p. 179,
¥ +4p* 2p ¢F

Y

=38z 4 2p.

T+ — 7 v ip? T+ 2p
ﬁ:?/—y—2+4p2.y_3: ys
¥ 4p? 4p?’

3
Therefore (3:0 +2p, — %) is the center of curvature
P2

corresponding to any point on the curve.
(b) (2p, 0) is the center of curvature corresponding to the vertex (0, 0).

118. Center of curvature the limiting position of the intersection of
normals at neighboring points. Let the equation of a curve be

€)) y=r(@:-

The equations of the normals to the curve at two neighboring
points £ and E are*

d
(%—X)+<%—Y);‘%§=o,

C(a.B)

d
=D+~ ThA=
. ! S{ENA
If the normals intersect at C'(a/, 8", B (g

the codrdinates of this point must satisfy both equations, giving
, d;
(50— @)+ (= B) Gl =

<w1—a')+<yl—ﬁ'>d—l=o

B

* From (2), p. 77, X and Y being the variable coordinates.
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Now consider the function of z defined by
d
$@=@-a)+u-~

in which y has been replaced by f(z) from (4).
Then equations (B) show that

¢@)=0, ¢(z)=0.
But then, by Rolle’s Theorem (p. 164), ¢'(x) must vanish for some

value of = between z, and z,, say 2. Therefore o’ and B’ are deter-
mined by the two equations

$(z) =10, ¢'(a)=0.
If now B approaches E, as a limiting position, then 2’ approaches =z,
giving (@)=0, ¢'(z)=0;
and C'(a!, B") will approach as a limiting position the center of cur-

vature C(a, B) corresponding to £ on the curve. For if we drop the
subscripts and write the last two equations in the form

@—ar+y—B) %=,
LAWY/
(@) + - =0,

it is evident that solving for &' and B8 will give the same results as
solving (B) and (C), p. 179, for @ and 8. Hence

Theorem. The center of curvature C corresponding to a point P on a
curve is the limiting position of the intersection of the normal to the curve
at P with a neighboring normal.

119. Evolutes. The locus of the centers of curvature of a given
curve is called the evolute of that curve.
Consider the circle of curvature corre-
sponding to a point P on a curve. If
P moves along the given curve, we may
suppose the corresponding circle of curva-
ture to roll along the curve with it, its
radius varying so as to be always equal to
the radius of curvature of the curve at the
point P. The curve CC, described by the
center of the circle is the evolute of PR.

It is instructive to make an approximate construction of the evolute
of a curve by estimating (from the shape of the curve) the lengths
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of the radii of curvature at different points on the curve and then
drawing them in and drawing the locus of the centers of curvature.
Formula (E), p. 179, gives the cobrdinates of any point (a, 8) on
the evolute expressed in terms of the codrdinates of the corresponding
point (z, ) of the given curve. But y is a function of z; therefore

2 2

[1+(2) |2 1+(2)
o dz/) |dx Byt dz
- @z Ty
da? da?

give us at once the parametric equations of the evolute in terms of the
parameter x.

To find the ordinary rectangular equation of the evolute we elimi-
nate z between the two expressions. No general process of elimination
can be given that will apply in all cases, the method to be adopted
depending on the form of the given equation. In a large number of
cases, however, the student can find the rectangular equation of the
evolute by taking the following steps:

General directions for finding the equation of the evolute in rectangular
coordinates. v

First Stee. Find a and B from (50), p. 180.

Secoxp Stee. Solve the two resulting equations for x and y in terms
of @ and .

Tuiro Stee. Substitute these values of @ and y in the given equation.
This gives a relation between the variables a and B which is the equation
of the evolute.

IrrustrATIVE Exampre 1. Find the equation of the evolute of the parabola y2 =4 px.

2 2
Solution. dy _2p &y_  4p* v D
da y  da? 3 q,
3
First step. a=3x+ 2p, ﬁ:—_y_. -
4p? ~7
B — 1
Second step. =5 21)’ y=— (41’23)&- o /I
/
+ V)
Third step  (4p%6)3 = 4p<%ﬂ>; T X
/
/
4 P /
2 _ & _ 3 )
or, B ~27(a 2p)3. E 3 5
Remembering that a denotes the abscissa and g the =

ordinate of a rectangular system of coordinates, we see
that the evolute of the parabola 4 OB is the semicubical parabola DC’E; the centers
of curvature for O, P, P,, P, being at C, C, C,, C, respectively.
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ILLustraTIVE Exampre 2. Find the equation of the evolute of the ellipse
b2x? 4 a?y? = a?b?,

dy bxr dly bt

Solution. X _-_ 2% 4¥__ 7
olution da; a‘zy dz2 a2y3
2 _ p2) g3
First step. = L0
a4
 (ar— 1)y
p=—"

4 ]
Second step. wz( ,,a a >,
a® — b?

g \¥
y = — (2—ﬂ>.
a? — b?
Third step. (ac)t + (b8)¥ = (a® — 1?)}, the equa-
tion of the evolute EHE’H’ of the ellipse ABA’B’. E, E’, - H’, H are the centers of

curvature corresponding to the points 4, 4’, B, B’, on the curve, and C, C¢’, C” corre-
spond to the points P, P’, P”.

When the equations of the curve are given in parametric form, we

2
proceed to find % and Z xz » ag on p. 160, from
By dedy dyd
dy dt d’y _dtde dtde®
4 de dz’ da® @ﬁ ’
dt dt

and then substitute the results in formulas (50), p. 180. This gives
the parametric equations of the evolute in terms of the same parameter
that occurs in the given equations.

IrcusTtrATIVE ExampLE 3. The parametric equations of a curve are

241 3
B = » = —
(B) z yunk Al

Find the equation of the evolute in parametric form, plot the curve and the evolute,
find the radius of curvature at the point where ¢ = 1, and draw the corresponding cir-
cle of curvature. .
dr _t dx= 1
a2’ ar 2’
dy 2 d?y '

a2’ de

Solution.

Substituting in above formulas (4) and then in (50), p. 180, gives
_1—g—2tt 434 3¢

] = ’

©) a 1 8
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the parametric equations of the evolute. Assuming values of the parameter ¢, we cal-

culate z, ¥ ; a, B from (B) and (C); and tabulate the results as follows:
Now plot the curve and its evolute.

The point (3, 0) is common to the given curve . ” v B 8
and its evolute. The given curve (sémicubical
parabola) lies entirely to the right and the evo- 3 3 3
lute entirely to the left of @ = }. 2 3 S —38p ] 2
The circle of curvature at A4 (3, 4), where 3 13 5 || — 3§ 3
t =1, will have its center at 4’ (— }, §) on 1 b 3 — 3% £
the evolute and radius= A44’. To verify our 0 1 0 1 0
work find radius of curvature at 4. From | —1 3 -3l —-3—-1
(42), p. 159, we get -3 B || -H|-3
R N e e
R:t—(l_;tz)g:\@, when ¢ =1. -3 3 | —3

This should equal the distance

A4 =VE+ P+ G- D= V2

Y

ILpustraTivE Examrre 4. Find the parametric equations of the evolute of the

cycloid,

©) {az = a(t — sint),

y = a(1— cost).
Solution. As in ILLusTrATIVE ExAMPLE 2, p. 160, we get
dy _ sint d¥y 1
de~ 1—cost’ dz?2  a(l— cost)?
Substituting these results in formulas (50), p. 180, we get
a=a(t + sint),

D) B=—a(l—cost). Ans.
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Nore. If we eliminate ¢ between equations (D), there results the rectangular equa-
tion of the evolute OO0’ Q" referred to the axes O’ and 0’8. The covrdinates of O with
respect to these axes are (— wa, — 2a).
Let us transform equations (D) to the

2
new set of axes OX and OY. Then 3 , P B P
.g ] P
a ¥ a
a=1z—ma, B=y—2a, i .
t=1t—m. % oawis

Substituting in (D) and reducing, the
equations of the evolute become

Ta

2z =a( —sint o

() { = a ( sin ,’), @
y = a (1l — cost).

Since (E) and (C) are identical in form, we have :

The evolute of a cycloid is itself a cycloid whose generating circle equals that of the
given cycloid.

120. Properties of the evolute. From (4), p. 180,
@)) . a@=xz—Rsint, B=y+Rcos.

Let us choose as independent variable the lengths of the arc on the
given curve; then z, y, R, 7, @, 8 are functions of s. Differentiating
(4) with respect to s gives

de dz ' dr . dR

(B e qs = ds —R cos T% —sin TI’
dB dy . dt dR .
~_J_ R ar oLy

) s ds Sln'rds +cosT 7

But gl%: oS T %:sin 7, from (26), p. 134; and Z’—:=%, from

(38) and (39), p. 156. '
Substituting in (B) and (C), we obtain
. (D) d—j:cos'r—Rcos'r-%—-sin'r(fi—fz_sin-rocll_f,
&) 6Ol’l—f=SiIl'r—Rsin'r-%+cos'r%1';i= 'AOSTOfl_J:'

Dividing (E) by (D) gives

B

(F) %2—(30(}7:—'-1—' 1

tanT dy )

dx
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But d{—B = tan 7' = slope of tangent to the evolute at C, and
aa

% = tan 7 = slope of tangent to the given curve at the corre-
x
sponding point P (z, y).
Substituting the last two results in (F), we get
1

tan 7’ = — .
tan T

Since the slope of one tangent is the negative reciprocal of the
slope of the other, they are perpendicular. But a line perpendicular
to the tangent at P is a normal to the curve. IHence

A normal to the given curve is a tangent to its evolute.

Again, squaring equations () and (%) and adding, we get

o -

But if s’ =length of arc of the evolute, the left-hand member of
!
() is precisely the square of fl—s (from (34), p. 141, where t=s,
s
s=¢,z=ua, y=p). Hence (D) asserts that
<ds’)2 <d1€‘ oods dR
—_—) = —), or — =+ —..
ds ds ds ds
That is, the radius of curvature of the given curve increases or decreases
as fast as the arc of the evolute increases. In our figure this means that
PC,—PC=arc CC,

The length of an are of the evolute is equal to the difference between
the radit of curvature of the given curve which are tangent to this are at
its extremities.

Thus in Illustrative Example 4, p. 186, we observe that if we fold
Q" P'(=4 a) over to the left on the evolute, P* will reach to ', and
we have:

The length of one arc of the eycloid (as 00'Q) is eight times the length
of the radius of the generating circle.

121. Involutes and their mechanical construction. Let a flexible
ruler be bent in the form of the curve C,C,, the evolute of the curve
EFE, and suppose a string of length R, with one end fastened at C,, to
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be wrapped around the ruler (or curve). It is clear from the results
of the last section that when the string is unwound and kept taut,
the free end will describe the curve
EE. Hence the name evolute.

The curve EE is said to be an #nvo-
lute of € C;. Obviously any point on
the string will describe an involute,
so that a given curve has an infinite
number of involutes but only one
evolute.

The involutes BER, B'E', P"E" are
called parallel curves since the distance
between any two of them measured
B along their common normals is con-

stant.

The student should observe how the parabola and ellipse on pp. 183,
184 may be constructed in this way from their evolutes.

E B R B

EXAMPLES

Find the codrdinates of the center of curvature and the equation of the evolute of
each of the following curves. Draw the curve and its evolute, and draw at least one
circle of curvature.

22 2 a? 4 b?)z8 a2 + b2) 43

1. Thehyperbola,@—i%:l. Ans. a:( a4) ) ﬁz—-( :4 )Y H
evolute (aa)¥ — (b8)¥ = (a2 + %),

2. The hypocycloid z# +y# = af. Ans. a=ua + 3zky}, p=y + Safyt;

evolute (@ + 8)% + (a — B)¥ = 24t.

3. Find the codrdinates of the center of curvature of the cubical parabola y® = a%z.
4 4 4y _ Qyb
Ans, a:a +15y, =¥ v,
6 a2y 2 at

4. Show that in the parabola z¥ + y¥ = a¥ we have the relation @ + 8 =3 (= + y).

5. Given the equation of the equilateral hyperbola 2zy = a2; show that

)8 _ )8
a+ﬁ:—(y+2),a—ﬂz—(y 2)~

a a

From this derive the equation of the evolute (a + 8)¥ — (@ — B)¥ = 24t.

Find the parametric equations of the evolutes of the following curves in terms
of the parameter t{. Draw the curve and its evolute, and draw at least one circle

of curvature.

. ¢ = a cosdt, a = acos®t + 3 a costsin?t,
6. The hypocyeloid {y — asindt, Ans. { 8= 3acostsint + asindl.
z =3¢, a=3(14 2 —t),
7. The curve {y:?)t—-t”. B=— 418,
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11.

12.

13.

14.

15.

16.
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. The curve

. The curve

The curve

The curve

The curve

The curve

The curve

The curve

The curve

17. =4 — 12, y = 21,
18. z =2t y=16— {2
19. x =1¢, y = sint.

20. x:é
t
2.z =1t

y y:3t.

z = a(cost + tsint),
y = a(sint — t cost).

x = 3t,
y=12—86,
xr=6— 12,
y:2t.
fl::2t,
y =122,
m:4t,
y =342
r=9—12
y =2t

{az:2t,
1

y==1.

=3

y =10, 26.

& X BB

189
a = acost,
Ans. {ﬁ:asint.
((t:-—gts,
. 3
T =3 - _.
Lﬁ 2
a=4—32,
B=— 213,
@ =— 213,
B =312

=—13,
{ﬂ:11+3t2.

a="T7—3¢t,
B=—213.
( 41— 15
a = )
4
12 4 514
1’3_ 6t
3 ]
[a:4t+1dt’
} 3
= 22 4t
[ - 2
9 14
12t 49
43
2T 4 4t
==

=1, y=1.

. ¢ =sint, y = 3 cost.
r=1—cost, y =1t —sint.
= costt, y = sintt.

r=asect, y=>0tant,



CHAPTER XV
PARTIAL DIFFERENTIATION

122. Continuous functions of two or more independent variables.
A function f(z, ) of two independent variables # and y is defined
as continuous for the values (a, b) of (z, y) when

limit

e=af( y) =f(a b),
y==0s

no matter in what way 2 and y approach their respective limits a
and b. This definition is sometimes roughly summed up in the state-
ment that a very small change in one or both of the independent variables
shall produce a very small change in the value of the function.*

We may illustrate this geometrically by considering the surface
represented by the equation , _ F (@ ).

Consider a fixed point P on the surface where z=a and y =b.
Denote by Az and Ay the increments of the independent variables
z and y, and by Az the corresponding increment of the dependent
variable 2, the coordinates of P’ being
‘ (z + Az, y + Ay, 2+ Az).
At P the value of the function is

2=f(a, b)=MP.

/ wiL If the function is continuous at P, then, however
M Az and Ay may approach the limit zero, Az will

also approach the limit zero. That is, M'P’ will approach coincidence
with MP, the point P’ approaching the point P on the surface from
any direction whatever.

A similar definition holds for a continuous function of more than
two independent variables.

In what follows, only values of the independent variables are
considered for which a function is continuous.

* This will be better understood if the student again reads over § 18, p. 14, on continuous
functions of a single variable,
' 190
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123. Partial derivatives. Since z and y are independent in

z=f(2 ),

x may be supposed to vary while y remains constant, or the reverse.
The derivative of z with respect to  when 2 varies and y remains
constant® is called the partial dertvative of 2z with respect to z, and is

denoted by the symbol ? We may then write
x

oz _ limit [S(@+Az p)—f(% y)
D ax_Ax=O|: Az ]

Similarly, when 2 remains constant* and wy varies, the partial
derivative of z with respect to y is

(B) %2 _ limit [f(% ¥y +Ay) —f(z, y)]
oy Ay=20 Ay
0z . . 0 ) é}_f
o is also written af (z, y), or s
.. oz . . 0 ) ) gf
Similarly, @ is also written 5y Sz, y), or ay.

In order to avoid confusion the round ot has been generally
adopted to indicate partial differentiation. Other notations, however,
which are in use are A

(), (£): 200510 03 £ D Si): DS DS 202

Our notation may be extended to a function of any number of
independent variables. Thus, if

u=F(x, y, 2),
then we have the three partial derivatives

ou u bu OF OF OF
0z oy 02 o oy on

ILLustrATIVE Exampre 1. Find the partial derivatives of z = ax2 + 2bxy + cy2.
Solution. ? = 2ax + 2 by, treating y as a constant,
x

g;: = 2bx + 2cy, treating z as a constant.
Y

* The constant values are substituted in the functmn before differentiating.
1 Introduced by Jacobi (1804-1851).
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IvLustraTivE Examere 2. Find the partial derivatives of u = sin (ax + by + c2).
ou .
Solution. o = acos (ax + by + cz), treating ¥ and z as constants,
z

g_u = b cos (ax + by + cz), treating  and z as constants,
Y

Z—u = c cos (ax + by + cz), treating ¥ and x as constants.
Z

Again turning to the function

z=f gx’ ¥
we have, by (4), p. 191, defined a—:; as the limit of the ratio of the

increment of the function (y being constant) to the increment of z, as
the increment of = approaches the limit zero. Similarly, (B), p. 191,

0 . . .
has defined ;‘ It is evident, however, that if we look upon these

partial derivatives from the point of view of § 94, p. 141, then

0z
or

may be considered as the ratio of the time rates of change of z and
x when y is constant, and 22
| oy

as the ratio of the time rates of change of z and y when z is constant.

124. Partial derivatives interpreted geometrically. Let the equa-
tion of the surface shown in the figure be

z=f(z, y).

Pass a plane EFGH through the
point P (where z=a and y=10) on
the surface parallel to the XOZ-plane.
Since the equation of this plane is

y="b,

the equation of the section JPK cut
out of the surface is

z =f (:U, 6)7
if we consider EF as the axis of Z and EH as the axis of X. In this

d
plane 02 means the same as 2%, and we have
or dx

B_z = tan MTP

- slope of section JK at P.
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Similarly, if we pass the plane BCD through P parallel to the
YOZ-plane, its equation is z=a,

- Hence

and for the section DPI, g— means the same as dz
Y

dy
% _ & yrp= slope of section DI at P.
oy dy

y2

ILLUSTRA’I‘IVE ExamrLe 1. Given the elhpsmd — + + =1; find the slope

of the section of the ellipsoid made (a) by the plane Y= l at the point where x = 4
and z is positive ; (b) by the plane = 2 at the point where ¥ = 8 and z is positive.
Solution. Considering y as constant,

2x 2z 0z 0z T
— 4+ ——=0,0or —= ——
24 6 ox ox 4z
When z is constant, 2y 228 =0, or %: -Y.
12 6 oy oy 2z
(a) Wheny=1landz=4,2z= 3 .-.%:— 2, Ans.
2 ox
(b) Whenz =2and y = 32_—1— %=—§\/§ Ans.
2 oy 2
i EXAMPLES
1. u=2a% + 3z%y — 95, Ans. ?:3x2+6my;
x
a—u=3:c2—3y2.
. ay
2. u=Ax?+ Bxy 4+ Cy2+ Dx + Ey + F. ?:2Aa:+By+D;
x
% _ Be+ 20y + E.
oy
ou 2 anxu
3. u = (ax? 2 4+ cz?)n, ——— 3
( + 0y + o) or aa:2+by2+cz”
ou _ 2 bnyu
oy ax® + by? + e
. T ou 1
4, uw = arcsin-. —_—— -}
Y 0T \/y2 _ g2
a_u_ _ T
oy ¥ Vy? — a?
ou
5. u=av — =yxv—1
7z Yy 5
ou
— =uavlogx

6. u = ax’y?z + baydzt + cyb + dxz8. = 3 ax?y?z + byzt 4 dz8;
z

o

[

Z— = 2 axdyz + 3bxy2zt + 6y’ ;
Yy

Z—Z = axby? + 4bxysz® + 3 dx22.
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ou

7. u=a8y? — 2xyt + 328 showtha.ta;—+ya—:5u.
Yy
8. u= ; show tha,t:c—-i-y—_ :
T4y oy
9.u—(y—z)(z—m)(m—- Y); showthat——+—+aa—u 0.
2
ou
10. u = log (e* + e¥) ; show thata—+—_l
oy
cu  ou
11. u = ; show that — + — = ( —1)u.
e‘ﬂ+e?/’ am+ay @+y—Du
12. u = avy®; show tha,ta:~+y—:(a:+y+logu)u
ou 3

13. u =log (x3 + y® + 28 — Bxyz showthat— — =
8 ( ve); +6y+az r+y+2z

14. u = e*siny + e¥sinz ; show that
ou\? [ou\?
— — ) =e2x 4 e2v 4 2ex+¥sin (z .
(az> +(ay> + e2v + n(z + y)
15. u = log (tanx + tany + tanz); show that

sin2:r,ég + sin2ya—u+ sin2ziu =2.
or oy 0z

16. Let y be the altitude of a right circular cone and z the radius of its base.
Show (a) that if the base remains constant, the volume changes § 72? times as fast as
the altitude ; (b) that if the altitude remains constant, the volume changes £ wzy times
as fast as the radius of the base.

2 g2
17. A point moves on the elliptic paraboloid z = % + % and also in a plane par-

allel to the XOZ-plane. When z =3 ft. and is increasing at the rate of 9 ft. per
second, find (a) the time rate of change of z; (b) the magnitude of the velocity of
the point ; (c) the direction of its motion.
Ans. (a) v, = 6 ft. per sec.; (b) v = 818 ft. per sec. ;
(¢) T =arctan 2, the angle made with the XOY-plane.

18. If, on the surface of Ex. 17, the point moves in a plane parallel to the plane
YO0Z, find, when y = 2 and increases at the rate of 5 ft. per sec., (a) the time rate
of change of z; (b) the magnitude of the velocity of the point; (c) the direction of
its motion. Ans. (a) 5 ft. per sec.; (b) 5V2 ft. per sec.

(7= e the angle made with the plane xoy.

125, Total derivatives. We have already considered the differ-
entiation of a function of one function of a single independent
variable. Thus, if _
y=/,(») and v=¢(2),
it was shown that -

dy dy dv
dv dv dw
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We 'shall next consider a function of two variables, both of which

depend on a single independent variable. Consider the function
w =f (:E, y>7

where z and y are functions of a third variable <.

Let ¢ take on the increment A¢, and let Az, Ay, Au be the corre-
sponding increments of z, y, u respectively. Then the quantity

Au=f(z+As y+Ay) —f(= 9

is called the total increment of u.

Adding and subtracting f(z, ¥ + Ay) in the second member,

(4) Au=[f(z+Az, y+AP—f(@ y+AP 1+ [ y+Ay)—f (=, p) ]-

Applying the Theorem of Mean Value (46), p. 166, to each of
the two differences on the right-hand side of (4), we get for the
first difference,

(B) f(x+ Az, y+Ay) —f(z, y+ Ay =L/ (@+ 0, - Az, y + Ay) Az,

[a:x, Aa= Az, and since z varies while y + Ay remains]
constant, we get the partial derivative with respect to «.

For the second difference we get

(©)  Sf@y+Ap—Sf(@ y)=1/(z, y+0,-Ay) Ay.

a=y, Ae= Ay, and since y varies while x remains con-]
stant, we get the partial derivative with respect to y.

Substituting (B) and (C) in (4) gives
(D) Au=f!(x+ 0 Ax, y+ Ay) Az + 1) (2, y+90, AJ)Ag/,
where 6, and 6, are positive proper fractions. Dividing (D) by At,

) %_f(x-kﬁ A:c,y+Ay) PG AR Ay)

Now let At approach zero as a limit, then

— f! l
) (—lzf(.?/) +f(3/)
Since Az and Ay converge to zero with Az, we get ‘i
limit limit
IS pi(w+ 6, Az, y + Ay) = f (@, y), and P r, y 46,0 Ay = fii (e, J),J
SZ(x, y) and fy/(z, y) being assumed continuous.

Replacing f(2, ¥) by w in (F), we get the total d:rivative

du oudx oudy

¢b G- oxattoyar
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In the same way, if
u=rf(@ ¥ 2),
and z, y, 2 are all functions of ¢, we get

du oudx oudy oudz

3 &= oaxdt T oydt Toz

and so on for any number of variables.*
In (51) we may suppose t =x; then y is a function of z, and u is
really a function of the one variable z, giving

du ou odudy
%3) & ax T aydx
In the same way, from (52) we have

” ‘du_au ou dy ou dz
©%) - oxt it @

The student should observe that ?ﬁ and % have quite different
i z
meanings. The partial derivative Z—u is formed on the supposition that
2z

the particular variable x alone varies, while
du _ limit <A_u>
do~ Az=0\Az)’
where Aw is the total increment of w caused by changes in all the vari-
ables, these increments being due to the change Az in the independent

variable. In contradistinction to partial derivatives, Z—?:, du are called

total derivatives with respect to ¢ and z respectively.t

*This is really only a special case of a general theorem which may be stated as follows:

If u is a function of the independent variables z, ¥, 2, - . ., each of these in turn being a
function of the independent variables 7, s, ¢, ..., then (with certain assumptions as to

continuity) ou_dudr dudy dudz,

or oxor a_ybr zor

ou 0
and similar expressions hold for a—Z , —a—f ) ete.

0 d
1 It should be observed that 6_1; has a perfectly definite value for any point (x, ), while d—;‘:

depends not only on the point (x, ¥), but also on the particular direction chosen to reach that

point. Hence ou

F™ is called a point function; while

du . . : i
— is not called a point function unless it is agreed to approach
the point from some particular direction.
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. .z du
ILLUSTRATIVE ExaMrLE 1. Givenu =sin =,z =¢f, y = t?; ﬁnd —

Y
Solution. a—uzlc :E u _ ~£cos§; d—Lze‘,d—y=2t.
o y Yy oy y2 oy dt dt

du et et

Substituting in (51), Frin (t—2)—-cos—. Ans.

ILLusTRATIVE ExaMPLE 2. Given u = e (y — 2), ¥ = asinz, 2 = cosz; find Z—Z
ou ou ou dy dz .

Solution. — = ae®®(y — 2), — = €%, — = — %*; — = @ COS&, — = — sinz.
ox =2 oy ’ 6z ’ dx ? d

Substituting in (54),

Z_Z = ae®®(y — 2) + ae*® cosx + ex*sinx = e (a? + 1)sinz. Ans.

Nore. In examples like the above, u could, by substitution, be found explicitly in
terms of the independent variable and then differentiated directly, but generally this
process would be longer and in many cases could not be used at all.

Formulas (51) and (52) are very useful in all applications involv-
ing time rates of change of functions of two or more variables. The
process is practically the same as that outlined in the rule given on
p- 141, except that, instead of differentiating with respect to ¢ (Third
Step), we find the partial derivatives and substitute in (51) or (52).
Let us illustrate by an example.

IrustrATIVE ExampLe 3. The altitude of a circular cone is 100 inches, and
decreasing at the rate of 10 inches per second ; and the radius of the base is 50 inches,
and increasing at the rate of 5 inches per second. At what rate is the volume changing ?

. . 1
Solution. Let 2 = radius of base, ¥ = altitude ; then u = §'m:?y =

volume, %u = gmcy, Z—; = %m:z. Substitute in (51),
du 2 dr 1 dy
— =y — + -7 —.
dt 3 dt 3 dt
But z = 50, y = 100, d_m=5 d—y:-—lo.
dt dt
- ‘z = gvr 50005 — §1r 2500 - 10 = 15.15 cu. ft. per sec., increase. Ans.
126. Total differentials. Multiplying (51) and (52) through by dt,
we get ou
55 du = d
(8%) % + Yy
* ou au ou
56 du=_—_dx 4+ _—_dy4 —dz;
(96) % + 2y Y + 2z

and so on.* Equations (55) and (56) define the quantity du, which
is called a total differential of u or a complete differential,
and ou dz, ou dy, ou dz

ox oy oz

* A geometric interpretation of this result will be given on p. 264.
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are called partial differentials. These partial differentials are some-
times denoted by du, du, du, so that (56) is also written

du=du+ du+ du.

IrrusTrRATIVE ExampPLE 1. Given u = arc tan f—:, find du.

Solution. 8_u=_ Y ,ﬂ': z .
ox 224+ 9?2 oy x4 y?
Substituting in (55),
du =Wy
z? + 32

IriusTrATIVE Exampie 2. The base and altitude of a rectangle are 5 and 4 inches
respectively. At a certain instant they are increasing continuously at the rate of 2
inches and 1 inch per second respectively. At what rate is the area of the rectangle
increasing at that instant ?

Solution. Let x = base, ¥ = altitude; then u = zy = area, 2-“ =y, z—u =2a.
&L Yy
Substituting in (51),
du dx dy
A —=y—4r—.
“) a 'at
But ¢ =>5in., ¥y =4in,, dz = 2 in. per sec., d_y =1 in. per sec.
B dt dt
du

i (8 + 5) sq. in. per sec. =13 sq. in. ber sec. Ans.

Note. Considering du as an infinitesimal increment of area due to the infinitesimal
increments do and dy, du is evidently the sum of two thin strips added on to the two
sides. For, in-du = ydz + zdy (multiplying (4) by dt),

ydz = area of vertical strip, and Ayl

xzdy = area of horizontal strip.
But the total increment Au due to the incrementsderand ¥
dy is evidently 5, _ ydx + zdy + dedy.
Hence the small rectangle in the upper right-hand corner
(= dxdy) is evidently the difference between Au and du.
This figure illustrates the fact that the total increment and the total differential of a
function of several variables are not in general equal.

127. Differentiation of implicit functions. The equation

&) f(@y)=0
defines either = or y as an implicit function of the other.* It repre-
sents any equation containing x and y when all its term¢ have been
transposed to the first member. Let

(B) u=rf(@ y;
du  ou | oudy
F St il

* We assume that a small change in the value of » causes only a small change in the
value of y.

(53), p- 196

then
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But from (4), [f(z y)=0. ...u=0 and % = 0; that is,
z
ou  oudy
—4+—===0.
© P or + oy dz
: 0 y *
Solving*for = we get ou
dy X ou
57 y__a L
(37) ax oa’ | 2y +
oy

a formula for differentiating implicit functions. This formula in
the form (C) is equivalent to the process employed in § 62, p. 69,
for differentiating implicit functions, and all the examples on p. 70
may be solved by using formula (57). Since

€) S@y=0
for all admissible values of x and y, we may say that (57) gives the
relative time rates of change of x and y which keep f(x, y) from changing
at all. Geometrically this means that the point (2, ) must move on
the curve whose equation is (D), and (57) determines the direction -
of its motion at any instant. Since

u=f(@ ¥,
we may write (57) in the form of
(57a) .d;l/ — D_x . @ )
dx ?I oy
. s

IrLustraTIVE ExampLE 1. Given x2y* 4 siny = 0, find Z—Z
Solution. Let f(z, y) = 2%y* + siny.

of of

dy 2zy?t
— = 42?83 + cosy. .. from (57a), —=
ox oy vt v ( ) dx

= 2zyt, PRl A
4 42%y3 + cosy

Ans.

IcvLustrATIVE ExaMprLE 2. If z increases at the rate of 2 inches per second as it
passes through the value z = 3 inches, at what rate must y change when y =1 inch,
in order that the function 2 zy2? — 3 22y shall remain constant ?

Solution. Let f(z, ¥) = 22y? — 32%y; then

g: 2y% — 6zy, o _ 4y — 32,
or oy

Substituting in (57 a), dy
dy _ 2y*— 6y _E_ 2y? — 6xy

=— sy OT =—_——-—
dz 4y — 32 dz 4y — 32
dt
dz . dy

Butz =38, y=1, i 2. . i 24 ft. per second. Ans.

By (33), p. 141

0 0
* It is assumed that a—z and o exist.

oy
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Let P be the point (z, y, 2) on the surface given by the equation
(B) u=F(z, y, 2)=0,
and let PC and 4P be sections made by planes through P parallel to
the Y0Z- and XOZ-planes respectively. Along the curve 4P, y is
constant; therefore, from (&), #z is an im- z

plicit function of z alone, and we have,
from (57a),

oF

oz ax

58 S
(98) % oF
0z

giving the slope at P of the curve 4P, § 122, p. 190.
? is used instead of % in the first member, since z was originally,
z z

from (X)), an implicit function of z and y; but (58) is deduced on the
hypothesis that y remains constant.
Similarly, the slope at P of the curve PC is

oF
(59) 9z __ %,
9] oF

2z

EXAMPLES

Find the total derivatives, using (51), ‘(52), or (63), in the following six examples:

1. u=224+y*+2zy,z=sinz,y=¢*  Ans. %:3e3$+ ex(sinx + cos ) + sin 2.
du e*(14 x)
2. u= tan (z EX Ans. — = .
u = arc tan (zy), ¥ &= 14 e
. du
3. u = log(a%— p?), p = asind. @ 2 tan 6.
4, u =124 vy, v=1logs, y =es. %=2v+y+ves‘
6. u =arcsin(r — 8), r = 8¢, s = 413, d_u: 8 .
a vi—g
e=(y —2) . du .
U =—>"—",y =asine, 2 =cosx. — = e*sin .
6. u @211 ' Y y % iz

Using (55) or (56), find the total differentials in the next eight examples:
7. u=by?x +cx? ¥ gy + ex. Ans. du = (by? + 2cx + €)dz + (2byx + 3gy?)dy.
8. u=logav. du = i—{,dx + log zdy.
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9. u = ysinz, Ans. du = ysinzlog y cos xdx + ;;?c:z

10. u = xlogv, du=u (Ioﬂdw + lggfdy) .
£ Y

11,u_:3+t, du:w.

s—t (s —1)?

12. u = sin (pq). du = cos (pq) [qdp + pdgq].

13. u = vz, du = arz—1(yzdx + zzlog zdy + zy log xdz).

14. u = tan? ¢ tan24 tan?y. du:4u< .d(p 'd0 _d'p )
sin2¢ sin26  sin2y

15. Assuming the characteristic equation of a perfect gas to be
v = Rt,‘

where v = volume, p = pressure, ¢{ = absolute temperature, and R a constant, what is
the relation between the differentials dv, dp, dt ? Ans. vdp + pdv = Rdt.

16. Using the result in the last example as applied to air, suppose that in a given
case we have found by actual experiment that

t = 300° C., p = 2000 lb. per sq, ft., v = 14.4 cubic feet.

Find the change in p, assuming it to be uniform, when ¢ changes to 301°C., and v
to 14.5 cubic feet. R = 96. Ans. — 7.22 1b, per sq. ft.

17. One side of a triangle is 8 ft. long, and increasing 4 inches per second ; another
side is 5 ft., and decreasing 2 inches per second. The included angle is 60°, and
increasing 2° per second. At what rate is the area of the triangle changing ?

Ans. Increasing 71.05 sq. in. per sec.

18. At what rate is the side opposite the given angle in the last example increasing ?
Ans. 4.93 in. per sec.

19. One side of a rectangle is 10 in. and increasing 2 in. per sec. The other side
is 15 in. and decreasing 1 in. per sec. At what rate is the area changing at the end of
two seconds ? Ans. Increasing 12 sq. in. per sec.

20. The three edges of a rectangular parallelepiped are 3, 4, 5 inches, and are each
increasing at the rate of .02 in. per min. At what rate is the volume changing ?

21. A boy starts flying a kite. If it moves horizontally at the rate of 2 ft. a sec.
and rises at the rate of 5 ft. a sec., how fast is the string being paid out ? )
Ans. 5.38 ft. a sec.

22. A man standing on a dock is drawing in the painter of a boat at the rate of 2
ft. a sec. His hands are 6 ft. above the bow of the boat. How fast is the boat moving
when it is 8 ft. from the dock ? Ans. 3§ ft. a sec.

23. The volume and the radius of a cylindrical boiler are expanding at the rate
of 1 cu. ft. and .001 ft. per min. respectively. How fast is the length of the boiler
changing when the boiler contains 60 cu. ft. and has a radius of 2 ft. ?

Amns. .078 ft. a min.

24. Water is running out of an opening in the vertex of a conical filtering glass,
8 inches high and 6 inches across the top, at the rate of .005 cu. in. per hour. How
fast is the surface of the water falling when the depth of the water is 4 inches ?
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25. A covered water tank is made of sheet iron in the form of an inverted cone
of altitude 8 ft. surmounted by a cylinder of altitude 5 ft. The diameter is 6 ft. If
the sun’s heat is increasing the diameter at the rate of .002 ft. per min., the altitude
of the cylinder at the rate of .003 ft. per min., and the altitude of the cone at the rate
of .0025 ft. per minute, at what rate is (a) the volume increasing ; (b) the total area
increasing ?

In the remaining examples find Z—gz » using formula (57 a):

dy r 22?4+ y?)— a?

26. (x2 2)2 — a2 (x2 — y2) = 0. Ans, 2 =_2 22" TI)— 2 |
(@ + %) (® —¥?) I V@I T

' dy ex—y
27. ev — e+ a2y = 0. == .
+ &y ) dr ev+x

dy _ y[cos(zy) — e¥ — 2z]

28. sin (zy) — e — a2y = 0. .
=) v dr  x[x+ e — cos(zy)]

128. Successive partial derivatives. Consider the function

u=f(9;
then, in general,

ou ou

— and —

ox oy

are functions of both # and gy, and may be differentiated again with
respect to either independent variable, giving successive partial deriva-
tives. Regarding z alone as varying, we denote the results by

ox?’ o® ot 0w’
or, when y alone varies,
o oyt oyt oy’

the notation being similar to that employed for functions of a single
variable.

If we differentiate » with respect to z, regarding y as constant, and
then this result with respect to y, regarding « as constant, we obtain

2,
2 (o » which we denote by ﬂ
oy\ox oy

Similarly, if we differentiate twice with respect to z and then once
with respect to g, the result is denoted by the symbol
u
oyox’
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129. Order of differentiation immaterial. Consider the function
f(z, y). Changing = into x 4+ Az and keeping y constant, we get from
the Theorem of Mean Value, (46), p. 166,

4 fle+Az, ) —f(zy)=2x-fl(x+6-Az,y). 0<6<1

a=2x,Aa= Az, and since z varies while y remains con-
stant, we get the partial derivative with respect to a.

If we now change y to y +Ay and keep z and Az constant, the
total increment of the left-hand member of (4) is

(B) [f(z+Ar, y+Ay)—f(z, y+Ap)]—[f(e+Az, ) —f(z )]
The total increment of the right-hand member of (4) found by the

Theorem of Mean Value, (46), p. 166, is
(C) Azfl(x+0-Az, y +Ay) —Axf, (z+6 - Az, y) 0<6<1
=AyAzf,). (x40, - Az, y + 0, - Ay). 0<6,<1

a=1, Aa= Ay, and since y varies while  and Az 1‘emain]
constant, we get the partial derivative with respect to y.

Since the increments (B) and () must be equal,

D) [f(z+Az, y+Ay)—f (= y+Ay)]—[f(z+Az, ) —f(zy)]
=AyAzf, (x+0,. Az, y +0,- Ay).

In the same manner, if we take the increments in the reverse order,

(&) [f(e+Az y+Ay)—f(z+Az, )] —[f (% y+Ay) —f(z, 9)]
=AzAyfl) (x40, Az, y + 0, - Ay),

0, and 6, also lying between zero and unity.
The left-hand members of (D) and (E) being identical, we have

(F) fr(z+0, Az, y+0,-Ay)=fl, (x+0,- Az, y +0, - Ay).

Taking the limit of both sides as Az and Ay approach zero as limits,
we have

(D I (@ =1 @ 9,
since these functions are assumed continuous. Placing
u=f (= ¥)»
(@) may be written
2 2
(60 ru _ du
oydx  dxdy

That is, the operations of differentiating with respect to x and with
respect to y are commutative.
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This may be easily extended to higher derivatives. For instance,
since (58) is true,

w0/ Pu\_ w9 fow\_ P fouw\_
02°0y  ox\owdy) oxdyox owoy\ox) oyox\ox) oyort

Similarly for functions of three or more variables.

: . o O o%u
IrLusTraTIVE ExaMPLE 1. Given u = x8y — 3 2293 ; verify = .
oyor  oxoy
2
Solution. o _ 32y — By’ S _ 322 — 18 xy2,
or oyoxr
2
ou =8 — 9u2y?, ou = 822 — 18xy?; hence verified.
oy oxroy
EXAMPLES
%u _ %
1. w=cos(x H verif -
@+y); Y vz~ ooy
2 2 2: 2.
2. y__+x’ verifyau:au.
y2—x? oyor oxoy
o%u o%u
3. u=ylog(l+ xy); verif; = .
ylog(1+zy); Y syon = saoy
r Bu o%u
4., u = arctan-; verif
* s’ Y ories - asort
u odu
b. u = sin (62¢) ; verif —_ .
u = sin(6%9) Y 2004 24%06
o*u

6. u = 6exy?z 4 3 evr2z2 4 2 ezxdy — xyz ; show that 3 =12 (exy + evz + e*x).

x20y0z

Bu
7. u = e¥=; show that = (1 4 3xyz + z2y22%)u.
’ oxdyod (1+ 3ayz + 2%y"27)

2 2 2
S.u:m ;showthata:—+ au:2a_u.
T4y ox? oxoy ox
9. u=(x%+ y?)§ show that 330— +3 a L o _ 0
0x0 ag/2 oy
« v z u @ oy oz
10. u = y2z2e2 + z2x%e2 + w2y%?; show that mé =e2+ e 4 €.
2u  %u %
11, u = (22 + y2 + 2%)~%; show that— + — 4+ ——=0.
u=(z%+y?+ 2%~ P >+ P + P



CHAPTER XVI
ENVELOPES

130. Family of curves. Variable parameter. The equation of a
curve generally involves, besides the variables # and y, certain con-
stants upon which the size, shape, and position of that particular
curve depend. For example, the locus of the equation

() (0 — )+ y'=1"
is a circle whose center lies on the axis of X at a distance of @ from
the origin, its size depending on the radius ». Suppose « to take on

a series of values; then we shall have a ¥
corresponding series of circles differing 4 envelope B

) o L S :;.;:;z?‘\\\
11}11 theu: dlitanfces from the origin, as rf{"‘% i ﬂ'%'%‘\\\ -
shown in the figure. . . \\\\\‘!‘!‘&. !‘!‘Q‘W

Any system of curves formed in this S

. X [0 envelope D
way is called a family of curves, and the
quantity @, which is constant for any one curve, but changes in pass-
ing from one curve to another, is called a variable parameter.

As will appear later on, problems occur which involve two or more
parameters. The above series of circles is said to be a family depending
on one parameter. To indicate that a enters as a variable parameter it
is usual to insert it in the functional symbol, thus:

Sz, y, )=0.

131. Envelope of a family of curves depending on one parameter.
The curves of a family may be tangent to the same curve or groups
of curves, as in the above figure. In that case the name envelope of
the family is applied to the curve or group of curves. We shall now
explain a method for finding the equation of the envelope of a family
of curves. Suppose that the curve whose parametric equations are

€Y r=¢(2), y=v¥()
touches (i.e. has a common tangent with) each curve of the family
€ f(@y =0,

206
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the parameter @ being the same in both cases. The slope of (4) at
any point is
dy _¥'(®)
(C) dz - qS’(a) ’ (D)’ p- 80
and the slope of (B) at any point is
by _ L&y @)
(D) - = P g @ (57a),p.199

Hence if the curves (4) and (B) are tangent, the slopes (C) and
(D) will be equal (for the same value of ), giving

V(@ fimya,
¢'(a), So(@ y, @)
€] i@, g, @) §'(@) + Sy (@ ¥ @) ¥ (@) =0.
By hypothesis (4) and (B) are tangent for every value of a; hence
for all values of @ the point (=, y) given by (4) must lie on a curve

of the family (B). If we then substitute the values of z and y from
(4) in (B), the result will hold true for all values of a; that is,

) Sfle (@), ¥ (@), a]=0.

The total derivative of (#) with respect to @ must therefore vanish,
and we get

@ Sfo(@ g, ) ¢'(@) + 1y (@ y, )V (@) +So(z, g, @)= 0,
where z = ¢ (@), y =Y ().

Comparing (£) and (@) gives

(i) i@ g, @)=0.

Therefore the equations of the envelope satisfy the two equations -
(B) and (H), namely,

€)) Sy, 2)=0 and fl(z, y, a)=0;
that is, the parametric equations of the envelope may be found by
solving the two equations (I) for z and y in terms of the parameter a.

General directions for finding the envelope.

First StEP. Differentiate with respect to the variable parameter, con-
sidering all other quantities tnvolved in the given equation as constants.

Secoxp Strp. Solve the result and the given equation of the family of
curves for z and y in terms of the parameter. These solutions will be the
parametric equations of the envelope.
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Note. In case the rectangular equation of the envelope ts required we
may either eliminate the parameter from the parametric equations of the
envelope, or else eliminate the parameter from the given equation (B) of
the family and the partial derivative (H).

ILLustraTivE Exampre 1. Find the envelope of the family of straight lines
zcosa + ysina = p, a being the variable parameter.

Solution. (4) xcosa + ysina=p.

First step. Differentiating (4) with respect to «a,

(B) —zxsina 4 ycosa =0.

Second step. Multiplying (4) by cos a and (B) by sin @ and subtracting, we get
r=pcosa.

Similarly, eliminating z between (4) and (B), we get 1(
y =psinca. : <

The parametric equations of the envelope are therefore

© [rome :
y = psin a,

<

a being the parameter. Squaring equations (C) and add-
ing, we get 22 + 2 = p?,

the rectangular equation of the envelope, which is a circle.
IrLusTrRATIVE Exampre 2. Find the envelope of a line of constant length «, whose
extremities move along two fixed rectangular axes.
Solution. Let AB = a in length, and let
(4) rcosa + ysina—p=0

be its equation. Now as 4B moves always touching the two axes, both « and p
will vary. But p may be found in terms of @. For A0 = ABcosa =acosa, and
p=A0sin@ = asina cosa. Substituting in (4),

(B) xcosa+ysina—asinacosa =0,

" where a is the variable parameter. Differentiating (B)
with respect to a,

(C) —xsina + ycosa -+ asin?a — a cos?a = 0.

Solving (B) and (C) for # and y in terms of a, we get

) {a: =a sinia,
Yy = a cos® a,

the parametric equations of the envelope, a hypocycloid.

The corresponding rectangular equation is found from equations (D) by eliminat-
ing a as follows:

z¥ = ak sina.
y¥ = a¥ cos? a.
Adding, z¥ + y¥ = af,

_ the rectangular equation of the hypocycloid.
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IrvusTrATIVE Exampre 1. Find the rectangular equation of the envelope of the

straight line y = mx + —7% » where the slope m is the variable parameter.
. _ p
Solution. Yy =mr+ —.
m

First step. 0=x— %
m

Solving, m=4 \/%

Substitute in the given equation,

y:iJg.xi\/%.p:i?_ﬁ\/px,

and squaring, y* = 4px, a parabola, is the equation of the envelope. The family of
straight lines formed by varying the slope m is shown in the figure, each line being

tangent to the envelope, for we know from Analytic Geometry that y =mx +% is

the tangent to the parabola y? = 4 px expressed in terms of its own slope m.

132. The evolute of a given curve considered as the envelope of its
normals. Since the normals to a curve are all tangent to the evolute,
§ 118, p. 181, it is evident that the evolute of a
curve may also be defined as the envelope of its
normals ; that is, as the locus of the ultimate
intersections of neighboring normals. It is also
interesting to notice that if we find the para-
metric equations of the envelope by the method
of the previous section, we get the codrdinates
z and y of the center of curvature; so that we
have here a second method for finding the covr-
dinates of the center of curvature. If we then eliminate the variable
parameter, we have a relation between z and y which is the rectan-
gular equation of the evolute (envelope of the normals).

s1pw.L0yu fo 2d0gaad

D
‘veycurv®

IrusTrATIVE ExampiLe 1. Find the evolute of the parabola y2 = 4 pr considered
as the envelope of its normals.

Solution. The equation of the normal at any point (z’, ¥’) is

’

y, 7
—_— = (rx—2x

from (2), p. 77. As we are considering the normals all along the curve, both 2’ and y”
will vary. Eliminating 2’ by means of 3’2 = 4 px’, we get the equation of the normal to be
vy

A y—y ==— — .
(4) V-V =55 "2y
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Considering y’ as the variable parameter, we wish to find the envelope of this
family of normals. Differentiating (4) with respect to ¥’,

1.3y =
T8p 2p
and solving for z,
3972 1 8p2
(B) g= oY T8
4p
Substituting this value of x in (4) and solving for y,
__r
(©) V=g

(B) and (C) are then the codrdinates of the center of curvature of the parabola.
Taken together, (B) and (C) are the parametric equations of the evolute in terms of
the parameter y’. Eliminating y” between (B) and (C) gives

27 py? = 4 (x — 2p)?,

the rectangular equation of the evolute of the parabola. This is the same result we
obtained in Illustrative Example 1, p. 183, by the first method.

133. Two parameters connected by one equation of condition. Many
problems occur where it is convenient to use two parameters con-
nected by an equation of condition. For instance, the example given
in the last section involves the two parameters 2’ and y' which are
connected by the equation of the curve. In this case we eliminated
2/, leaving only the one parameter y'.

However, when the elimination is difficult to perform, both the
given equation and the equation of condition between the two param-
eters may be differentiated with respect to one of the parameters,
regarding either parameter as a function of the other. By studying
the solution of the following problem the process will be made clear.

ILLusTRATIVE ExamMprLE 1. Find the envelope of the family of ellipses whose axes
coincide and whose area is constant.

Y]
2 2
Solution. (4) Z +¥ =1 f
a? b? /
is the equation of the ellipse where a and -
b are the variable parameters connected by o
the equation o
(B) b =, ASSS
7rab being the area of an ellipse whose semi- BN o T ] 22X
axes are o and b. Differentiating (4) and e
(B), regarding a and b as variables and 2 and T
y as constants, we have, using differentials, L
22da  y2db N
PRk 0, from (4), k
and  bda + adb = 0, from (B). ’
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Transposing one term in each to the second member and dividing, we get
PLIY
@ = E .
2 2
Therefore, from (4), z_ 1 and v_ 1
a? 2 b 2
giving a=+2V2and b=1y V2.

’

Substituting these values in (B), we get the envelope
Ty =4+ L
T TFor’

a pair of conjugate rectangular hyperbolas (see last figure).

EXAMPLES

1. Find the envelope of the family of straight lines y = 2max + m#, m being the
variable parameter. Ans. x=—2md, y =— 3m*; or 16y3 + 27t = 0.*

2. Find the envelope of the family of parabolas y% = a(z — a), a being the
variable parameter. Ans. z=2a,y=4a; ory =4 1.

3. Find the envelope of the family of circles z% 4 (y — 8)2 =2, B being the
variable parameter. Ans. x =4 1.

4. Find the equation of the curve having as tangents the family of straight lines
y =mx + Vam? + 12, the slope m being the variable parameter.
. Ans. The ellipse b2z* + a2y? = a?b2.

5. Find the envelope of the family of circles whose diameters are double ordi-
nates of the parabola y? = 4 pz. Ans. The parabola y% = 4p (p + x).

6. Find the envelope of the family of circles whose diameters are double ordi-
i 202 222 — q2p2 2 2
nates of the ellipse b2z? + «?y® = a2b2. Ans. The ellipse z i Y

— =1,
a2 02

7. A circle moves with its center on the parabola y? = 4 az, and its circumference

passes through the vertex of the parabola. Find the equation of the envelope of the
circles. Ans. The cissoid y? (x + 2a) + 23 = 0.

8. Find the curve whose tangents are y = lr i\/ m, the slope ! being
supposed to vary. Ans. 4(ay? + bry + cx?) = 4ac — V2.
9. Find the evolute of the ellipse 0222 4+ a?y? = a2?, taking the equation of nor-
ial in the form by = ax tan ¢ — (a2 — V%) sin ¢,
the eccentric angle ¢ being the parameter.

b2 — a?

2 _ B2
Ans. 2 =2 b costo, y =

sinf g5 or (an)t + @)t = (@ — 1)},

10. Find the evolute of the hypocycloid zt + yi‘ = aﬁ‘, the equation of whose
normal is

ycosT —zsinT =acos2T,
T being the parameter. Ans. (x + y)* + (. — y)* =2adf.

* * When two answers are given, the first is in parametric form and the second in rec-
tangular form.
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11. Find the envelope of the circles which pass through the origin and have
their centers on the hyperbola z? — y2 = c2.

Ans. The lemniscate (22 + y2)? = 4¢2 (22 — y?).

12. Find the envelope of a line such that the sum of its intercepts on the axes

equals c. Ans. The parabola zt + y’} =t

13. Find the equation of the envelope of the system of circles 22 + 2 — 2 (a 4 2)
+ a? = 0, where « is the parameter. Draw a figure illustrating the problem.
Ans. y?2 =4uzx.

14. Find the envelope of the family of ellipses ?x? + a%y? = a?b?, when the sum
of its semiaxes equals c. Ans. The hypocycloid ot + ya“ =ck.

15. Find the envelope of the ellipses whose axes coincide, and such that the dis-
tance between the extremities of the major and minor axes is constant and equal to L.
Ans. A square whose sides are (r 4 y)? = 2.

16. Projectiles are fired from a gun with an initial velocity v,. Supposing the gun
can be given any elevation and is kept always in the same vertical plane, what is the
envelope of all possible trajectories, the resistance
of the air being neglected ?

Hint. The equation of any trajectory is

2
y=xtana— —;ﬂ— ’
: 295 cos? ar
@ being the variable parameter. u2 .
. gz
Ans. The parabola y = = — 2—_. [9) X
P V=297 2 vE I -

17. Find the equation of the envelope of each of the following family of curves,
t being the parameter ; draw the family and the envelope :

@ @—h+y2=1—1 (i) (@— 02+ % =4t

() 22 + (y — 1)2 = 21. G) 2+ @—1t)2=4—t2
© @@=t +y2=312—-1. (k) (@—t)2+ (y— )2 =12
@) 2* + (y — )=} O =0+ @+) =1
(e) y =t + 2. (m) y =t% + ¢.

) =21y + t4 m) y=t(x—21).

@ y=to+ - @ o=Y+t

(h) y* =t +29). ®) @—t)2+4y2=t.



CHAPTER XVII
SERIES

134. Introduction. A series is a succession of separate numbers
which is formed according to some rule or law. Each number is
called a term of the series. Thus

1, 2, 4, 8 ..., 20t

is a series whose law of formation is that each term after the first is
found by multiplying the preceding term by 2; hence we may write
down as many more terms of the series as we please, and any particu-
lar term of the series may be found by substituting the number of that
term in the series for n in the expression 2"~?, which is called the
general or mth term of the series.

EXAMPLES
In the following six series:
(a) Discover by inspection a law of formation ;
(b) write down several terms more in each ;
(c) find the nth or general term.

Series nth term
1.1,8, 9,27, ---. gn—1,
2. —a, +a% —ad +at ---. (— ayn
3.1,4,9 16, -... n.
2 3 4
PR L o,
2 3 4 n
5.4 —2, +1, — 4, ---. 4(— -1
3y by Ty3 2n 41
6- _—y /Iy T A "'o
2 5 10’ 712+1y

Write down the first four terms of each series whose nth or general term is given
below :

nth term Series
7. nixn. z, 422, 93, 1624,
8. = g’ z2 , a8 , xt )
14+Vn 2 14+vV2 1+V3 1+V4
o.n%2, 845 0
nd+1 2 9 28 65

212
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n 1 2 3 4
10. 5‘ —2~: Z) gy 1—6- v
11 (log a)ra loga-z log%a-x? logla-z® logta.axt
T 1 2 8 T e
12 ( 1)71—193’71— ) x2 x4
- [2r—1 ENE E
135. Infinite series. Consider the series of n terms
1 1 1 1
D SR AT
and let .S, denote the sum of the series. Then
' 1,1 1
B S,=1
B + + 1 +3 3 +ort = CTE
Evidently S, is a function of n, for
when n=1, § =1 =1,
1
when n= 2, 8'2:1-{-@ =11,
, 1 1
when n=3, S,= 14+= 3 1 =1§,
1 1 1
when n=4, §,= 1+2+Z 3 =11,
1 1 1 1 1 &
when n=mn, S,=14= +4+8+ +¢)"—1 :2—F.

Mark off points on a straight line whose distances from a fixed
point 0 correspond to these different sums. It is seen that the point

0 1
: 5

1
‘SZ
corresponding to any sum bisects the distance between the preceding
point and 2. Hence it appears geometrically that when n increases
without limit - limit S, = 2.

1t 13 2

)

Sy 8

We also see that this is so from arithmetical considerations, for

limit 1\ ¢
Tmit (3 1)

[Slnce when 7 increases without limit 71 approaches zero as a llmxt.]

limit Sn _
n =

* Found by 6, p. 1, for the sum of a geometric series.

1 Such a result is sometimes, for the sake of brevity, called the sum of the series; but
the student must not forget that 2 is not the sum but the limit of the sum, as the number of
terms increases without limit.



214 DIFFERENTIAL CALCULUS

We have so far discussed only a particular series (4) when the
number of terms increases without limit. Let us now consider the
general problem, using the series

) Uy Uy U

o Yo o
whose terms may be either positive or negative. Denoting by S, the
sum of the first » terms, we have

S,=u +u,+u 4+ +u,
and S, is a function of n. If we now let the number of terms (= n)
increase without limit, one of two things may happen : either

Case I. S, approaches a limit, say «, indicated by
limit S

n= o Su=1u; OF

Case II. S, approaches no limit.

In either case () is called an ¢nfinite series. In Case I the infinite
series is said to be convergent and to converge to the value u, or to have
the value w, or to have the sum u. The infinite geometric series dis-
cussed at the beginning of this section is an example of a convergent
series, and it converges to the value 2. In fact, the simplest example

of a convergent series is the infinite geometric series

a, ar, ar, a®, ar', -..,

where r is numerically less than unity. The sum of the first » terms
of this series is, by 6, p. 1,
S:a(l—r")z a ar®

" 1—7r 1—r 1—7

If we now suppose » to increase without limit, the first fraction on
the right-hand side remains unchanged, while the second approaches
zero as a limit. Hence  y;,.:1 a

= )
n=wo " 1—7r

a perfectly definite number in any given case.

In Case II the infinite series is said to be nonconvergent.* Series
under this head may be divided into two classes.

First Crass. Divergent series, in which the sum of » terms increases
indefinitely in numerical value as » increases without limit; take for
example the series

S,=1+2+8+...4+n

* Some writers use divergent as equivalent to nonconvergent.
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As n increases without limit, S, increases without limit and there-
fore the series is divergent.

Seconp Crass. Oscillating series, of which
S=1—-14+1—-1+4 ... 4 (=1

is an example. Here S, is zero or unity according as » is even or odd,
and although S, does not become infinite as n increases without limit,
it does not tend to a limit, but oscillates. It is evident that if all the
terms of a series have the same sign, the series cannot oscillate.

Since the sum of a converging series is a perfectly definite number,
while such a thing as the sum of a nonconvergent series does not ex-
ist, it follows at once that it is absolutely essential in any given prob-
lem involving infinite series to determine whether or not the series is
convergent. This is often a problem of great difficulty, and we shall
consider only the simplest cases.

136. Existence of a limit. When a series is given we cannot in
general, as in the case of a geometric series, actually find the number
which is the limit of S, But although we may not know how to
compute the numerical value of that limit, it is of prime importance
to know that a limit does exist, for otherwise the series may be non-
convergent. When examining a series to determine whether or not it
is convergent, the following theorems, which we state without proofs,
are found to be of fundamental importance.*

Theorem I. If S, is a variable that always increases as n increases,
but always remains less than some definite fived number A, then as n
increases without limit, S, will approach a definite limit which is not
greater than A.

Theorem II. If S, is a variable that always decreases as n increases,
but always remains greater than some definite fixed number B, then as n
increases without limit, S, will approach a definite limit which is not less
than B.

Theorem III. The necessary and sufficient condition that S, shall
approach some definite fixred number as a limit as n increases without
limit s that -
e (14— 8)=0

n=aw®
JSor all values of the integer p.

* See Osgood’s Introduction to Infinite Series, pp. 4, 14, 64.
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137. Fundamental test for convergence. Summing up first » and
then n + p terms of a series, we have '

(@D) S,=u,+u,+u+ - 4u,.

(B) Sopp=wtuw+u+-Ftu+u +- U, .
Subtracting (4) from (B),

) Susp= S = Uy Uyt Uy

From Theorem III we know that the necessary and sufficient condi-
tion that the series shall be convergent is that

limit (S"+p _ ‘S’n) — 0

n=ow
for every value of p. But this is the same as the left-hand mem-
ber of (C); therefore from the right-hand member the condition
may also be written

D) limit WUy y1+tyy -+ u,, )=0.

n = o

Since (D) is true for every value of p, then, letting p =1, a necessary
condition for convergence is that
limit
nlinm () =03
or, what amounts to the same thing,

€2 w () = 0.

Hence, if the general (or nth) term of a series does not approach
zero as n approaches infinity, we know at once that the series is non-
convergent and we need proceed no further. However, (&) is not a
sufficient condition; that is, even if the nth term does approach zero,
we cannot state positively that the series is convergent; for, consider

the harmonic series ) 1 1 1 1
) 3 ’ 3 ’ 1 ) N n
Here JInit () = Jimit (%) =0;

that is, condition (E) is fulfilled. Yet we may show that the harmonie
series is not convergent by the following comparison :

R R e R A R FR R IR L
(@ F+E+I+EHIHd+HE T+ 5]+
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We notice that every term of (&) is equal to or less than the cor-
responding term of (F), so that the sum of any number of the first
terms of (F) will be greater than the sum of the corresponding terms
of (@). But since the sum of the terms grouped in each bracket in
(@) equals }, the sum of (G) may be made as large as we please by
taking terms enough. The sum (&) increases indefinitely as the num-
ber of terms increases without limit; hence (@), and therefore also
(F"), is divergent.

We shall now proceed to deduce special tests which, as a rule, are
easier to apply than the above theorems.

138. Comparison test for convergence. In many cases, an example of
which was given in the last section, it is easy to determine whether or
not a given series is convergent by comparing it term by term with
another series whose character is known. Let

(A) (ol S

be a series of positive terms which it is desired to test for convergence. If
a series of positive terms already known to be convergent, namely,

(B) ot a,tat-,
can be found whose terms are never less than the corresponding terms in

the series (A) to. be tested, then (A) is a convergent series and its sum
does not exceed that of (B).

Proof. Let s,=u+u,+u+---+u,
and S,=a+a+a+- - +a,;
and suppose that Jmit g — 4.

Then, since S, <4 and s, =8,

it follows that s, < 4. Hence, by Theorem I, p. 215, s, approaches a
limit ; therefore the series (4) is convergent and the limit of its sum
is not greater than A.

IrLustraTivE ExamrrLe 1. Test the series

S 1 1 -1 1
C 14— — =~ 4,
) +22+33+44+55+

Solution. Each term after the first is less than the corresponding term of the geo-
metric series

1 1 1 1
D Tdd b dee
(D) totmtataton

which is known to be convergent; hence (C) is also convergent.
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Following a line of reasoning similar to that applied to (4) and
(B), it is evident that, if

() u,+u,+u -

is a sertes of positive terms to be tested, which are nmever less than the
corresponding terms of the series of positive terms, namely,

) b1+62+bs+""
known to be divergent, then (E) is a divergent series.

ILLusTRATIVE ExampLe 2. Test the series

1,1 1
Td =t ——=t =+
vz V3 Vi

Solution. This series is divergent, since its terms are greater than the corresponding
terms of the harmonic series 11 1
14+-4+-+=-..

+ 2 + 3 + Rt

which is known (pp. 216, 217) to be divergent.

IrrustraTivE Examere 3. Test the following series (called the p series) for dif-
ferent values of p:

1 1 1
14— -+ —F....
(@) totntet
Solution. Grouping the terms, we have, when p >1,
o1 1 1 .2 1
TR T T TR TR TS

v iwte T o

tot ot ==

11111i1‘14 1 \2
4r  4p 4P 4p

1 1 1 1 1 1 1 1 1 1 8 1 \3
5+““ﬁ§<w+w+@+@+§+@+a+a—§—QPJ'
and soon. Construct the series
1 1 \2 1 \8
H _ - ven
(H) 1+2F4A~QP_J +-QP_J e

When p >1, series (H) is a geometric series with the common ratio less than unity,
and is therefore convergent. But the sum of (G) is less than the sum of (H), as shown
by the above inequalities ; therefore (@) is also convergent. )

When p =1, series (G) becomes the harmonic series which we saw was divergent,
and neither of the above tests apply.

When p <1, the terms of series (G) will, after the first, be greater than the corre-
sponding terms of the harmonic series; hence (@) is divergent.

139. Cauchy’s ratio test for convergence. Let
4 u+ U, u A

be a series of positive terms to be tested.
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Divide any general term by the one that immediately precedes it;

i.e. form the test ratio —ntl.

n

As n increases without limit, let Hmit %y, =p.

n = o un

I. When p <1. By the definition of a limit (§ 13, p. 11) we can
choose n so large, say » =m, that when n = m the ratio %ﬂ shall

differ from p by as little as we please, and therefore be less than a
proper fraction . Hence

2. -3,
Uy U5 Uy < U7 <2075 <u,r%;

m+3

and so on. Therefore, after the term u,,, each term of the series (4)
is less than the corresponding term of the geometrical series

(B) 'llrmT + ’u’m,r2 + /u‘mr8 + Tt

But since » < 1, the series (B), and therefore also the series (4),
is convergent.*

II. When p>1 (or p=w). Following the same line of reasoning
as in I, the series (4) may be shown to be divergent.

III. When p=1, the series may be either convergent or divergent;
that is, there is no test. For, consider the p series, namely,

1 1. 1 1 1
1
+ = +3p+ + = +(n—|—1)”+
The test ratio is —nt1 —(_" | 1— i_ p;
u, n+1 n+1
limit /%,,,\  limit .

Hence p =1, no matter what value p may have. But on p. 218 we

showed that )0, p > 1, the series converges, and

when p = 1, the series diverges.

Thus it appears that p can equal unity both for convergent and for
divergent series, and the ratio test for convergence fails. There are other
tests to apply in cases like this, but the scope of our book does not
admit of their consideration.

* When examining a series for convergence we are at liberty to disregard any finite
number of terms; the rejection of such terms would affect the value but not the existence
of the limit.
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Our results may then be stated as follows:
Given the series of positive terms

wt+u,+u A+ Futu s
find the limit limit <“_+> —p.

n = 0 U

I. When p <1,* the series is convergent.
II. When p > 1, the series is divergent.
ITI. When p =1, there is no test.
140. Alternating series. This is the name given to a series whose
terms are alternately positive and negative. Such series occur fre-
quently in practice and are of considerable importance.

If Uy — Uy uy— U A
is an alternating series whose terms never tncrease in numerical value,
. limit —
and if mm o U =10,

then the series s convergent.

Proof. The sum of 2% (an even number) terms may be written in
the two forms

A4) 8y, =(u, —u) + (uy—u) +uy—u)+ -+ Uy, _; —uy,), O

(B) Sy=u, — (uy—u) — (U, — %) — =" — Uy,

Since each. difference is positive (if it is not zero, and the assump-
tion ;ir:ni:o u, = 0 excludes equality of the terms of the series), series (4)
shows that §,, is positive and increases with n, while series (B) shows
that S,, is always less than u, ; therefore, by Theorem I, p. 215, S, must
approach alimit less than «, when nincreases, and the series is convergent.

. . 1 1 1
IrrustraTIVE ExamprLe 4. Test the alternating series 1 — é + 3 ~1 4 ..
Solution. Since each term is less in numerical value than the preceding one, and

limit _ limit 1\ _
n= oo(u”) = oo(?;)_ 0,
the series is convergent.

141. Absolute convergence. A series is said to be absolutely or

unconditionally convergent when the series formed from it by making

all its terms positive is convergent. Other convergent series are said

* It is not enough that un +1/u» becomes and remains less than unity for all values of n,
but this test requires that the lmit of u» +1/un shall be less than unity. For instance, in the
case of the harmonic series this ratio is always less than unity and yet the series diverges as
we have seen. The limit, however, is not less than unity but equals unity.

1 The terms of the new series are the numerical (absolute) values of the terms of the
given series.
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to be not absolutely convergent or conditionally convergent. To this
latter class belong some convergent alternating series. For example,

the series 1 1 1 1
l—gtg—mte—
is absolutely comvergent, since the series (C), p. 217, namely,
1 1,1 1
1
+5 +y+ +y+
is convergent. The series
1,1 1 1
l=g+g—1t5—~
is conditionally convergent, since the harmonic series
1.1,1 .1
1
+3 5173 +4+5+

is divergent.

A series with terms of different signsis convergent if the series deduced
Jrom i@t by making oll the signs positive is convergent.

The proof of this theorem is omitted.

Assuming that the ratio test on p. 219 holds without placing any
restriction on the signs of the terms of a series, we may summarize
our results in the following

General directions for testing the series

u,+u,+u+u 4+ +u,+u, A+

When it ts an alternating series whose terms never increase in numer-

1cal value, and if limit
=0,
nN=o n

then the series is convergent.
In any series in which the above conditions are not satisfied, we deter-
mine the form of u, and w, | and calculate the limit

limit /%, .,
)

n

L. When|p|<1, the series is absolutely convergent.
II. When |p|> 1, the series is divergent.
III. When |p|=1, there is no test, and we should compare the. -series
with some series which we know to be convergent, as
at+ar+art+ 4.5 r<1,  (geometric series)
1,1, 1

1+ +5P+ +-5 p>1, (p series)



222 DIFFERENTIAL CALCULUS

or compare the given series with some series which is known to be

de , :
wergent, as 1+1+1+1+... 3 (harmonic series)
2 3 4
1 1 1 .
1+'27,+§+4_,,+"‘5}’<1' (p series)

ILLustrATIVE ExaMprLe 1. Test the series
1+ 1 + L + ! + L +
EretErEtT
1

Solution. Here = U, -1
olution. u"_n—l’ ,,+1_E.

1
limit (M t1\ _ limit [ _® | _ limit (2=2\ _ limit (1) _ 0(= p)
n=o\ u, /] n=o| 1 Tnrn=w\ [ ) n=owo\n/" =P
In -1
and by I, p. 221, the series is convergent.
1 E T h oL, 2 2
2. Test the series — + — 4+ — 4+ ...,
LLUSTRATIVE EXAMPLE S o + 10 + 1% +
. [n In+1
Solution. Here Up = ﬁ” s Up +1 = oot .

P I n+1 o e 1
WI,IEH;(“'-;+ 1) _ rzlgxlfo('; % 10") _ hgut (n + >: o (= p),
= n =o\10¢+1 " [n )T n=0w\ 10
and by II, p. 221, the series is divergent. )

ILLusTrATIVE Exampre 3. Test the series
1 1 1
©) tetsatset
1 g1 = 1
@rn—n2n  "TTEn+)@n+2)
. limit <un+l): limit[ @2n—1)2n ]:w
‘m=o\ u, Grn+D2n+2)

n=ow
This being an indeterminate form, we evaluate it, using the rule on p. 174.

Solution. Here wu, =

[e )

Differentiating, limit (8 n— 2) =2,
n=owo\8n + 6 ©
Differentiating again, ;igﬁ; <g> =1(=p).

This gives no test (III, p. 221). But if we compare series (C') with (@), p. 218,
making p = 2, namely,

1 1 1
(D) 1+§+’3—2+@+"‘,

we see that (C) must be convergent, since its terms are less than the corresponding
terms of (D), which was proved convergent.
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EXAMPLES

Show that the following ten series are convergent s
1 1 1 1 1 1

Lot 45+ 6.1+ —+—rnt+—rx+--.
12022 g 2vV2 3V3 4V4
1 2 3 4 1 1 1 1

2.+ =+ =+ 5+ —_—— ...
stetatat Tt ntea
1 1 1 1 11,11 11

3. —+—+—+--- S e — ..
TzT5atset &3 zmtsmam’t
1 1.3 1.3.5

4. -4 %4 I 9 + Yt .1
3 6 3.6.9 log2 log3 " log4
1 1 1 1 1 1

5 — 4=
B+ 5+ 7+ 10 22—i~32+4,+

Show that the following four series are divergent :
1,11 2 18 14

1L ==+ -ee 8. =+ =+ — +.--.
2+4+6+ 10+102+103+

142 143 144 1 1 1
12. 1 14, 14+ =44 =4 uu,
+1+22+1+32+1+42+ +3+5+7+

142. Power series. A series of ascending integral powers of a vari-
able, say z, of the form

4 a,+ax+ a2x2—|— ax’+ -,
where the coefficients a, a, a, --- are independent of z, is called a
power series in x. Such series are of prime importance in the further
study of the Calculus.

In special cases a power series in 2 may converge for all values of =,
but in general it will converge for some values of z and be divergent for
other values of z. We shall examine (4) only for the case when the
coefficients are such that . .

mit <

a .
1
n + L,
a

n

n=00
where L is a definite number. In (4)
limit <u,,+l> _ limit <a,,+1x"“>_ limit <a,,+1> r— I

n=ow\ u /] n=wo\ a2* | n=w0\ q

Referring to tests I, II, III, on p. 221, we have in this case p = Lz,
and hence the series (4) is

L. Absolutely convergent when | Lz|<1, or |z| < ‘%‘,
II. Divergent when | Lz|>1, or |x|>|%',

III. No test when | Lz|=1, or |x|=‘%’
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We may then write down the following
General directions for finding the interval of convergence of the
power series,
(@) a,+ax+az’+ax’+---.
First StEP. Write down the series formed by coefficients, namely,
a+a+a+a+--+a+a, ,+

Seconp StEP. Calculate the limat

limit (e, ..\ T
n = oo an -

Tairp STEP. Then the power series (A) is

1. Absolutely convergent for all values of = lying between
1 1

L L
II. Divergent for all values of x less than — | greater than +

and +

3 but then we substitute these two values of

III. No test when x = + 1

z in the power series (A) and apply to them the general directions on p. 221.

Note. When L=0, +|=|=+ o and the power series is absolutely

convergent for all values of .

IrLustraTIVE Exampre 1. Find the interval of convergence for the series
22 g8 gt
5) TeEteTet

Solution. First step. The series formed by the coefficients is

(©) l—gtg—gt

Seond i, (1) [ o]
Differentiating, Jii}i:o (— 3 (:i 1)> =2.
Differentiating again, Jlin:‘o(—— g) =—1(=1L).
T hird step. |% = ,_—11 =1.

" By I the series is absolutely convergent when x lies between — 1 and + 1.
By II the series is divergent when x is less than — 1 or greater than 4 1.
By IIT there is no test when = 4 1.
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Substituting =1 in (B), we get

1 1 i 1 1 +
22 Ty g2
which is an alternating series that converges.
Substituting © =—1 in (B), we get

which is convergent by comparison with the p series (p >1).
The series in the above example is said to have [— 1, 1] as the interval of conver-
gence. This may be written — 1=z =1, or indicated graphically as follows:

X7 = 0 —3 x

EXAMPLES

For what values of the variable are the following series Graphical representations of
intervals of convergence *
convergent ?

15, 1442+ a3 +.... Ans. —1l<z<1. —@—I—@—

-1 0 +1
2 23 ozt
16. 2 — 4 — — — 4 -, Ans. —1<z=1. _@_L—_
2+3 4+ -1 0 +1
17. 2+ xt + 2° + 216 4 ..., Ans. —1<z<l1. _@__I__@_
-1 0 +1
2 8
18. 24+ —+—+4---. Ans. —1=x<1. ‘—-l—@—
V2 V3 -1 [N
z?  xd © | +o0
19. 1424+ —+—+--. Ans. All values of z. 4
EMG :
2 4 G -
20.1_‘9 _|_61.__0__|_..., Ans. All'values of 4. & I bty
27« o 3
3 5 7
21. ¢—¢—+¢——¢ + e Ans. All valuesof ¢. o ' oo
B[ ;
2. sina sin8a sin5a_“‘. —o | +o0
12 32 52 0

Ans. Al values of a.

* End points that are not included in the interval of convergence have circles drawn
about them.
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Graphical representations of
intervals of convergence *

cosx cos2x , cos3z

+o
28, XL T T Ans. >0, %
Hint. Neither the sine nor cosine can exceed 1 numer-
ically.
21002 3 -
24.1+zloga+mlo°a+zlog8a+--«. & ] +:
|2 |3 0
Ans. All values of .
. 1 1 1 | 4
2b. Ans. z>1, 1
1+:c+1+a:2+1+a:3+ . 0 +¢i
125 1.8 25 1.3.5 7 ]
26. .2 fadl [t T , }
m+2 3+2-4 5+2-4-6 + -1 0 H

27. 1424+ 2224+ 323 4 ...,

3 xb T
28, & —— 4 — — = F oo,
3+5 7+

29. 10x 4+ 10022 + 100023 + ...,
30. 1+ z+|22%+ 828 4 ....

* End points that are not included in the interval of convergence have circles drawn

about them.



CHAPTER XVIII
EXPANSION OF FUNCTIONS

143. Introduction. The student is already familiar with some
methods of expanding certain functions into series. Thus, by the
Binomial Theorem,

(4) (e +2)'=a*+4ad’c+ 6 a’”+ 4 ad’+ 2,
giving a finite power series from which the exact value of (a+ z)*
for any value of # may be calculated. Also by actual division,

€2 1—i—$=1+x+x2+x"+---+x"‘1+(ﬁ>x",
we get an equivalent series, all of whose coefficients except that
of 2 are constants, n being a positive integer.

Suppose we wish to calculate the value of this function when
z =.5, not by substituting directly in

1

1—2

’

" but by substituting = =.5 in the equivalent series

%) (1+x+x2+x3+---+z”‘1)+<li ):1:".

Assuming » = 8, (C) gives for z=.5

D) = 19921875 + 0078125,

If we then assume the value of the function to be the sum of
the first eight terms of series (C), the error we make is .0078125.
However, in case we need the value of the funection correct to two
decimal places only, the number 1.99 is as close an approximation
to the true value as we care for, since the error is less than .01.
It is evident that if a greater degree of accuracy is desired, all we
need to do is to use more terms of the power series

&) l+z+22+24....

227
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Since, however, we see at once that

=)
1—33 m=.5— =

there is no necessity for the above discussion, except for purposes
of illustration. As a matter of fact the process of computing the
value of a function from an equivalent series into which it has
been expanded is of the greatest practical importance, the values
of the elementary transcendental functions such as the sine, cosine,
logarithm, ete., being computed most simply in this way.

So far we have learned how to expand only a few special forms into
series ; we shall now consider a method of expansion applicable to an
extensive and important class of functions and called Zaylor’s Theorem.

144. Taylor’s Theorem * and Taylor’s Series. Replacing & by =
in (E), p. 167, the extended theorem of the mean takes on the form

(61) f()=Sf(a)+ Cx—l:a)f'(a> + %;)zf”(a) + (x;a)sfm(a) +..

xanl
+(

F=1(a) +(x a) FP(x),

where z, lies between @ and 2. (61), which is one of the most far-
reaching theorems in the Calculus, is called Zaylor’'s Theorem. We
see that it expresses f(z) as the sum of a finite series in (z — a).

The last term in (61), namely g—lﬂ—l J®(x,), is sometimes called

the remainder in Taylor's Theorem after n terms. If this remainder
converges toward zero as the number of terms increases without limit,
then the right-hand side of (61) becomes an infinite power series
called Taylor's Series.t In that case we may write (61) in the form

62) f(x):f(a)+(_"l—l_@fr(a)+(i—lg")_zf,,'(a)_k(i_sﬁffyn(a)_k.“’

and we say that the function has been expanded into a Taylor’s Series.
For all values of = for which the remainder approaches zero as =
increases without limit, this series converges and its sum gives the
exact value of f(2), because the difference (= the remainder) between
the function and the sum of n terms of the series approaches the
limit zero (§ 15, p. 13).

* Also known as Taylor’s Formula.

1 Published by Dr. Brook Taylor (1685-1731) in his Methodus Incrementorum, London,
1715.
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If the series converges for values of z for which the remainder
does not approach zero as n increases without limit, then the limit
of the sum of the series is not equal to the function f(z).

The infinite series (62) represents the function for those values of z,
and those only, for which the remainder approaches zero as the num-
ber of terms tnereases without limit.

It is usually easier to determine the interval of convergence of
the series than that for which the remainder approaches zero; but in
simple cases the two intervals are identical.

When the values of a function and its successive derivatives are
known for some value of the variable, as z=qa, then (62) is used
for finding the value of the function for values of 2 near «, and (62)
is also called the expansion of f(&) in the vicinity of = a.

IrrLustrATIVE Exampie 1. Expand logz in powers of (z — 1).

Solution. flx) =1logz, [f(1)=0;

4 _1 4 —_— .
J@=2s Fy=1;
iy —— L iy — 1
F@=== rri)=-1;

f///(x) — %’ f///(l) = 9.

Substituting in (62), logz =2 —1—3@—1)2+3@—1)3—-... Ans.
This converges for values of z between 0 and 2 and is the expansion of logx in
the vicinity of © =1, the remainder converging to zero.

When a function of the sum of two numbers a and z is given,
say f(a + ), it is frequently desirable to expand the function into
a power series in one of them, say z. For this pirpose we use another
form of Taylor’s Series, got by replacing « by a + 2 in (62), namely,

®3) Ffla+1)=f(d) +ﬁf'<a> + E;f”(a) + E;f”’(a) T

IvLustraTive Exampere 1. Expand sin(a + «) in powers of .

Solution. Here f(a+ x) =sin(a + ).
Hence, placing - z=0,
f(a) =sina,
f’(a) = cosa,
f7(a) =—sina,
S”(a) =— cosa,

Substituting in (61),
3

. . T 2 z
sin(a + x) =sina + -cosa — —sina — cosa 4 -+, Ans.
s PR A
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EXAMPLES *

2
1. Expand e® in powers of x — 2.  Ans. e”=e2+e2(z—2)+eg(m—2)2+~-‘

N

W 0 T Ot W

11.

12.

13.

@) @+hr=2r+naxn—1h +

. Expand 28 — 222 4+ 52 — 7 in powers of z — 1.

Ans. —8 4+ 4@ —1)+ (x—1)% 4+ (x — 1)3.

. Expand 8y% — 14y + Tinpowersof y —3. Ans. — 8+ 4(y — 8) + 3(y — 8)2.
. Expand 522 + Tz + 3 in powers of 2 — 2.  Ans. 87+ 27(z — 2) + 5(z — 2)2.
. Expand 4x% — 1722 + 112 + 2 in powers of & — 4.

. Expand 5y* + 6y — 1792 4 18y — 20 in powers of ¥ + 4.

. Expand e* in powers of 2 + 1.

. Expand sinz in powers of © — a.

. Expand cosz in powers of  — a.

10.

Expand cos(a + ) in powers of z. 22 8
Ans. cos(a 4+ x) = cosa — :z:sina—Ecosa + [Esina RN

Expand log (z + %) in powers of z.

2 3
Ans. log(a;+h):10gh+,§b_ oz

g tamt
Expand tan (z + %) in powers of A.
Ans. tan(x 4+ h) = tanx + hsec?x + A2sec?zrtanx 4 ...

Expand the following in powers of A.

nn—1) n(n—1) (n— 2)
2

E

=252 4 n—=3h3 4 ...,

(b) exth = e= 1+},,+h_2+h_3+... .
ERE

145. Maclaurin’s Theorem and Maclaurin’s Series. A particular case
of Taylor’s Theorem is found by placing @ = 0 in (61), p. 228, giving

) f()=F(0)+ ﬁf'@) + ]":;f"(O) + ]"—_;f"'@) .

R AR ORE A

where z; lies between 0 and z. (64) is called Maclaurin’s Theorem.
The right-hand member is evidently a series in z in the same sense
that (61), p. 228, is a series in z —a.

Placing a =0 in (62), p. 228, we get Maclaurin’s Series,!

©5)  F(x)=F(0)+ éf’(o) + ’]‘:;f"m) + "[;f'"(O) +oe

* In these examples we assume that the functions can be developed into a power series.
1 Named after Colin Maclaurin (1698-1746), being first published in his Treatise of
Fluxions, Edinburgh, 1742. The series is really due to Stirling (1692-1770).
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a special case of Taylor's Series that is very useful. The statements

made concerning the remainder and the convergence of Taylor’s Series

apply with equal force to Maclaurin’s Series, the latter being merely
- a special case of the former.

The student should not fail to note the importance of such an
expansion as (65). In all practical computations results correct to a
certain number of decimal places are sought, and since the process
in question replaces a function perhaps difficult to calculate by an
ordinary polynomial with constant coefficients, it is very useful in sim-
plifying such computations. Of course we must use terms enough to
give the desired degree of accuracy.

In the case of an alternating series (§ 139, p. 218) the error made
by stopping at any term is numerically less than that term, since the
sum of the series after that term is numerically less than that term.

IrLusTraTIiVE ExamprLe 1. Expand cosz into an infinite power series and determine
for what values of z it converges.

Solution. Differentiating first and then placing x = 0, we get

/(@) = cosz, FO =1,
f(il}) =—sin T, f/(O) = 01
f7 (%) =— cosz, J7(0) =—
S (x) = sin, S (0)=0,
Siv(x) = cosw, fiv(0) =1,
f¥(x) =—sinz, SfY(0) =0,
fYi(@@) =— cosx, SfYi(0) =—
ete., ete.

Substituting in (65),
22 gt a:“

(4) cosx_l—l_ E [

Comparing with Ex. 20, p. 225, we see that the series converges for all values of x.
In the same way for sinz.

“(B) smx_w—~ z*
B 0 L

which converges for all values of  (lix. 21, p. 225).*

* Since here f(")(x)=sin <x+ %’r) and f((x;) = sin <a:1 + ’—;’E) » we have, by substituting
in the last term of (64), p. 231,

remainder = E sin (:rl + %) o<y <z
But sin(x; +—2—- can never exceed unity, and from Ex. 19, p. 225, };mi l:i—() for all
values of . Hence limit ® sm (111‘ ) 0
n=o

for all values of x; that is, in this case the limit of the remainder is 0 for all values of x for
which the series converges. This is also the case for all the functions considered in this book.
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IrLusTRATIVE ExamprLe 2. Using the series (B) found in the last example, calcu-
late sin 1 correct to four decimal places.

Solution. Here x =1 radian; that is, the angle is expressed in circular measure.
Therefore, substituting * = 1 in (B) of the last example,

. 1 1 1
sml_l—B+E—E+

Summing up the positive and negative terms separately,

1 = 1.00000- - - [%:0.16667-.-
1 1
=0.00833. . - = 0.00019. . .
[s [7
1.00833 . - T 0.16686- - -
Hence sin1 = 1.00833 — 0.16686 ='0.84147. ..,

which is correct to five decimal places, since the error made must be less thané;
i.e. less than .000003. Obviously the value of sin1 may be calculated to any desired
degree of accuracy by simply including a sufficient number of additional terms.

EXAMPLES

Verify the following expansions of functions into power series by Maclaurin’s
Series and determine for what values of the variable they are convergent:

22 48 gzt
l.ee=142z+ ]: + E + I: e Convergent for all values of z.
:c4 x“ 8
2. cosx =1— E I: |6 E ceel Convergent for all values of z.
3. a*=1+2zloga + @ log’a + o*logia + Convergent for all values of =
T TR TR ' ¢ '
3 J5p5 Tl
4. sinkx = kx — i k : ’% 4o Convergent for all values of w,
Lk2 . Lk3 s '— " k being any constant.
5. ekr=1—Fkx + il ad k LA Convergent for all values of z,
—E_ s L . l— k being any constant.
6. log (1+ )= x——+”i—‘”z+?5__.... Convergent if —1<z=1.
2 3 ozt ‘ 25 .
| 7. 10g(l—z)=—x—§~§—z—g—---. Convergent if —1 =2 <1.
| a8 . 3ab
3 8. arcsina::m+l :?), +%+---. Convergent if —1=g=1.
9 N x5 xT g9
X = —— ..., if —1=z=1.
) arctanr =2 3 + 57 + 9 Convergent if — 1=z =1
4 6
10. sin?z = 22 — 2a + i%i EE Convergent for all values of x.
T
. 92 ot
11. eind =14 ¢ + 55 R Convergent for all values of ¢.
3 6 6
12. efsinf =60 + 62 + 0— — 40 — §i —en, Convergent for all values of 6.
R |
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13. Find three terms of the expansion in each of the following functions :
(a) tanz. (b) secz. (c) ecosz, (d) cos2x. (e) arc cos. (f) a—=.
14. Show that log cannot be expanded by Maclaurin’s Theorem.

Compute the values of the following functions by substituting directly in the equiv-
alent power series, taking terms enough until the results agree with those given below.

15. e =2.7182....
Solution. Let x =1 in series of Ex. 1; then
1 1 1
e=1+1
+1+ @- + E + E + 5 +-
First term = 1.00000
Second term = 1.00000
Third term = 0.50000
Fourth term = 0.16667... (Dividing third term by 3.)
Fifth term = 0.04167-.. (Dividing fourth term by 4.)
Sixth term = 0.00833--. (Dividing fifth term by 5.)
Seventh term = 0.00139. .. (Dividing sixth term by 6.)
Eighth term = 0.00019..., etc. (Dividing seventh term by 7.)

'Adding, e =2.71825... Ans.
16. arctan(}) = 0.1973...; use series in Ex. 9.
17. cos1=0.5403- . .; use series in Ex. 2.
18. c0os10°= 0.9848...; use series in Ex. 2.

19. sin.1 =.0998...; use series a:—zz + u _w7+
T ’ B "

20. arcsinl =1.5708...; use series in Ex. 8.

21. sing =0.7071. - -; use series (B), p. 231.

22. sin.5 = 0.4794...; use series (B), p. 231.

2 3
23.ez=1+2+2 +2+...=7.3891.
27[3

2. Ve=1+41 +_l:+23|§ . = 1.6487.

In more advanced treatises it is shown that, for values of z within
the interval of convergence, the sum of a power series is differentiable
and that its derivative is obtained by differentiating the series term
by term as in an ordinary sum. Thus from (B), p. 231,

. 2 22 2
Smx:x—E-‘-E_E_}.....

Differentiating both sides, we get

2 .
cosz =1—é+l§_ﬁg+...9
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which is the series of Ex. 2, p. 232. This illustrates how we may
obtain a mew power series from a given power series by differentiation.
Differentiating the power series of Ex. 6, p. 282, we obtain,

1

12 —=1—z+2P— 24—

In the same way from Ex. 8, p. 232,

1 1 1.3 " 1.-83.5 ¢
—-—m—l-i-— +2—71 +—~2 16 -

146. Computation by series. I. Alternating series. Exs. 15-24 of
the last exercise illustrate to what use series may be put for pur-
poses of computation. Obviously it is very important to know the
percentage of error in a result, since the computation must necessarily
stop -at some term in the series, the sum of the subsequent terms
being thereby neglected. The absolute error made is of course equal to
the limit of the sum of all the neglected terms. In some series this
error is difficult to find, but in the case of alternating series it has
been shown in § 140, p. 220, that the sum is less than the first of
these terms. Hence the absolute error made is less than the first term
neglected. Fortunately a large proportion of the series used for com-
putation purposes are alternating series, and therefore this easy method
for finding the upper limit of the absolute error and the percentage of
error is available. Let us illustrate by means of an example.

IrLusTrATIVE ExaMPLE 1. Determine the greatest possible error and percentage
of error made in computing the numerical value of the sine of one radian from the

sine series, o
sine=x— I: l_ E

(a) when all terms beyond the second are neglected ;
(b) when all terms beyond the third are neglected.

Solution. Let z =1 in series; then
1 1

1
i 1 =1— —_— “ee
sin B + E E +
(2) Using only the first two terms,
sinl=1—%=2¢=.8333,

the absolute error is less than 1; i.e.<-1—(= .0083), and the percentage of error is
B 120
less than 1 per cent.*

* Since .0083 + .8333 = .01.
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(b) Using only the first three terms,
sinl=1— % + 147 = .841666,

the absolute error is less than é; i.e.<-5—0146 (= .000198), and the percentage of error

is less than J5 of 1 per cent.*
Moreover, the exact value of sin 1 lies between .8333 and .841666, since for an alter-

nating series S, is alternately greater and less than Jlr_m; S

EXAMPLES

Determine the greatest possible error and percentage of error made in computing
the numerical value of each of the following functions from its corresponding series

(a) when all terms beyond the second are neglected ;

(b) when all terms beyond the third are neglected.

1. cos 1. 4. arctanl, 7. ek,
2, sin 2. 5. e2, 8. arctan2.
3. cos}. 6. sin"—;- 9. sin150,

II. The computation of m by series.
From Ex. 8, p. 232, we have

. 1-2° z°
arcsinz =2z + +

p—t

x?

8.5
4.6-7

+ R

1.3
2.3 2.4.5

o

Since this series converges for values of 2 between —1 and +1,
we may let z =1, giving
= 1 1 1/1\ 1.3 1/1V
E"§+§'§<§>+ﬂ'5<§>+“"
or T=31415...
Evidently we might have used the series of Ex. 9, p. 232, instead.
Both of these series converge rather slowly, but there are other series,

found by more elaborate methods, by means of which the correct value
of 7 to a large number of decimal places may be easily calculated.

III. The computation of logarithms by series.

Series play a very important réle in making the necessary calcula-
tions for the construction of logarithmic tables.
From Ex. 6, p. 282, we have

22 22 2t ot
4) log(1+x)_:v——2—+§—z+g_...,

* Since .000198 + .841666 = .00023.
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This series converges for z =1, and we can find log 2 by placing
z=1 in (4), giving

log2=1-t+4—F+L—-14+---

But this series is not well adapted to numerical computation, because
it converges so slowly that it would be necessary to take 2000 terms
in order to get the value of log 2 correct to three decimal places. A
rapidly converging series for computing logarithms will now be
deduced.

By the theory of logarithms,

B) logi_*-z: log (14 2) —log (1 — 2). By 8, p. 2
—z

Substituting in (B) the equivalent series for log(1+42z) and
log(1—2) found in Exs. 6 and 7 on p. 232, we get*

1+ 2 2 Z
) logl_z—2[x+§+g+7+---],
which is convergent when z is numerically less than unity. Let
1+ M M—N
(_D) iTm—TV’ whence x_M—}-N’

and we see that = will always be numerically less than unity for all
positive values of M and N. Substituting from (D) into (C), we get

(E) log% =log M—1log N

M—N 1/M—N\* 1/M— N\°
=Q[M+N+§<M+N)+5<M+N>+'"]’

a series which is convergent for all positive values of 2 and N'; and
it is always possible to choose M and N so as to make it converge
rapidly.

Placing M= 2 and N=1 in (E), we get

1 11,11 11
10g2=2[§+§§+5§:+7§+]_069314718.
[SincelogN=log1=0, and ;;;§=§]

* The student should notice that we have treated the series as if they were ordinary
sums, but they are not; they are limits of sums. To justify this step is beyond the scope of
this book.
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Placing M= 38 and N=2 in (E), we get

10g3=10g2-l—2[1+1 l+1 1

5 3'53 5‘§5+~-~]=1.09861229---.

It is only necessary to compute the logarithms of prime numbers in
this way, the logarithms of composite numbers being then found by
using theorems 7-10, p. 1. Thus

log 8 =log 2°= 3 log 2 = 2.07944154 - - .,
log6=1log38 + log2=1.79175947--..

All the above are Napierian or natural logarithms, ie. the base is
e=2.7182818. If we wish to find Briggs’s or common logarithms, where
the base 10 is employed, all we need to do is to change the base by
means of the formula log,n
log,10
_log,2 0.693...
"~ log, 10 2.302---

log10 n=

=0.301.-..

Thus log,, 2

In the actual computation of a table of logarithms only a few of
the tabulated values are calculated from series, all the rest being
found by employing theorems in the theory of logarithms and various
ingenious devices designed for the purpose of saving work.

EXAMPLES

Calculate by the methods of this article the following logarithms:
1. log.5 =1.6094.... 3. log.24 = 3.1781....
2. log, 10 = 2.3025. - .. 4. log;,5 = 0.6990- . -.

147. Approximate formulas derived from series. Interpolation. In
the two preceding sections we evaluated a function from its equivalent
power series by substituting the given value of z in a certain number
of the first terms of that series, the number of terms taken depending
on the degree of accuracy required. It is of great practical importance
to note that this really means that we are considering the function as
approzimately equal to an ordinary polynomial with constant coefficients.
For example, consider the series

3 x& .’UT

4) sm:c:x—[g—}-gﬁ 7_|_....
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This is an alternating series for both positive and negative values
of . Hence the error made if we assume sin z to be approximately
equal to the sum of the first » terms is numerically less than the
(n+1)th term (§139, p. 218). For example, assume

(B) sinz =z,

and let us find for what values of  this is correct to three places of
decimals. To do this, set .
< .001.

© B

This gives  numerically less than V006 (=.1817); i.e. (B) is cor-
rect to three decimal places when z lies between +10.4° and —10.4°.

The error made in neglecting all terms in (4) after the one in
2"~ is given by the remainder (see (64), p. 230)

3

D szn (z.) 3
(D) Ef (=)

hence we can find for what values of 2 a polynomial represents the
functions to any desired degree of accuracy by writing the inequality

(B) | B| < limit of error,
and solving for , provided we know the maximum value of f“(z,).

Thus if we wish to find for what values of z the formula
3

€) sinz:x——%-

is correct to two decimal places (i.e. error <.01), knowing that
|f®(z)| =1, we have, from (D) and (&),

J1—06[< 01; ie. |x|<\/—,.., or |z|=1.
3

Therefore x—g gives the correct value of sin 2 to two decimal

places if |z|=1; ie. if z lies between + 57° and — 57°. This agrees
with the discussion of (4) as an alternating series.

Since in a great many practical problems accuracy to two or three
decimal places only is required, the usefulness of such approximate
formulas as (B) and (F") is apparent.

Again, if we expand sinz by Taylor’s Seues, (62), p. 228, n

powers of z— a, we get

sin a
sinz=sina+cosa(zr—a)— —L—(:t:—a) +-
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‘

Hence for all values of z in the neighborhood of some fixed value a
we have the approximate formula
(@ sin = sin a 4 cos a (z — a).
Transposing sin @ and dividing by z — a, we get
sinz —sin a
————=cosa.
z—a

Since cos a is constant, this means that

The change tn the value of the sine is proportional to the change in the
angle for values of the angle near a.

For example, let a = 30° =.5236 radians, and suppose it is required
to calculate the sines of 31° and 32° by the approximate formula (G).
Then

sin 31° = sin 30° 4 cos 30° (.01745)*
=.5000 +.8660 x .01745
.5000 +.0151
=.5151.

Il

Similarly, sin 82° = sin 30° + cos 80° (.03490) = .5302.
In general, then, by Taylor’s Series, we have the approximate
formula

@ F(O =5(@ +f(@) (x—a).

If the constant f'(a) # 0, this formula asserts that the ratio of the
increments of function and variable for all values of the latter differing
little from the fixed value a is constant.

Care must, however, be observed in applying (H); for while
the absolute error made in wusing it in a given case may be
small, the percentage of error may be so large that the results are
worthless.

Using one more term in Taylor’s Series we get the approximate
formula

D F@ =@ +f (0 (x—a) +£|§—a)(x—a)“-

*p—a=1°=.01745 radian.
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The values of sin 81° and sin 82° calculated on p. 239 from (G)
are correct to only three decimal places. If greater accuracy than
this is desired, we may use (I), which gives, for f(z)=sinz,

sin a

(D) sinx:sina—l—cosa(x'—a)——l—g—(x—a)“’.
Let a = 30°=.5236 radian.
Then sin 81° = sin 30°+ cos 30°(.01745) — 8“1230 (.01745)?
=.50000 +.01511 —.00008
=.51503.
sin 82° = sin 30°+ cos 30° (.03490) — S13%% 93490y

=.50000 +.03022 —.00030
=.52992,

These results are correct to four decimal places.

EXAMPLES

1. Using formula (H) for interpolation by first differences, calculate the following
functions:
‘ (a) cos 61°, taking a = 60°. (c) sin 85.1°, taking a = 85°.
(b) tan 46°, taking a = 45°, (d) cot 70.3°, taking a = 70°,
2. Using formula (I) for interpolation by second differences, calculate the following
functions: i
(a) sin11°, taking a =10°. (c) cot 15.2°, taking @ = 15°.
(b) cos 86°, taking a = 85°. . (d) tan 69°, taking a = 70°,

3 3 5
3. Draw the graphs of the functions z, x — ‘%—, z— E?’: + [% respectively, and com-

pare them with the graph of sinx.

148. Taylor’s Theorem for functions of two or more variables. The
scope of this book will allow only an elementary treatment of the
expansion of functions involving more than one variable by Taylor’s
Theorem. The expressions for the remainder are complicated and
will not be written down.

Having given the function

D S (@ »,
it is required to expand the function
(€)) S@+hy+k)

in powers of A and .
Consider the function

€)) S@+ ht, y + k).



EXPANSION OF FUNCTIONS 241

Evidently (B) is the value of (C) when t=1. Considering (C) as
a function of ¢, we may write

(D) S(@+ht, y+ k) =F (),
which may then be expanded in powers of ¢ by Maclaurin’s Theorem,
(64), p. 230, giving , ,

t t
) F(t)y=F(0)+tF'(0)+ [2 F'(0)+ B F"0)+---.
Let us now express the successive derivatives of F () with respect

to ¢ in terms of the partial derivatives of F'(¢) with respect to =
and y. Let

() e=z+ W, B=y+ ki;
then by (51), p. 195,
oF da  oF dfS

Flt)y=2222 L 9005,
@ O=%a T8 @
But from (F),

do _ aB_ ;.

(H) E—h and 7 =k;

and since F(t) is a function of 2 and y through « and B,
oF _oFba . OF 0K
ox  oa o oy 0B oy

or, since from (#), 22=1 and %: 1,

oF OF 1 oF _oF

€)) e an 3y P ,8
Substituting in (&) from (I) and (H),
or or
Ft)y=h—+k—-
@ O=hG kT

Replacing 7 (t) by F'(t) in (J ), wWe get

! 2 2
F'(t)= h—+kﬂ_h w7t -l—k +k haF-f-lcaF
oy oz’

oz i)y 0xoy oy*
o'F g F
K L FI(t h"’—— 2 klc—— B-—=
€9 (=g +2 bk
In the same way the third derivative is
o°F o°F o°F
" s 0 3 /2 3 32
@) Fl'(t)y= h + hka x28y+ hk? 8x3y2+k o

and so on for higher derivatives.
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When ¢ = 0, we have from (D), (@), (J), (K), (L),
F(0)=f(=, y), i.e. F(t) is replaced by f(z, y),
#1(0)= hz+k%€,

af "’f

F"(O) hz ?f

8
FII/(O) ]Ls af+ 3 }LQIC f + 3 }& 2 af + ks af
oy’

oxoy*
and so on.
Substituting these results in (£), we get
(’)
©6)  f(x+ht, y+ kO =F(x 1)+ t< s )

?f 2f i
h? 2 hk
+|E< Py axay+ ay>+
To get f(z+ h, y+ k), replace t by 1 in (66), giving Taylor’s Theorem
for a function of two independent variables, :

(67) fx+h y+k)= f(x,y>+h"f "’f

of f f
== 42 hk .
+ |: < oxt + + (7_1/ > + ey
which is the required expansion in powers of A and k. Evidently (67)
is also adapted to the expansion of f(x + A, y + k) in powers of 2 and y
by simply interchanging = with A and y with 2 Thus

(670) S(x+h, y+ k)= f(h, k)+xa—f+ya—f

29 of f
+]:<x o T2 oo TV ak2>+

Similarly, for three variables we shall find

) SOty by 2+ D= fC 4, D)+ h + kD 41
[ ATY f azf 0 O
12
+ E( ax? PRl oz® +2 axay
9 f azf
2 lh .
+ + ayaz) !

and so on for any number cf variables.
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EXAMPLES

1. Given f(z, y) = Ax? + Bzy + Cy?, expand f(x + &, y + k) in powers of & and k.

Solution. _a]_’ =2Az + By, 6_f =Bz + 2Cy;
or oy
2 52 2
O 94, B _p T _s.
aa ooy oyt

The third and higher partial derivatives are-all zero. Substituting in (67),

f@+h y+k)y=Ax? + Bey + Cy* + 24z + By)h + (Bx + 2 Cy)k
+ A% 4 Bhk + Ck?. Ans.

2. Given f(z, ¥, 2) = Aa® + By* + C2%, expand f(z + I, ¥ + m, 2z + n) in powers

of I, m, n.
Solution. - a—f =2 Ax, a—f = 2 By, Z =2Cz;
or oy 1774
2 2 2 2 72 2
—(?1:211, 6_)::21),’ B—Jj:20, af: Of:af:()
ox* cy? 022 o0xoy oyoz  czox

The third and higher partial derivatives are all zero. Substituting in (68),

f@+l,y+mz+n)=Ax? + By®> + C22 + 2 Azl + 2 Bym + 2 Czn
+ A2 4+ Bm? 4+ Cn2. Ans.

3. Given f(z, y) = Vz tan y, expand f(z + %, ¥ + k) in powers of & and k.

4. Given f(z, y, z) = Aa? + By? + C2? + Dxy + Eyz + Fzx, expand f(x + &, y + k,
z + 1) in powers of A, k, I.

149. Maxima and minima of functions of two independent variables.
The function f(z, y) is said to be a mazimum at x=a, y=2> when
f(a, b) is greater than f(z, y) for all values of # and y in the neigh-
borhood of a and &. Similarly, f(a, ) is said to be a minimum at
z=a, y=>b when f(a, b) is less than f(z, ) for all values of z. and
# in the neighborhood of a and é.

These definitions may be stated in analytical form as follows:

If, for all values of A and %k numerically less than some small posi-
tive quantity, ‘

(4) f(a+ h, b+ k) —f(a, b) = a negative number, then f(a, b) is a
mazimum value of f(x, y). If

(B) f(a+h, b+ k)—f(a, b)=a positive number, then f(a, 0) is a
mingmum value of f(z, y).

These statements may be interpreted geometrically as follows: a

int P on the surf . X
poin on the-surface 2=f(z 9)
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is a maximum point when it is * higher ” than all other points on the
surface in its neighborhood, the codrdinate plane X0Y being assumed
horizontal. Similarly, P’ is a minimum point on the surface when it is
“lower ” than all other points on the surface in its neighborhood. It
is therefore evident that all vertical planes through P cut the surface in
curves (as APB or DPE y P

in the figure), each of ™

f ot

which has a maximum HE ﬁ--‘t--- 7
ordinate 2 (= MP) at P. T
In the same manner all :'E
vertical planes through 9

P' cut the surface in
curves (as BP'C or
FP'®), each of which °
has a minimum ordinate
2(=NP") at P. Also,
any contour (as HIJK) cut out of the surface by a horizontal plane
in the immediate neighborhood of P must be a small closed curve.
Similarly, we have the contour LSET near the minimum point P’

It was shown in §§ 81, 82, pp. 108, 109, that a necessary condition
that a function of one variable should have a maximum or a minimum
for a given value of the variable was that its first derivative should
be zero for the given value of the variable. Similarly, for a function
S (=, y) of two independent variables, a necessary condition that f(a, b)
should be a maximum or a minimum (i.e. a turning value) is that for

z=a,y=2", f .
a 2
%) P =0, @_O.

Proof. Evidently (4) and (B) must hold when 2= 0; that is,
S(a+h, b)—f(a, b)

is always negative or always positive for all values of % sufficiently
small numerically. By §$ 81, 82, a necessary condition for this is

}@

that ﬁl— f (2, b) shall vanish for # = a, or, what amounts to the same

thmg, f (z, y) shall vanish for z = @, y = b. Similarly, (4) and (B)
must hold when % =0, giving as a second necessary condition that

a—ay— S(z, y) shall vanish for z=a, y = .
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In order to determine sufficient conditions that f(a, &) shall be a
maximum or a minimum, it is necessary to proceed to higher deriva-
tives. To derive sufficient conditions for all cases is beyond the scope
of this book.* The following discussion, however, will suffice for all
the problems given here.

Expanding f(a+ %, b + k) by Taylor’s Theorem, (67), p. 242, re-
placing z by @ and y by b, we get

D) fla+h b+k)=5(a, b)+hﬁf+ki’_§

+|:< f+277c f+7c£>+1£

where the partial derivatives are evaluated for z=4a, y =35, and R
denotes the sum of all the terms not written down. All such terms
are of a degree higher than the second in % and %.

Since 8f =0 and %: 0, from (C), p. 244, we get, after transpos-

ing f(a, b), . a
(B) f(a+h b+k)—f(a b)=5 <b2 f+o;;c fy+k2 yf>+R

If f(a, b) is a turning value, the expression on the left-hand side of
(&) must retain the same sign for all values of 4 and % sufficiently small
in nymerical value,—the negative sign for a maximum value (see (4),
p- 243) and the positive sign for a minimum value (see (B), p. 243);
i.e. f(a, b) will be a maximum or a minimum according as the right-
hand side of (®) is negative or positive. Now R is of a degree higher
than the second in % and k2 Hence as A and % diminish in numerical
value, it seems plausible to conclude that the numerical value of E will
eventually become and remain less than the numerical value of the sum
of ‘the three terms of the second degree written down on the right-hand
side of (E).T Then the sign of the right-hand side (and therefore also
of the left-hand side) will be the same as the sign of the expression

of G L ¥

r BP==4+2h

@) 3x2+ 8y ay‘z

But from Algebra we know that the quadratic expression
A4+ 2 hkeC + E°B

always has the same sign as 4 (or B) when 4B— C*> 0.

* See Cours d’ Analyse, Vol. I, by C. Jordan.

1 Peano has shown that this conclusion does not always hold. See the article on ** Maxima
and Minima of Functions of Several Variables,” by Professor James Pierpont in the Bulletin
of the American Mathematical Society, Vol. IV.
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2 2 n2
Applying this to (F), 4= 8{, B= a—[, C= of » and we see that

o oy* 0xdy
(F), and therefore also the left-hand member of (), has the same
. P/ &
sign as —%( or — ) when
ox oy

2 2 02 2
B (#Y,
0x” 0y 020y
Hence the following rule for finding maximum and minimum values of a
function f(x, y).
Firsr Srure. Solve the simultaneous equations
Y_o, Yy,
ox oy
Seconp Stre. Calculate for these values of x and y the value of
o'f o°f o\
A=—5"%—(7-)
0x” 0y 0xoy
Trirp Stee. The function will have a
N of (. O
maximum ¢f A >0 and 8—501‘ <0;
z

.. , f
minimum ¢f A >0 and el i
z

neither a maximum nor a minimum ¢f A < 0.
The question is undecided 7f A = 0.*

The student should notice that this rule does not necessarily give
all maximum and minimum values. For a pair of values of z and y
determined by the First Step may cause A to vanish, and may lead to a
maximum or a minimum or neither. Further investigation is therefore
necessary for such values. The rule is, however, sufficient for solving
many important examples.

The question of maxima and minima of functions of three or more
independent variables must be left to more advanced treatises.

ILLusTraTIVE Exampre 1. Examine the function 3 azy — 2% — y3 for maximum

and minimum values. .
Solution. f(@,y) =8ary —a® — yo.

First step. 9[:3(11/—39:2:0, g:3ax—3y2:0.
or 1774
Solving these two simultaneous equations, we get
z =0, T =a,
y=0; y=a.

* The discussion of the text merely renders the given rule plausible. The student should
observe that the case a =0 is omitted in the discussion.
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' &f &f of
Second step. ~ =—6z =1 —3a 9 6y
P ox? ! oxey T oyt vs
&2 2 52 2
faf (of>:36xy——9a2.
6z2 oy? oxoy.
Third step. When ¢ = 0 and y = 0, A =— 9a?, and there can be neither a maxi-

mum nor a minimum at (0, 0).
Whenz =a and y = a, A=+ 27 a?;

=— 6a, we have the conditions

for a maximum value of the function fulfilled at (a, a) Substltutmg rT=a,y=ain
the given function, we get its maximum value equal to a®.

ILLustraTive Exampre 2. Divide a into three parts such that their product shall
be a maximum.

Solution. Letz = first part, ¥ = second part ; then a — (x + y) = @ — & — y = third
part, and the function to be examined is
S y)=zy(@—z—y).
of of

First step. —=ay —2xy — y2=0, —=ar—2xy —22=0.
or oy N
Solving simultaneously, we get as one pair of values x = g, y = (—;
22f 2 2f
Second step. — =23 =a—2x— 2y —— =—2z;
£ ox? Y oxdy Y oy? ’
A=dzy — (@ — 2z — 2y)2.
a a a? . &% 2a
Third step. Whenz =—-andy =—, A=—; =— —, it is seen that
o s ER A ar 8

our product is a maximum when z =

w[@

yyY = g. Therefore the third part is also g, and

. .oad
the maximum value of the product is Fr

EXAMPLES
1. Find the minimum value of &2 4+ xy 4+ ¥? — ar — by. Ans. 1(ab — a2 — 0?).

. . . .. 37T -
2. Show that sinz + siny + cos (z + %) is a minimum when z =y =—, and a
. T
maximum when ¢ =y = 5

3. Show that xer +siny has neither a maximum nor a minimum.

4. Show that the maximum value of (a;cq—i—b—y+c)2
2+ P41
5. Find the greatest rectangular parallelepiped that can be inscribed in an cllipsoid.
That is, find the maximum value of 8 zyz (= volume) subject to the condition
¥ 2 8 abc
a~+b”+g:1' Ans. 3\/§
, and substitute the value of z from the equation of the ellipsoid. This

2 g2
u? = a2yc? (1 - 372 - Z—z) ,

is a? 4+ 02 4 c2.

HinTt. Let u=2yz
gives
where u is a function of only two variables.

*r=0, y=0 are not considered, since from the nature of the probleni we would then
have a minimum.
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6. Show that the surface of a rectangular parallelepiped of given volume is least
when the solid is a cube.

7. Examine z¢ 4+ y* — 22 + zy — y? for maximum and minimumn values.
Ans. Maximum whenz =0,y =0;
minimum whenz =y =+ , and whenz =— y = i%\/&
8. Show that the most economical dimensions for a rectangular tank to hold a
given volume are a square base and a depth equal to one half the side of the base.

9. The electric time constant of a cylindrical coil of wire is
w=__"ME
az + by + cz
where x is the mean radius, y is the difference between the internal and external

radii, z is the axial length, and m, a, b, ¢ are known constants. The volume of the
coil is neyz = ¢g. Find the values of x, ¥, z which make « a minimum if the volume of

the coil is fixed. 3[
Ans. ar =by=cz = @
n



CHAPTER XIX
ASYMPTOTES. SINGULAR POINTS

150. Rectilinear asymptotes. An asymptote to a curve is the limit-
ing position* of a tangent whose point of contact moves off to an
infinite distance from the origin.t

Thus, in the hyperbola, the asymptote
AB is the limiting position of the tangent
PT as the point of contact P moves off
to the right to an infinite distance. In
the case of algebraic curves the following
definition is useful: an asymptote is the
limiting position of a secant as two points
of intersection of the secant with a branch
of the curve move off in the same direction along that branch to an
infinite distance. For example, the asymptote 4B is the limiting posi-
tion of the secant P@Q as P and @ move upwards to an infinite distance.

151. Asymptotes found by method of limiting intercepts. The equa-
tion of the tangent to a curve at (z,, y,) is, by (1), p. 76,

dy
y_ylza;i(x_‘/’vl)'

First placing y = 0 and solving for z, and then placing z =0 and
solving for y, and denoting the intercepts by x; and y, respectively,

we get r.
n=z—y, —1 = intercept on OX ;
dyl

d
Yi=y,— BZ—; = intercept on OY.

Since an asymptote must pass within a finite distance of the origin,
one or both of these intercepts must approach finite values as limits
when the point of contact (2, y,) moves off to an infinite distance. If

limit (z)=a and limit (y,)=24,

* A line that approaches a fixed straight line as a limiting position cannot be wholly at
infinity ; hence it follows that an asymptote must pass within a finite distance of the origiu.
It is evident that a curve which has no infinite branch can kave no real asymptote.

1 Or, less precisely, an asymptote to a curve is sometimes defined as a tangent whose
point of contact is at an infinite distance.

249
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then the equation of the asymptote is found by substltutmg the limit-
ing values ¢ and & in the equation

. Y 1
a+b )

If only one of these limits exists, but

limit <d‘/ l> =m,
d l

then we have one intercept and the slope given, so that the equation

of the asymptote is .
y=mr+b, or x:i—l—a.
m

. 2 2
IrtustraTIVE Exampre 1. Find the asymptotes to the hyperbola :r,_o — ;‘f—z =1.
P

dy b b 1 limit (dy b
Solution. —— = =4 - ———, and m= =

de  a*y a a‘-’, w~°°<da;) ia

T

a2 b2

Also x; = — and y; =— —; hence these intercepts are zero when & =1y = .
x

Thel"efore the asymptotes pass through the origin (see figure on p. 249) and their

equations are b

y—0=+-(x—0x), or ay =+ bx. Ans.
a

This method is frequently too complicated to be of practical use.
The most convenient method of determining the asymptotes to alge-
braic curves is given in the next section.

152. Method of determining asymptotes to algebraic curves. Given
the algebraic equation in two variables,

€] S(@ y)=0.

If this equation when cleared of fractions and radicals is of degree n,
then it may be arranged according to descending powers of one of the
variables, say ¥, in the form

(B) ay+z+o)y i+ (df+ex+ )y i =05

For 'a given value of z this equation determines in general n
values of y.
* For use in this section the attention of the student is called to the following theorem
from Algebra: Given an algebraic equation of degree n,
Ayn+ Byn—14 Cyn—2+ Dyn—=3+...=0.

‘When A4 approaches zero, one root (value of y) approaches «.
‘When 4 and B approach zero, two roots approach .
‘When 4, B, and C approach zero, three roots approach «, ete.
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CAse I. To determine the asymptotes to the curve (B) which are
parallel to the coordinate axes. Let us first investigate for asymptotes
parallel to OY. The equation of any such asymptote is of the form

) w=k

and it must have two points of intersection with (B) having infinite
ordinates.

First. Suppose a is not zero in (B), that is, the term in 3" is
present. Then for any finite value of z, (B) gives n values of y, all
finite. Hence all such lines as (€) will intersect (B) in points having
finite ordinates, and there are no asymptotes parallel to OY.

Second. Next suppose @ =0, but b and ¢ are not zero. Then we
know from Algebra that one root (=y) of (B) is infinite for every
finite value of x; that is, any arbitrary line () intérsects (B) at only
one point having an infinite ordinate. If now, in addition,

bx+c=0, or

(D) z=—1
then the first two terms in (B) will drop out, and hence two of its
roots are infinite. That is, (D) and (B) intersect in two points having
infinite ordinates, and therefore (D) is the equation of an asymptote to
(B) which is parallel to OY.

Third. 1f a =0= ¢ =0, there are two values of z that make y in
(B) infinite, namely, those satisfying the equation

() dz’ + ex +f=0.

Solving (E) for z, we get two asymptotes parallel to OY, and so on
in general.

In the same way, by arranging f(z, y) according to descending
powers of z, we may find the asymptotes parallel to OX. Hence the
following rule for finding the asymptotes parallel to the codrdinate axis :

First Stee. Equate to zero the coefficient of the highest power of = in
the equation. This gives all asymptotes parallel to OX.

Seconp Step. FEquate to zero the coefficient of the highest power of y
in the equation. This gives all asymptotes parallel to OY.

Note. Of course if one or both of these coefficients do mot involve
z (or y), they cannot be zero, and there will be no corresponding
asymptote.
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IrLustraTivE ExampLE 1. Find the asymptotes of the curve a?r = y (x — a)2.
Solution. Arranging the terms according to powers of z,
y2?2 — (2ay + a?)x + a?y = 0. B
Equating to zero the coefficient of the high- ¥
est power of x, we get y = 0 as the asymptote
parallel to OX, In fact, the asymptote coin-
cides with the axis of xz. Arranging the terms
according to the powers of y,
(@ —a)’y — a’x = 0. '
0 |41 X

Placing the coefficient of ¥ equal to zero,
we get © = a twice, showing that 4B is a
double asymptote parallel to OY. If this curve is examined for asymptotes oblique to
the axes by the method explained below, it will be seen that there are none. Hence
y = 0 and z = a are the only asymptotes of the given curve.

CAsE II. To determine asymptotes oblique to the coordinate axes.
Given the algebraic equation

) Sz, y)=.0.
Consider the straight line
@ y=mz+ k.

It is required to determine m and % so that the line (&) shall be
an asymptote to the curve (F).

Since an asymptote is the limiting position of a secant as two points
of intersection on the same branch of the curve move off to an infinite
distance, if we eliminate y between (F") and (@), the resulting equa-
tion in @, namely,

(H) Sz, mxz+k)=0,
must have two infinite roots. But this requires that the coefficients
of the two highest powers of z shall vanish. Equating these coeffi-
cients to zero, we get two equations from which the required values
of m and % may be determined. Substituting these values in (@)
gives the equation of an asymptote. Hence the following rule for
finding asymptotes oblique to the coordinate axes:

First SteP. Replace y by mzx + k in the given equation and expand.

SEcoND StEP. Arrange the terms according to descending powers of .

Tuirp Stee. FEquate to zero the coefficients of the two highest powers*
of z, and solve for m and k.

* If the term involving 27 —1 is missing, or if the value of m obtained by placing the first
coefficient equal to zero causes the second coefficient to vanish, then by placing the coeffi-
cients of x» and x»—2 equal to zero we obtain two equations from which the values of m
and £ may be found. In this case we shall, in general, obtain two %’s for each m, that is,
pairs of parallel oblique asymptotes. Similarly, if the term in x7—2 is also missing, each
value of m furnishes three parallel oblique asymptotes, and so on.
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Fourta Step. Substitute these values of m and k in
y=mz+k
This gives the required asymptotes.

InrustrATIVE ExAMPLE 2. Examine y® = 2 ax? — 3 for asymptotes.

Solution. Since none of the terms involve both 4 b'e
z and ¥, it is evident that there are no asymptotes
parallel to the cobrdinate axes. To find the oblique
asymptotes, eliminate y between the given equation
and y = ma + k. This gives

(mz + k)3 = 2 ax? — 23;

X
and arranging the terms in powers of z, 7
1+ md)a?® + (3m*hk — 2a)2® 4+ 3k*mx + k3 = 0.
Placing the first two coefficients equal to zero,
14+m8=0 and 8mik—2a=0. B
Solving, wegetm=—1,k = 2?@ . Substituting in y = ma 4+ k, wehavey = — 2 + %" s

the equation of asymptote 4 B.
EXAMPLES

Examine the first eight curves for asymptotes by the method of § 150, and the
remaining ones by the method of § 151:

1. y=e~ Ans. y=0. 2. y=e*, Ans. y=0.
3. y =logx. Ans. z=0.

1\=
4.y:(1+g—c>- y=e z=—1.
5. v =tanwx. n being any odd integer, x = n;
G.y:eﬂl?—L z=0,y=0.
7. y® =6a2 4 3. y=ax+2
8. Show that the parabola has no asymptotes.
9. 38 = a® — a?. y+x=0.
10. The cissoid 72 = —>—. o =2or

2r—z

11. y%a = y2%x + z8. T =a.
12. y? (2% 4+ 1) = a? (x%2 — 1). Y=tz
13. 2 (x — 2a) = 2% — a. r=2a, y =+ (z + a).
14. 2%y? = a? (x% + ?). rz=4a, y==a.
15. y(x2— 3bx + 2b%) =23 — 3 ax? + ad. z=>b, =2b, y+3a==2x+ 3b.
16-?/:C+(7f_3—b)2~ y=c¢, z=>.
17. The folium z% + ¥ — 8 azy = 0. y+z+a=0.
18. The witch 2%y = 4a%2(2a — y). y=0.
19. zy? + 22y = as. 2=0,y=0,c+y=0.

20. 23 +22%y —xy? —2y8 + 42+ 2y +y=1. v+2y=0,z+y=1l,z—y=—1
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153. Asymptotes in polar codrdinates. Let f(p, #)= 0 be the equa-
tion of the curve P@ having the asymptote C'D. As the asymptote
must pass within a finite distance (as O£
of the origin, and the point of contact is
at an infinite distance, it is evident that R
the radius vector OF drawn to the point o A
of contact is parallel to the asymptote, )E/
and the subtangent OF is perpendicular
to it. Or, more precisely, the distance of the asymptote from the
origin is the limiting value of the polar subtangent as the point ofl
contact moves off an infinite distance.

Q
D

C

To determine the asymptotes to a polar curve, proceed as follows:

First Stree. Find from the equation of the curve the values of 6 which
make p=o0.* These values of 8 give the directions of the asymptotes.

Srconp Stre. Find the limit of the polar subtangent

= 7, p.
P by (7), p- 86

as 0 approaches each such value, remembering that p ap]z‘;roaches o at the
same time.

THIrD Step. [f the limiting value of the polar subtangent is finite, there
s a corresponding asymptote at that distance from the origin and parallel
to the radius vector drawn to the point of contact. When this limit is pos-
ttive the asymptote is to the right of the origin, and when negative, to the
left, looking in the direction of the infinite radius vector.

EXAMPLES

1. Examine the hyperbolic spiral p = g for asymptotes.

1 B (¢}
Solution. When =0, p= . Also l—lg =— % ; hence /____—-———
d 2
2 2 a
subtangent = p? d_é’ v _ g_ =—aq.
dp 62 o Pon
;imi;c) l:p2 3—0] =— a, which is finite. > 4
= P

It happens in this case that the subtangent is the same for all values of §. The
curve has therefore an asymptote BC parallel to the initial line 04 and at a dis-
tance a above it.

* If the equation can be written as a polynomial in p, these values of § may be found by
equating to zero the coefficient of the highest power of p.
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Examine the following curves for asymptotes:
2. pcosf@=acos26.
Ans. There is an asymptote perpendicular to the initial line at a distance a to
the left of the origin.
3. p=atand.
Ans. There are two asymptotes perpendicular to the initial line and at a dis-
tance a from the origin, on either side of it.
4. The lituus p&‘} =a. Ans. The initial line.
5. p=asec26. @
Ans. There are four asymptotes at the same distance 3 from the origin, and
inclined 45° to the initial line.
6. (p—a)sind =0.
Ans. There is an ‘asymptote parallel to the initial line at the distance b above it.
7. p=a(sec26 + tan246). -
Ans. Two asymptotes parallel to § = 7 at distance a on each side of origin.
8. Show that the initial line is an asymptote to two branches of the curve

p?singd = a? cos26.
a

1—cosf’
154. Singular points. Given a curve whose equation is
S (@ y)=0.

Any point on the curve for which

9. Parabola p = Amns. There is no asymptote.

% _o ana Yo
ox oy

is called a singular point of the curve. All other points are called
ordinary points of the curve. Since by (57a), p. 199, we have

of
dy o
dx of

o

it is evident that at a singular point the direction of the curve (or
o . 0
tangent) is indeterminate, for the slope takes the form o In the next

section it will be shown how tangents at such points may be found.

155. Determination of the tangent to an algebraic curve at a given
point by inspection. If we transform the given equation to a new set
of parallel cobrdinate axes having as origin the point in question on
the curve, we know that the new equation will have no constant term.
Hence it may be written in the form

@ S(@y)=az+by+(a® + dzy + ey”)

+ (f + 92"y + hay® + iy + - = 0.
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The equation of a tangent to the curve at the given point (now
the origin) will be

(B) y:(j—i)x By (1), p. 76

Let y =ma be the equation of a line through the origin O and

a second point P on the locus of (4). If then P approaches O along
the curve, we have, from (B),

©) limit m = %'Z .

x

Let O be an ordinary point. Then, by § 155, @ and & do not both
vanish, since at (0, 0), from (4), p. 255,

%—a E}f=b.

oxr oy

Replace y in (4) by ma, divide out the factor z, and let 2 approach
zero as a limit. Then (4) will become *

a+bm=0.
Hence we have, from (B) and (C),
ax+ by =0,

the equation of the tangent. The left-hand member is seen to consist
of the terms of the first degree in (4).

When O is not an ordinary point we have ¢ =4 = 0. Assume that
¢, d, e do not all vanish. Then, proceeding as before (except that we
divide out the factor z*), we find, after letting = approach the limit

zero, that (4) becomes ¢+ dm + em?= 0,
or, from (C),
D) c+d<@>+e<g—‘g>2— 0
( dz de)
Substituting from (B), we see that
[€)) cx* +dzy +ey* =0

is the equation of the pair of tangents at the origin. The left-hand
member is seen to consist of the terms of the second degree in (4).
Such a singular point of the curve is called a double point from the
fact that there are two tangents to the curve at that point.

* After dividing by « an algebraic equation in m remains whose coefficients are functions

of z. If now x approaches zero as a limit, the theorem holds that one root of this equation
in m will approach the limit — a+ b.
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Since at (0, 0), from (4),
2 ~2 2
Of —9e L _gq Y_qa,

ozt~ T dwoy oy
it is evident that (D) may be written in the form
& L o 0 <dy> &f <dy>2
F 2 (L) ()=
&) or® + 0xoy \dz + oy* \dz

In the same manner, if
a=b=c=d=e=0,
there is a triple point at the origin, the equation of the three tangents
being S22+ g2ty + by + ¢y’ = 0,
and so on in general.

If we wish to investigate the appearance of a curve at a given point,
it is of fundamental importance to solve the tangent problem for that
point. The above results indicate that this can be done by simple
inspection after we have transformed the origin to that point.

Hence we have the following rule for finding the tangents at a given point.

First Step.  Transform the origin to the point in question.

Secoxp StrP. Arrange the terms of the resulting equation according to
ascending powers of x and y.

Tuirp Step. Set the group of terms of lowest degree equal to zero.
This gives the equation of the tangents at the point (origin).

IrLusTrATIVE ExamMprLE 1. Find the equation of the ¥

tangent to the ellipse
5224+ 6y2 4 22y — 122 — 12y =0

at the origin.

Solution. Placing the terms of lowest (first) degree
equal to zero, we get

—12¢—12y =0, 2 x

or z+y=0,

which is then the equation of the tangent P T at the origin.

ILLusTRATIVE ExamprLE 2. Examine the curve
322 —xy — 2y? + 23 — 8y® = 0 for tangents at the
origin.

Solution. Placing the terms of lowest (second)
degree equal to zero,

32—y —2y2=0,
or @—y)Bz+2y)=0,
« — y = 0 being the equation of the tangent AB, and 83z + 2y = 0 the equation of
the tangent CD. The origin is, then, a double point of the curve.
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Since the roots of the quadratic equation (#), p. 257, namely,

of (dy\® o (dy\ , &f
() 4+ 2 (L )+ % =0
9y2<dx> + 8a:8y<dx + ozt

may be real and unequal, real and equal, or imaginary, there are
three cases of double points to be considered, according as

(i"f_f_ 2o

@ oxdy) 0 oy’

is positive, zero, or negative (see 3, p. 1).

<avy of O°f

156. Nodes. - =
dxX0Y ax® oy?

.

In this case there are two real and unequal values of the slope
<= gg> found from (F7), so that we have two distinct real tangents
x

to the curve at the singular point in question. This means that
the curve passes through the point in two different directions, or,
in other words, two branches of the curve cross at this point. Such
a singular point we call a real double point of the curve, or a node.
Hence the conditions to be satisfied at a node are

af of f\* oo
JCx 9) ’ Yoy <axay ox? oy >

ox

ILLusTRATIVE Exampre 1. Examine the lemniscate y* = x* — x* for singular points.

Solution. Here fl,y)=9y>—a2+2t=0.
of o

Also —=—2zx4+42*=0, —=2y=0.
o + , i Y

The point (0, 0) is a singular point, since its codrdinates satisfy the above three
equations. We have at (0, 0)

2 2 2
B o B o ¥ _y

o2 away | et

v oy Y x
A 4.
“ \ozoy oxoy?

: A4 D
and the origin is a double point (node) through which
two branches of the curve pass in different directions. By placing the terms of the
lowest (second) degree equal to zero we get

yY¥2—22=0,ory=xandy =—x,

the equations of the two tangents AB and CD at the singular point or node (0, 0).
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157. Cusps. <a_2f>2_ ﬂ if =
dx0Y oxt oyt

In this case there are two real and equal values of the slope
found from (F); hence there are two coincident tangents. This
means that the two branches of the curve which pass through the
point are tangent. When the curve recedes from the tangent in both
directions from the point of tangency, the singular point is called a
point of osculation ; if it recedes from the point of tangency in one
direction only, it is called a cusp. There are two kinds of cusps.

First kind. When the two branches lie on opposite sides of the
common tangent.

Second kind. When the two branches lie on the same side of the
common tangent.*

The following examples illustrate how we may determine the nature
of singular points coming under this head.

ILLusTrATIVE Exampre 1. Examine aty? = a2zt — x¢ for singular points.
Solution. Here f(x, ) = aty? — a®xt + 28 = 0,
of
ox

and (0, 0) is a singular point, since it satisfies the above three equations. Also, at
(0, 0) we have

F_, B, ¥

—4a2d 4 62°5=0, ?:2(1431:0,
Yy

— =0, =0, -2 =2 (li.
ox? oxoy oy?
2 2F 22
WE A . L
ooy, ox2 oy?

and since the curve is symmetrical with respect to OY, the
origin is a point of osculation. Placing the terms of lowest
(second) degree equal to zero, we get 2 = 0, showing that the two common tangents
coincide with OX.

Y
ILLusTrRATIVE ExamprLe 2. Examine y2 = 28 for singular points.
Solution. Here fl@,y)=y2—a3=0,
¥ _sar—0, Y _ay=o, ' —0l X
or oy

showing that (0, 0) is a singular point. Also, at (0, 0) we have

P o P P, _(azf) o o _
ox2 ’ - " \owdy oxz oy

ooy | oy?
This is not a point of osculation, however, for if we solve the given equation for y
we get - ¥ =+ Va8,

* Meaning in the neighborhood of the singular point.
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which shows that the curve extends to the right only of OY, for negative values of z
make y imaginary. The origin is therefore a cusp, and since the branches lie on oppo-
site sides of the common tangent, it is a cusp of the first kind. Placing the terms of
lowest (second) degree equal to zero, we get y? = 0, showing that the two common
tangents coincide with OX.

L
ILvustrATIVE ExampLE 3. Examine (y — x%)2 =25 for
singular points.
Solution. Proceeding as in the last example, we find a

cusp at (0, 0), the common tangents to the two branches
coinciding with OX. Solving for y,

¥y =a? + 3.

X
If we let « take on any value between 0 and 1, y takes

on two different positive values, showing that in the vicinity of the origin both
branches lie above the common tangent. Hence the singular point (0, 0) is a cusp of

the second kind.
a2f 2 aZf a2f
axay> T ox’ oy
In this case the values of the slope found are imaginary. Hence
there are no real tangents ; the singular point is the real intersection of
imaginary branches of the curve, and the codrdinates of
no other real point in the immediate vicinity satisfy the
equation of the curve. Such an isolated point is called a
conjugate point.
ILLusTrATIVE ExamprLe 1. Examine the curve y2=23—x2 for singular —

points.
Solution. Here (0, 0) is found to be a singular point of the curve at

<0.

158. Conjugate or isolated points. <

Y

x)

which Z—‘Z, =4V —1. Hence the origin is a conjugate point. Solving the

equation for y, y=+zVz—1.

This shows clearly that the origin is an isolated point of the curve, for no values
of x between 0 and 1 give real values of y.

159. Transcendental singularities. A curve whose equation involves
transcendental functions is called a transcendental curve. Such a curve
may have an end point at which it terminates abruptly, caused by a
discontinuity in the function; or a salient point at which two branches of
the curve terminate without having a common tan-
gent, caused by a discontinuity in the derivative.

‘TrLusTrATIVE Exampie 1. Show that y = z logx has an
end point at the origin.

Solution. 2 cannot be negative, since negative numbers O X
have no logarithms; hence the curve extends only to the

right of OY. When £ =0, y = 0. There being only one
value of y for each positive value of x, the curve consists of a single branch terminating
at the origin, which is therefore an end point.
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ILLustrATIVE ExAMPLE 2. Show that y = 7 has a salient point at the origin.
1 14 ¢ ¥ B

z
Solution. Here d—z—/: 1 +_e—,

1 1
1+ x(l+ e7)?

If x is positive and approaches zero as a limit, we
have ultimately

dy
y=0 and a_O. 4

If x is negative and approaches zero as a limit, we get ultimately

d
y=0 and Y-,
dz
Hence at the origin two branches meet, one having OX as its tangent and the other,
AB, making an angle of 45° with OX.

EXAMPLES

1. Show that y2 = 222 + 23 has a node at the origin, the slopes of the tangents
being + V.

2. Show that the origin is a node of »2(a? + 2?) = 2% (¢® — 2?), and that the tan-
gents bisect the angles between the axes.

3. Prove that (a, 0) is a node of y2 = = (z — )2, and that the slopes of the tangents
are +Va.

4. Prove that a3y? — 2 aba?y — x% = 0 has a point of osculation at the origin.

. Show that the curve y* = x5 + «* has a point of osculation at the origin.

3
has a cusp of the first kind at the origin.

. Show that the cissoid y? = 3 ad

5
6
7. Show that y3 = 2 ax? — 2? has a cusp of the first kind at the origin.
8. In the curve (y — 2?)2 = z» show that the origin is a cusp of the first or second
kind according as n is < or > 4.
9. Prove that the curve x* — 2 ax?y — axy?® 4+ a?y? = 0 has a cusp of the second
kind at the origin.
10. Show that the origin is a conjugate point on the curve y2 (x% — a?) = 22
11. Show that the curve y2 = z (a + )2 has a conjugate point at (— a, 0).
12. Show that the origin is a conjugate point on the curve ay? — 23 + ba? = 0 when
a and b have the same sign, and a node when they have opposite signs.
13. Show that the curve 2* + 2 ax’y — ay® = 0 has a trigle point at the origin, and
that the slopes of the tangents are 0, + \/5, and —V/2.
14. Show that the points of intersection of the curve (§)§+ <g>§: 1 with the axes
are cusps of the first kind. & b
15. Show that no curve of the second or third degree in x and y can have a cusp
of the second kind.
16. Show that ¥ = e = has an end point at the origin.
17. Show that y = x arctan % has a salient point at the origin, the slopes of the

tangents being + g



CHAPTER XX
APPLICATIONS TO GEOMETRY OF SPACE

160. Tangent line and normal plane to a skew curve whose equations
are given in parametric form. The student is already familiar with the
paranietric representation of a plane curve. In order to extend this
notion to curves in space, let the cotrdinates of any point P (=, g, 2)
on a skew curve be given as functions

of some fourth variable which we shall
denote by ¢, thus, éﬁz
i «):") A x,y+Ay, 2+AzZ)
) 2=¢®), y=¥®, z=x® _| |
The elimination of the parameter ¢ - S
between these equations two by two ?
will give us the equations of the pro- /0 z <
jecting cylinders of the curve on the ¥ Y

cobrdinate planes.

Let the point P(z, y, 2) correspond to the value ¢ of the param-
eter, and the point P/'(z+ Az, y+ Ay, 2+Az) correspond to the value
t+A¢; Az, Ay, Az being the increments of z, y, 2 due to the incre-
ment At as found from equations (4). From Analytic Geometry of
three dimensions we know that the direction cosines of the secant
(diagonal) PP’ are proportional to

Az, Ay, Az;

or, dividing through by At and denoting the direction angles of the
secant by o/, B, 7/,

Az Ay Az
cosa':cosB':cosglii——: y.,22

At At At
Now let P’ approach P along the curve. Then A¢, and therefore
also Az, Ay, Az, will approach zero as a limit, the secant PP’ will

approach the tangent line to the curve at P as a limiting position,

and we shall have

cosa:cosB:cosry::%:%:%,

- 262
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where @, B, v are the direction angles of the tangent (or curve) at .
Hence the equations of the tangent line to the curve

z=¢() y=¥v@, z=xO
at the point (z, y, 2) are given by
X—x Y-y Z-—z
dy  dz '
at dt at

(69)

and the equation of the normal plane, i.e. the plane passing through (=, y, 2)
perpendicular to the tangent, is

dx dy dz
70 —(X- — (Y- —(Z—-2)=0
(70) dt( x)+dt( y}+dt( z) =0,

X, Y, Z being the variable coordinates.

IrrustrATIVE Exampre 1. Find the equations of the tangent and the equation of
the normal plane to the helix * (4 being the parameter)

{m:acos&,

y = asinf,
Lz =100,
(a) at any point; (b) when § = 2.
dx . dy dz
Solution. — =—asinf=—y, —= =acosf = £ =b.
olution 7] T * a6
Substituting in (69) and (70), we get at (z, ¥, 2) z
X—o Y-y Z-z tangent line; &
—y A
and —y(X —2)+ 2 (Y —y)+ b(Z —2) =0, normal
plane.
When § = 2, the point of contact is (a, 0, 2bm),
giving ’ " (@ 020m, 7 N P(x,y,2)
& X—a_Y—0_Z—2br 0 s
o a b A X
N S
or, X=a, bY=aZ-— 2abm, ¥

the equations of the tangent line; and
aY +bZ —2b%r =0,
the equation of the normal plane.

* The helix may be defined as a curve traced on a right circular cylinder so as to cut all
the elements at the same angle.
Take OZ as the axis of the cylinder, and the point of starting in OX at Py. Let a=radius
of base of cylinder and 6= angle of rotation. By definition,
PN_ PN _2z_ k (const.), or z=aké.
SN arcPyN af

Let ak=10; then z=00. Also y=MN=asing, x=O0M=acosf.
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EXAMPLES

Find the equations of the tangent line and the equation of the normal plane to
each of the following skew curves at the point indicated :

Lo=2ty=tz=404; t=1. Ans.m_2 y—1_z—4,
2 16

m+y+8z—35_0

z—3 -3 2z-—8

Qa=0—1y=t4+1,2=0; t=2 Ans. 2 :yl =i
4dr+y+122—-111=0.

3. 0=B—1,y=t+8z=48—-3t+1; t=1. Ans.gzy_g%:zgz;
z+y+32—8=0.

4.m=t,y=sint,z=cost;t:£. Ans. 42:4—71' \/_y—l \/—zl——l’

16z +V2y — '\/—z-—41r_
Lr=at,y=b%, z=ct}; t =1.

r=ty=1—13,2=88 4+ 4¢; t=—2.

r=ty=e,z=¢et t=0.

® 2 e o

. ¢ =asint,y =bcost, z=1; t:%.

9. Find the direction cosines of the tangent to the curve © =12, y =13, z = {* at
point x = 1.

161. Tangent plane to a surface. A straight line is said to be tan-
gent to a surface at a point P if it is the limiting position of a secant
through P and a neighboring point P’ on the surface, when P’ is
made to approach P along the surface. We now proceed to establish
a theorem of fundamental importance.

Theorem. All tangent lines to a surface at a given point* lie in
general in a plane called the tangent plane at that point.

Proof. Let

4) F(z,y,2)=0
be the equation of the given surface, and let P (z, y, 2) be the given
point on the surface. If now P’ be made to approach P along a curve
C lying on the surface and passing through P and P/, then evidently

the secant PP’ approaches the position of a tangent to the curve C
at P. Now let the equations of the curve C be

B =6, y=v@, =z=x(:-

* The point in question is assumed to be an ordinary (nonsingular) point of the surface,

2:’ ZF ’ aa—f are not all zero at the point.



APPLICATIONS TO GEOMETRY OF SPACE 265

Then the equation (4) must be satisfied identically by these values,
and since the total differential of (4) when z, y, z are defined by
(B) must vanish, we have

oF dx 0OFd oF dz
© - Akt

ow dt oy dt | oz di By (52), p. 196

This equation shows that the tangent line to C, whose direction
cosines are proportional to

dz dy - de
e’ dat’ dt’
is perpendicular * to a line whose direction cosines are determined by

~ the ratios oF oF oF .
ox o2’

and since C is any curve on the surface through P, it follows at once,
if we replace the point P(z, y, 2) by R (=, y,, #,), that all tangent
lines to the surface at B lie in the plane f

oF, oF, oF,
it oy — iz =0, 1
(71) ox, (x—x)+ oy, W—-y)+ oz, (z—z)=0,

which is then the formula for finding the equation of a plane tangent at
(zp Yy 2,) to a surface whose equation is given in the form

F(z, y,2)=0.
In case the equation of the surface is given in the form 2z = f(, y), let

(D) F(z, y, 2) =f(z, g/) —*2=0

Then @ F_¥_2% oF_of o oF_ 4
ox or or 83/ Ty ay 0z

* From Solid Analytic Geometry we know that if two lines having the direction cosines
20OS ¢y, €OS f31, cos ¥y and €os &y, cos By, COS ¥, are perpendicular, then

€OS Xy COS g + €OS 31 COS B2 + COS Y1 COS Yo =0.
. . oF, oF, OF,
1 The direction cosines of the normal to the plane (71) are proportional to 671 ﬁl 671
1 1
Hence from Analytic Geometry we see that (C') is the condition that the tangents whose
direction cosines are cos «, cosf3, cos~y are perpendicular to the normal; i.e. the tangents
must lie in the plane.
1 In agreement with our former practice,

aFl aFl aFl 0z 0%
611 8/1 azl aml Y1

denote the values of the partial derivatives at the point (xq, ¥;, 21).
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If we evaluate these at (2, y,, 2,) and substitute in (71), we get
oz, oz,
(72) (Tx;(x_xo'*'a_yl(y—%)_(z_iﬁ):0!

which is then the formula for finding the equation of a plane tangent at

‘(@ Yy 7)) to a surface whose equation is given in the form z = f(z, y).

In § 126, p. 197, we found (55) the total differential of a function u (or 2) of z and

Y, namely, ) 2
2 Z
dz = —do + —dy.

() P v

‘We have now a means of interpreting this result geometrically. For the tangent
plane to the surface z = f(z, ¥) at (z, ¥, 2) is, from (72),

o0z 0z

F Z—2="(X—2)+ =(Y —

) o X =0+ 2 (T =),
X, Y, Z denoting the variable codrdinates at any point on the plane. If we substitute

X=g+4+dr and Y=y +dy ,

in (F'), there results 7

0z 0z
Q) Z—2=—dx+ —dy.
@ i or +ay v

Comparing (E) and (G), we get
(H) dz=Z—z. Hence

Theorem. The total differential
of a function f(x, y) corresponding

to the increments dz and dy equals i :

the corresponding increment 03‘ the /% %

z-coordinate of the tangent plane to L

the surface z = f(x, v). 0 A dx B X
Thus, in'the figure, PP’ is the ¢

plane tangent to surface PQ at Y dy

P(z, y, 2). . D
Let AB=dx and CD=dy;

then dz=2Z—2=DP — DE = EP’.

162. Normal line to a surface. The normal line to a surface at a
given point is the line passing through the point perpendicular to the
tangent plane to the surface at that point.

The direction cosines of any line perpendicular to the tangent
plane (71) are proportional to

oz, ’ 0y, ’ 0z, '
X=X, _ Yy—y, Z-—z
oF, oF, oF,
o, oy, oz

(73)
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are the equations of the normal line* to the surface F(z, y, 2)=0 at
@y Yy 2)-
Similarly, from (72),

(74) I=h _Yoh Z74
0z, 0z, —1
ox, Y,

are the equations of the normal line* to the surface e = f (z, y) at (z, y,, 2)-

EXAMPLES

1. Find the equation of the tangent plane and the equations of the normal line
to the sphere z% + y2 + 2% = 14 at the point (1, 2, 3).

Solution. Let F(x, y, 2) = 2% + y2 +22 —14;

oF oF oF
then a:2;:,@:211,—i£:2z;:01:1,'¢J1=2,z1=3.
WO O R
ox, oy, 0z,

Substituting in (71), 2(x—1)+4 (¥ —2)+6(z—38)=0, = 4+ 2y + 3z =14, the
tangent plane. -1 _y—2 23

Substituting in (73), 2 =1 — @8’

giving z = 8z and 2z = 3y, equations of the normal line.

2. Find the equation of the tangent plane and the equations of the normal line to
the ellipsoid 422 4 92 + 3622 = 86 at point of contact where x =2, ¥y =1, and z is

positive. Ans. Tangent plane, 8(x —2) + Ny —1)+ 6V1l(z—1V1l)=0;
o —2 y—1 z—3iVI1l
normal line, = = ———.
8 9 6V11
3. Find the equation of the tangent plane to the elliptic parabola z = 222 4 4 y?2
at the point (2, 1, 12). Ans. 8z 4+ 8y —z=12.,

4. Find the equations of the normal line to the hyperboloid of one sheet
a2 — 492 +222=6 at (2, 2, 3). Ans. y +4x =10, 3z —2=3.

5. Find the equation of the tangent plane to the hyperboloid of two sheets
T VY %R

2
&—Z—b—2~c—2:1 at (¢q, Yy, 29)- Ans, L= 212 10—,

6. Find the equation of the tangent plane at the point (z,, ¥,, 2;) on the surface
ar? +by?2 +c224+d=0. Ans. arx + by y + czz+d=0.
7. Show that the equation of the plane tangent to the sphere
224+ 2+ 224 2L+ 2My+2Nz2+ D=0
at the point (z,, ¥y, 2,) is .

sty y+zz+LEt+e)+ My+y,)+NEz+2)+D=0.

* See second footnote, p. 265.
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8. Find the equation of the tangent plane at any point of the surface
2 4yt 4 22 =dl,

and show that the sum of the squares of the intercepts on the axes made by the tangent
plane is constant.

9. Prove that the tetrahedron formed by the codrdinate planes and any tangent
plane to the surface zyz = a? is of constant volume,

10. Find the equation of the tangent plane and the equations of the normal line to
the following surfaces at the points indicated :

(a) 222 + 492 —2=0; (2,1, 12). (d) 822 +y2—22=0;z=1,y=1.
(b) «? + 492 —22=16; (1, 2, —1). (e) 222+ 22 +22=16;z2=2,y=1.
(c) 22+ 92+ 22=11; (8,1, 1). (f) 2 +8y2+222=9;y=1,2=1.

163. Another form of the equations of the tangent line to a skew
curve. If the curve in question be the curve of intersection 4B
of the two surfaces F(z, y, 2)=0 and
G(z, y, 2)=0, the tangent line PT at
P(z, y, 2) is the intersection of the
tangent planes C'D and CE at that point,
for it is also tangent to both surfaces and
hence must lie in both tangent planes.
The equations of the two tangent planes
at P are, from (71),

—<x %)+t -w)+ T2 E=2) =0,
(75) oG G
—(x x1)+ (y YD+ 55 (Z z,)=0.

Taken simultaneously, the equations (75) are the equations of the
tangent line PT to the skew curve AB. Equations (75) in more com-
pact form are
x—x _ y—u, _ z—12z,

76 = =
) 3F. 26, oF, 06, oF, oG, oF,o0G, oF,0oG, oF,0G,
2y, 0z, 0z, 0y, 0z, 0X, Ox, 0z, Ox, oY, Oy, 0X,
or,
—x. - z—2z
(77) X 1 - y y1 - 1 ,

|oF, oF,|  |oF, oF,| |oF, oF,
oY, 0z, 67 a— a_-"'1 Fy—l
3G, 2G,| |06, 8G,| |86, oG,
oy, 0z,| |0z, ox,| |ox, oy,

using the notation of determinants.
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164. Another form of the equation of the normal plane to a skew
curve. The normal plane to a skew curve at a given point has already
been defined as the plane passing through that point perpendicular to
the tangent line to the curve at that point. Thus, in the above figure,
PHT is the normal plane to the curve 4B at P. Since this plane is
perpendicular to (77), we have at once

oF, oF, oF, oF, oF, oF,

dy, 3z, 2z, ox, ox, oy,
78 1 1 _ 1 1 _ 1 1 —Zz — 0’
) a6, 06, F =t a6, 06,| Y ¥ T |ag, o6,|F )

oy, 0z, 2z, 9x, ax, oY,

the equation of the normal plane to a skew curve.

EXAMPLES

1. Find the equations of the tangent line and the equation of the normal plane at
(r, r\/é) to the curve of intersection of the sphere and cylinder whose equations
are respectively a2 + y2 + 22 = 42, 22 + y2 = 2rz.

Solution. Let F =22 + 32+ 22 —4r2and G =22 + y? — 2rzx.

F. F.
éﬂl:2'1", Q:EM, L:2\/51‘;
oy oy, 0z,
a_Gl = 0’ a._Gl =2, a—Gl =
o,y oY 0z,

Substituting in (77),
r—r _y—'r_z——-r\/é‘

__\/§~ 0 1

or, y:r,x+\/§z:3r,

the equations of the tangent PT at P to the
curve of intersection.
Substituting in (78), we get the equation
of the normal plane,
—V2@—1) 40y — 1)+ (z—rV2)=0,
or, Vv 59; —2z=0.

2. Find the equations of the tangent line to the circle
2 4+ y2 4 22 = 25,
r+2z=25,
at the point (2, 2 V3, 3). Ans. 224+ 2V3y +82=25 2+ 2=5

3. Find the equation of the normal plane to the curve
224 Y2+ 22 =12,
22—re+y2=0,
at (T, Yy, 2)- Ans. 2yz 2 — (22, — )2y —1y;2 =0
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4. Find the equations of the tangent line and the normal plane to the curve
2024+ 3y2+22=9, 22=38a2 4 y2

at (1, — 1, 2).

5. Find the direction of the curve

zyz=1, Y=z

at the point (1, 1, 1).

6. What is the direction of the tangent to the curve

y=2% #F=1—y

at (0, 0,1)?

7. The equations of a helix (spiral) are

) 2?4y =12,

z
=xtan-.
y c

Show that at the point (z,;, ¥;, 2,) the equations of the tangent line are
: c@—a)+y(z—2)=0,
cy—y)—2(z—2)=0;
and the equation of the normal plane is
Y& — 2y —c(z—2z) =0,
v2
b2
the sphere 22 + y2 + 22 = r2. Show that at the point (x,, y,, 2,) the equations of the
tangent line to the curve are
€2 (a2 — W)z, (1 — ;) =— a2 (B2 + ¢z, (2 — 2,),
@@=y, (y—y) =+ (2 + a2 (2 —2);
and the equation of the normal plane is
&2 (b2 + ?) Y,z — b2 (c? + a?) 2y — % (a? — b zyyy2 = O,

2 2
8. A skew curve is formed by the intersection of the cone % 4+ — z_2 =0 and
@ c



CHAPTER XXI
CURVES FOR REFERENCE

For the convenience of the student a number of the more common
curves employed in the text are collected here.

CusicaL PArABOLA SEMICUBICAL PARABOLA
-
Y
O g——t
X 0 X
y=az’ Y= aax®
TuaeE WircH or AGNESI TaE Cissorp oF DiocLEs
Y
Y
a
a a a

dy=4a*CLa—y).

¥(2a—z)=12"

27
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THE LEMNISCATE OF BERNOULLI Tue ConcHOID OF NICOMEDES

@+ 5 = a (@ ). 2y =y + 0 @ — o).
pP=a’cos 26. ~,o:azcse(?—l—b.
Cycroip, ORDINARY CASE Cycroip, VERTEX AT ORIGIN

Y Y
T LT

\% a ‘N /\a ay\

4] ) X X @) X

xzaarcvers%—\/flay—y’. x=aarcversg+\/2ay—yé,
a

z = a(0 —sin 0), z=a(f+sin 0),
{y:a(l—cosﬁ). {y:a(l—cos@).
CATENARY ' PArRABOLA

¥ Y
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Hyprocycroip or Four Cuses Evorutk or ELLIPSE
A
V )

(@t + @yt =@ -t

z=a cos® 0,
y=asin®6.
CARDIOID Forium oF DESCARTES

N
N

NG

X X
P+ '+ ar=aVaP+ A 2+ y*— 3 azy = 0.
p=a(l—cos®).
Sine CURVE CosiNeE CURVE
Y|

fo|4
3

» el4

+1 STW‘ +1
1 ) A “\'__I/X -z 9

y=sinaz, y=cosuz.

o
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Limagon
¥
5 X
p=b—acosf.

SPIRAL OF ARCHIMEDES

HypPERBOLIC OR RECIPROCAL
SPIRAL

p0 = ..

STROPHOID

Y

a+x
2:_{1}2-—-
a—x

LocAriTHMIC OR EQUIANGULAR
SPIRAL

ca

p=e®, or
log p = af.

Liruus
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CURVES FOR REFERENCE

Locaritamic CURVE

PArABOLIC SPIRAL

log .

y:

Prosasiniry Curve

ExpoNENTIAL CURVE

TANGENT CURVE

X

X
SeEcANT CURVE

tan z.

Z/:
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THREE-LEAVED ROSE THREE-LEAVED RoSE

3 Y]

a
0 X
2
p=asin3b. p=acos36.
Four-LEAvED RoOSE . Four-LEavEDp Rose

Y|4

p=asin28. . p=acos26.
Two-LEAVED RosE LEMNISCATE Eicuar-LEAVED ROSE
Y|

p*=a’sin 26, p=asin4é.
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CurveE witH Exp PoiNT
AT ORIGIN

y=uzloguz.

Curve witH CoNgUGATE (ISOLATED)
Point AT THE ORIGIN

hq

=22~

PAraBoLA

Y

p=asec’=.

CURVE WITH SALIENT POINT

AT ORIGIN
Y|
0 X
1
y(+e)=uw.
*

CurveE witHe Cusp OF SECOND
Kinp At ORIGIN

(y_ 2)221:6. .

EqQuiLATERAL HYPERBOLA

Y

zy = a.






INTEGRAL CALCULUS

CHAPTER XXII

INTEGRATION. RULES FOR INTEGRATING STANDARD
ELEMENTARY FORMS

165. Integration. The student is already familiar with the mutu:
ally inverse operations of addition and subtraction, multiplication
and division, involution and evolution. In the examples which fol-
low, the second members of one column are respectively the inverse
of the second members of the other column:

y=2"+1, r=+Vy—1;
y = a5, z=log,y;
y = sin @, = arc sin y.

From the Differential Calculus we have learned how to calculate the
derivative f/(z) of a given function f(z), an operation indicated by

d
LF@D=F@),
or, if we are using differentials, by
df () = f'(z) dz.
The problems of the Integral Calculus depend on the ¢rverse operation,
nanely :
To find a function f(z) whose derivative
€)) S'@=¢()
is given.
Or, since it is customary to use differentials in the Integral Calculus,
we may write
B df (@) = F'(x) de = $ () d,
and state the problem as follows:

Having given the differential of a function, to find the function itself.
279
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The function f(2) thus found is called an integral * of the given
differential expression, the process of finding it is called integration,

and the operation is indicated by writing the integral sign’ f in front
of the given differential expression; thus

© [r@at=s@,

read an integral of f'(x) dz equals f(x). The differential dz indicates
that z is the variable of integration. For example,

(@) If f(2) =42’ then f/(z) dz = 8 2*dz, and

f?) 2ldr = 2%

(b) If f(x)=sinz, then f'(z) dz = cos zdxz, and

f cos zdx = sin z.
(¢) If f(2)=arc tan z, then f'(2) dz = $, and
. X

f dv = arc tan z.
142 '

Let us now emphasize what is apparent from the preceding expla-
nations, namely, that

Differentiation and integration are inverse operations.

Differentiating (C") gives

(D) d f Fl(@) da = f'(2) da.

Substituting the value of f'(2) dz[ = df (#)] from (B) in (), we get
@ [#@=s@.

Therefore, considered as symbols of operation, % and | ...dxr are

tnverse to each other; or, if we are using differentials, d and f are
inverse to each other.

* Called anti-differential by some writers.

1 Historically this sign is a distorted S, the initial letter of the word sum. Instead of
defining integration as the inverse of differentiation, we may define it as a process of sum-
mation, a very important notion which we will consider in Chapter XXVIII.

1 Some authors write this D;lf /(x) when they wish to emphasize the fact that it is an
inverse operation.
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When d is followed by | they annul each other, as in (D), but
when f is followed by d, as in (&), that will not in general be the

case unless we ignore the constant of integration. The reason for this
will appear at once from the definition of the constant of integration
given in the next section.

166. Constant of integration. Indefinite integral. From the pre-
ceding section it follows that

since d (%) = 3 2%z, we have f 8 2?dx = 2°;
since d (2°+ 2) = 3 2°dz, we havef?) 2P*de = 2°+ 23

since d(2®—7) = 3 2°dx, we have f 3aPdr=2"—T.
In fact, since d(2*+C) = 3 2%da

where C is any arbitrary constant, we have
f3 2¥dr = 22+ C.

A constant C arising in this way is called a constant of integration.*
Since we can give C' as many values as we please, it follows that if
a given differential expression has one integral, it has infinitely many
differing only by constants. Hence

ff’(x)dx =f(@)+C;
and since C is unknown and ¢ndefinite, the expression

f@+0
is called the indefinite integral of f'(2) da.

It is evident that if ¢ () is a function the derivative of which is
Sf(x), then ¢ (2)+ C, where C is any constant whatever, is likewise
a function the derivative of which is f(z). Hence the

Theorem. If two functions differ by a constant, they have the same
derivative.

It is, however, not obvious that if ¢ () is a function the derivative
of which is f(z), then all functions having the same derivative f(z)
are of the form ¢ @)+,

where C is any constant. In other words, there remains to be proved the

* Constant here means that it is independent of the variable of integration.
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Converse theorem. If two functions have the same derivative, their
difference is a constant.

Proof. Let ¢ (x) and ¥ (2) be two functions having the common
derivative f(z). Place

F(@)=¢ (@) —Y(x); then
d .

(4) F'z)=[$ (@) —¥@)]=F@—F(@)=0. By hypothesis
But from the Theorem of Mean Value (46), p. 166, we have

F(z+Az)—F (2)=AzF'(z + 60 - Az). 0<f<1

S F(e+Ar)—F(2)=0,
[Since by () the derivative of F () is zero for all values of z.]
and F(z+Az)=F(2).

This means that the function

F@)=¢@—¥ @
does not change in value at all when z takes on the increment Az,
ie. ¢(2) and Y () differ only by a constant.

In any given case the value of C' can be found when we know the
value of the integral for some value of the variable, and this will be
illustrated by numerous examples in the next chapter. For the pres-
ent we shall content ourselves with first learning how to find the
indefinite integrals of given differential expressions. In what fol-
lows we shall assume that every continuous function has an indefinite
integral, a statement the rigorous proof of which is beyond the scope
of this book. For all elementary functions, however, the truth of
the statement will appear in the chapters which follow.

In all cases of indefinite integration the test to be applied in veri-
fying the results is that the differential of the integral must be equal
to the given differential expression.

167. Rules for integrating standard elementary forms. The Dif-

- ferential Calculus furnished us with a General Rule for differentiation

(p- 29). The Integral Calculus gives us no corresponding general
rule that can be readily applied in practice for performing the inverse
operation of integration.* Each case requires special treatment and
we arrive at the integral of a given differential expression through

* Even though the integral of a given differential expression may be known to exist, yet

it may not be possible for us actually to find it in terms of known functions, because there ave
functions other than the elementary functions whose derivatives are elementary functions.
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our previous knowledge of the known results of differentiation. That
is, we must be able to answer the question, What function, when dif-
Serentiated, will yield the given differential expression ?

Integration then is essentially a tentative process, and to expedite
the work, tables of known integrals are formed called standard forms.
To effect any integration we compare the given differential expression
with these forms, and if it is found to be identical with one of them,
the integral is known. If it is not identical with one of them, we
strive to reduce it to one of the standard forms by various methods,
many of which employ artifices which can be suggested by practice
only. Accordingly a large portion of our treatise on the Integral Cal-
culus will be devoted to the explanation of methods for integrating
those functions which frequently appear in the process of solving
practical problems.

From any result of differentiation may always be derived a formula
for integration.

The following two rules are useful in reducing differential expres-
sions to standard forms:

(a) The integral of any algebraic sum of differential expressions equals
the same algebraic sum of the integrals of these expressions taken separately.

Proof. Differentiating the expression

fdu+fdv—fdw,

u, v, w being functions of a single variable, we get
du + dv — dw. ‘ By 11, p. 34

1 f(du+dv—dw)=fdu+fdv—fdw.

(b) A constant factor may be written either before or after the integral
sign.

Proof. Differentiating the expression

a f dv
gives o adv.
(2) fadv=‘ fdv.

On account of their importance we shall write the above two rules
as formulas at the head of the following list of

By 1v, p. 84
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INTEGRAL CALCULUS

STANDARD ELEMENTARY FORMS

f(du+dv—dw)=fdu+fdv—fdw.
fadv:afdv.
fdx=x+C.

vn
ndy — C. —
fv v n+1+ n+—1

f%”:logv-}-c

= log v 4 log ¢ = log cv.
[Placing C=1logec.]

,ffavdv=—av—+C.
log a

fevdv= e’ + C.

fsinvdv:-cosv+C.

fcosvdv:sinv+C.
fsec”vdv:tanv-}- C.
fcsc’vdv:—cotv+ C.
fsecvtanvdv:secv+c.
fcscvcotvdv:—cscv-]-c.
ftanvdzg:logsecv-l-c.
fcotvdv:logsinv+C.
fsecvdv:log(secv+tan v) +C.

fcsc v dv =log (cscv — cotv) + C.
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dv 1 v
(18) fm =Earctan¢—1+C.
dv 1 v—a
19 — — ,
9 v — a? 2a10gv+a+c
(20) v in> +C
= arc sin — L
Vat _ v a
dv
1) f =log(v4 VPt a®) +C.
Vi? £ @ ( )
dv l v
() f ———— =—arcvers— + C.
v2av—v? a
dv 1 v
23 - - ’ic
(23) fv - aarcseca-J—C
Proof of (3). Since d(z+C) = da
we get ‘ fdz=x+6’.r
Proof of (4). Singe o+
d<n+1 +C>=v dv,
t n(i ,Un+1 0
we ge fv v—n+1+ 2
This holds true for all values of n except n=—1.

n=—1, (4) gives

—ld 'l)_l+1 C 1 C C
f’v V= m + = 6 + = Q0 —|— s
which has no meaning.

The case when n =—1 comes under (5).

Proof of (5). Since dv
d(logv +C)=7,

we get f%’:logv+0.

285

II, p. 34

VI, p. 34

For, when

VI a, p. 35

The results we get from (5) may be put in more compact form if

we denote the constant of integration by loge. Thus
f%:logv+logc:logcv.

Formula (5) states that ¢f the expression under the integral sign is a
Sraction whose numerator s the differential of the denominator, then the

integral is the natural logarithm of the denominator.
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EXAMPLES *
For formulas (1)-(5).
Verify the following integrations:

6+1 7
lf:c“da;—x C’:{%+C,by(4),whe1‘ev:mandn=6.

3 b
2.fx/5dx=fm%dz=%+0:§w%+0, by (4)
where v =2 and n = 3.
dx =2 1
3. | == —3dr = = ——4C '
f:c3 f:c —2 23:‘3+ ’ by (4
where v=a and n =— 3, .
axb .
4.faa;5dac:afw5dw:—6—+0. By (2) and (4)
28
2a=% 1. o= 4
5.[“’”’ 3T 12.fx/zdm:?_’””_+0.
3% :
x
e.fm%dm:—5-—+0. 13.fs—%ds:2\/§+o.
2at’z 2d40 — 63
- fat%dt +C. 14. [ 3a6?dd = af® + C.
f Lo 15. 5m2z6dz=5";"z‘ +C.
Bat ™ 3m . bdp  3bgt
¢ _3be
2a0_ 5t o S P
ary 2a

1—n 1
2 o — n
10. [5ydy = §2£ +C. 17. f (nz) * dz = (nx) 4 C.

11.f@dm:§m\/m+0. 18. fg—mfldy=—$+0
19.[(2m3~5w2—3‘m+4)dx:f2w3dx—f5m2dx—f3wdm +f4da; by (1)

—2fm3dm—5fa;2dm—3fmam+4fdw by (2)

Note. Although each separate integration requires an arbitrary constant, we write down
only a single constant denoting their algebraic sum.

20. f(——w—+30\/—> f2am-%dm_sz—2dm+f3cz%dx by (1)
:2afz_%dm—bfm—2dw+3cfx%dx by (2)

)

&X'

5
—2a.2 5.5 1 50.% 40 by (4
a% — T3¢ %+ Y (4)

:4a\/£+5+'5c£+0.

* When learning to integrate, the student should have oral drill in integrating simple
functions.
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10
21.f(2:c9—3x6+12z3——3)dz—%—?i+3m4 3z +C.
5
2 33 1 1
22. de="2"_3a5— — .
J (Vo - o)t =" —aa -+

3
23. f(a%f —2¥)3de = a%e + ga‘gz‘gi — g(ﬁx% — % + C.
Hint. First expand.

sfa® 8aty? 8a2t b
24. (a2 — 2 Vydy =2 %<“L— __) c.
f(a v Vydy =293 (5 Tt )t

32 3
25. [(Va—Vipar=dt - 2at%+3“ ! _%+0.
210
26. f(mz_ 2)3m3dz_-——3—“”+2x6—2x4 +0.
10
(a® + b2 a;2)2
2 4 p2p2)rade =
27. f(a T )z 372
Hint. This may be brought to form (4). Forlet v=«2+ 022 and n=3%; then dv =2 h2xdx.

If we now insert the constant factor 2 2 before xdz, and its reciprocal BYe before the integral

+C.

sign (so as not to change the value of the expression), the expression may be integrated, using

(4), namely, "
f vrdy = +C.
n+1

Thus, f (a2+ bw)imdm— — f (@ + b2 2 V2edn = —— f (a2 + D) d (a2 + b%e2)

_1 (a2+b%2)%+0 (a2+b2m2)%
202 3 302

+C.

Note. The student is warned against transferring any function of the variable from one
side of the integral sign to the other, since that would change the value of the integral.

28. [V&@ = dade = [(@ — e)bade =— 1@ — )t + C.
29. [[(Bas? + 4b0%)¥ 2 aw + 4b2?) do=} B aa? + 410%)3 + C.
Hint. Use (4), making v=3 ax2+4 b3, dv= (6 ax +12b2?) dx and n= ED
30. fb(6am2 + 8b2%)3 (2 az + 4ba?) de = 1—b6(6a:c2 +8bz%)% 4 C.
31. = _(az +a3t 0.

f(az + mS)‘l‘

HiNT. Write this f (a2+ m3)_’l'oc2da: and apply (4).

32. f i

33. f21ry<1§+ 1>%dy :g_:(?ﬁ +p'“’)% +C.

:—2\/1—(1)-[-0.

4. [(1+epteds =31+ el +C.

(sinz)® 10= sindz
3
Hint. Use (4), making v=sinz, dv=cos zdx, and n=2.

35. fsin2 T cos zdx :f(sin z)2cosxdr = +C.
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costx

+C.

36. fcos% sinzde =—
37. fsinsaz cos axdxr = Lsin‘*a:z: + C.
4a
38. fcos43a: sin 8xdr = — lcos53x +C.
15

xdx
39, | ———=—VaZ—22+4C.
f, [a2 — z2

Sadt _  «a
=0 @—t°

41. f\/3 1+ afzde = §(1+ 22} 4 C.

40. +C

sds 3
4 [ 22 _-_a-stic
‘/1\3/1—32 4( 2T
ur—1du _ (a +bun)1—m

(@4 buryn " bn(l—m)

2 asds a
44, = C
f(b2 6232)2 CZ (bz —_ C:ZS‘Z) +

-43.

3 axdx 3 a
45. Press loor (b2 + €%x?) + C.
axdx
Solution. fm sz T ezmz By (2)

This resembles (6). For letv = b% + €2x?; then dv = 2 e®xdx. If we introduce the
factor 2 €2 after the integral sign, and—él—2 before it, we have not changed the value
€

of the expression, but the numerator is now seen to be the differential of the denom-
inator. Therefore
3a p 2e2xdr fd (b2 + €e2x?)

gq [ F2___ =@ = __10 12+ e22) + C. By (5
afb2+e2m2 2e2) Py e 262 bt 2 g (4 &) + v @)

da:l:%log(z“’—l)+0.

(z2— a?)dx 3_ g2k
47f -y = log (x® — 3 a%x)% + C.

Batds
_OTT _ og (1048 + 15)% + C.
0@+ 15 og (103 + 15)8 +
Bbeds 5
49. =—>1log(8a— 6be?) + C.
fSa,—Gba:‘~’ 1g.08 (B a—0602%) +

2 xd
50. =224 1) +0C.
fa',+l -ty TleE++

HinT. First divide the numerator by the denominator.

—_ 2
1f2z+3 =z —log(2z + 8)2+ C.
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52. f da;—-%log(:c" nx) + C.

W:—2)3dy 2 6 vy )
53.[T_E—;+§—logy“+a

tn—1dt 1
b4. = —log(a + bt») 4+ C.
fa, +btr nb g(a+b0) +

da 1
sda _ 1 14 0.
55. f(log a) 4(log a)t 4+ C

2
56. f’r+1 :;—+'r+210g(7‘—1)+0.
57. f%—2loa(er+1)+c

sin zdx 1
=—C1 b .
58. fa+bcosa: A og(a+ bcosz) 4+ C

sec2ddd 1
59. = =log(1 t: C.
f1+3ta110 3 og(l+3tand) +

60. fes’ds :%s+es+log(e“—1)+(7.

o 53
62. Integrate the following and verify your results by differentiatien:

(a)f<4x2— g)d:c

Solution. f(4a:2— —)dx 4fa:2d:c— 2f — —2logz + C.

dr =log(er+1)2—r+C.

Verification. d(‘%“— 2logx + C) = (;3:1:2— 2. ~>do: = (4z2_ g)dm.
T,

(b) f xtdx. (h) f SM+'?ds. (n) f ca;")'" (t) f sm3—§cos—da:
© [svate. @ [asbds. @ f b“ydy 9sds

cy2

@ f padz. 0[5 e ® [ Ljf)zdz'  [Va=teds
z

2 —2dt. —1)d: csc® gdg
(e) f’y‘dz/. (k) ft t (9) % v )fb—acot¢

3 28
) f76’;d6’. (U] fb\/f?dx- (r) %&: (x) f(e‘_’"' 1)1785@;_
4d 8dz atdt dt
@[5 O o o fosr]

Proofs of (6) and (7). These follow at once from the corresponding
formulas for differentiation, IX and IXa, p. 85.
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For formulas (6) and (7).

Verify the following integrations:

ba2x

2loga+

1. f bazedy =

Solution. f ba2zdr =b f a?rdzx.

EXAMPLES

By (2)

This resembles (6). Let v=2x; then dv=2dx. If we then insert the factor 2 before dz and the

factor 4 before the integral sign, we have

bfa“dm fazwdz fazmd(szm) 27 e By (6)

2. f3exdx_3em+o.

3. fefdmzne5+o.

2 loga
L R

S.feudm:%t—l—c.

a2z
4, | esinz dx = esinx 4 C, 9. 22dy = — 4 C.
f cosT + fa Zloga +
e2cosx 5z
5. 2 cos T gj dr = — 10. brde = —— C.
fe sinx f fogb +
g2y—1 aze®
6. | 32v—1dy=— 4+ C. 11. | a%e*dr = ——— + C
f 4 210g3+ f 1+loga+

1 adsx
12. z Sr)dy = —(ebxr + —— C
2 f(e5 +a%) 5( +10ga)+

13. fea’+4z+8(x +2)dr = pe+4a+3 4 C,

anz bmx

14. px — pma) dp = ——— —
f(a ) nloga mlogd

z _z z _z
15.f(ea+e a)dz = a(e®— € a) + C.
16. f(eﬂl+ e~ ¥)2dy = }(e2v — e—2v) + 2y + C.

(ax — bx)? arb—= — g~ xb*
17. de = -2 C.
7 f axbx loga — logd vt

etz adbx 8b—2=
TV 5loga 2logb+

- 18, f(e4ac+ ab® + 8b—22) d =

1[e8at e— 8at
(ot + emat)3dt =22 4 8eat — 3e—at— C.
19 f( + e~ ) a[3 + e 3 ]+

20. Integrate the following and verify your results by differentiation :

@) f e2eds. (@ f e 8edz, ) f 5 eard. (m) f azda.
(b) f b-4=dz. ® f 204, ) f ¢ada. (n) f crag.

(© f corde. ®© f Seda, (k) f ae-medg. © f (2%)2dz.
@ 22 W (2. o[22 ® [ur.
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(a) f a2siné cos pdep. (s) f et cos6sin fdg. (n) f etantsec? tdt.
a -3 - 0, Zd_x
® f(e“+ € 9rda. (t) fez“ tadz. ") fal e

Proofs of (8)—(13). These follow at once from the corresponding
formulas for differentiation, XI, etc., p. 35.

Preot ot (1), [ tan v — [0

COos v

— sin vdw
cos v
. _fd (cos v)
cos v
=—logcosv+C by (5)
= log sec v +C.

[Since —log cos v=—log se}; 7= log 1+ log sec v = log sec v.]

Proof of (15). f cot vdy = f s vdy _ f d(s.m »)
sin v sin v
= log sin v + C. By (5)

. sec v+ tan v
Proof of (16). Since sec v=sec v sec v+ tan v

sec v+ tan v
__sec v tan v+ sec®

sec v 4 tan v

2,
fsee v dv :fsec v tan v 4+ sec*v do
sec v 4 tan v
fd(sec v+ tan v)

sec v + tan v
= log (sec v + tan v) + C. By (5)

. csecv—cot v
Proof of (17). Since cscv=cscv ——m———
cscv—cot v
— cse v cot v+ esc
cscv — cot v

— csc v cot v 4 csev
cse vdy = dv
¢se v — cot v

_ ("d(csc v —cot v)
_f csec v — cot v
= log (csc v — cot v) + C. By ()
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EXAMPLES
For formulas (8)-(17).

Verify the following integrations:
cos 2 ax
2a
Solution. This resembles (8). For letv = 2 ax ; then dv = 2adx. If we now insert

+C.

1. fsinZtm;da::—

the factor 2 a before dx and the factor 2i before the integral sign, we get
a

fsin2amda;:2lafsin2aw-2adz

_:%lfsin2ax~d(2ax)=%l-——cos2aa:+C. By (8)
=_cos2ax+c,.
2a
- 2. fcosmmdm:lsinm:c+0. 7.fcscaycotaydy:—1cscay+0.
m a
1
3. ftanbzdm—_-l;logsecbx+0. 8.fcs023mdx:—§cot3m+0.

1 T T
. = - t . 9. t — = 1 in — .
4 fsecaa:d:c alog(seca:t,+ anax)+ C fco 2d:c 2 ogsm2+C
T z x
5. —dr=al Z—cot=)+C. 10. | sec?.x?dx = 1tanzd 4 C.
fcsca aog(csca co a>+ fs c2%3 . ltanz® 4+
dx
6.fsec3ttan3tdt:%sec3t+0. ll.fsin—%:—cotx+0.

ds
12. fcos% =tans 4 C.

13. f(tano + cot §)?df = tan g — cot§ + C.
14.f(seca—- tan a)2da = 2 (tan « — sec @) — a + C.
15'.f(tan2s—l)2ds=%tan2s+logcos2s+0.
16.f(cosg—sin30>d0=3sing+%cos30+0.‘
17.f(sinaz+sin§>d:c=—1cosax—acosz'+0.
a, a a
k.
18. fkcos(a,+by)dy:Bsm(a+by)+0.
19. f cosec?a? - x2dx =— } cot 28 + C.
dx
20. 1 — =sin(logx C.
fcos(ogx) = sin (log x) +

dx A
. —_— t C=t - C.
21 f1+cosa; cotx + cscx + an2+

HinT. Multiply both numerator and denominator by 1—cos  and reduce before inte-
grating. .

dx
22. | ———— =tanx —secz + C.
f1+sinz n +
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£3. Integrate the following and verify the results by differentiation :

. 22
(a) fsm?da:
(b) fcote”-e“dm.
4 /]
(c) f secétanédﬁ.

(d) f ese 2 cot —d¢.

b+ ax)d. )
(€) chS( az) ()fcot Ty (t)f%n'
[4
f _— . 26— % a0. 2 adt
) fsec ax (m) f (sec csc 2) (n) f bt
@ [ ~coffgz. @ f(ong +secprap. ) [ %

Proof of (18). Since

d(larc tanQ—)+ C>=
. a a

we get

Proof of (19). Since

dv

fvﬁ—a

—-a
L
2a

()ftanﬁt
(i)ftangdx

G) f ese? (a — ba) da.

(k )fsmhiﬁ'

dv
fvz_*_awz_

293

(0) f (tan 4s— cot Z) ds.

®) f (cotz — 1) da.
(@) f (sect— 1)2dt.

(r) f(l — cscy)2dy.

()

a/  dv
2,2 2’

1 v v+ a

+(3)

= arc tan 2 + C.*

a a

1 < 1 . 1 >1

T 2a\v—a v4a ’

<1 1 >dv
v—a v+a

1
a

= - {log (v —a)—log (v+-a)} +C

1

2a

* Also d arccot +C’)=_ v a
a v% + a?

ndf av =_1arccot2+0’.
v2+a2  a a

v—a

log +C.

Hence

f av =1arctan9+C’=—1arccot9+0’.
v2+a2 q a a a

dx
©) fl— CoST

by XIII, p. 35

by (5)

Since arc tan 2 + are cot L g , we see that one result may be easily transformed into the other.
a

a
. . . . . . v v
The same kind of discussion may be given for (20) involving arc sin — and arc cos—, and for
a a

. . v v
(23) involving arc sec(—l and arc csc —d.

t By breaking the fraction up into partial fractions (see Case I, p. 325).
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Q) w
\jl <v> Vot —

.
we get = arc sin — 4 C.
& f\/a—v a

Proof of (21). Assume v=atanz where z is a new variable;
differentiating, dv = a sec’zdz. Hence, by substitution,

Proof of (20). Since

d (arc sin — + C by XVIII, p. 35

dv a sec® zdz sec? zdz

Voita JVatanlz+ o J Viantz+1
=fseczdz=log(secz+tanz)+0 by (16)

= log(tanz—l-\/tanzz +1)+ e By 28, p. 2

v
But tan z = —; hence,
a

dv v v?
—] - —+1 .
\/v2+a‘2 og<a+ a2+ >+c
\/ 2 2
=log———v+ : ta +

=log(v+\/vg+ az)—loga+c.
Placing ¢ =—log a + ¢, we get

dv
=log (v 4+ Vv?+ a?)+ C.
Voya )
In the same manner, by assuming » = a secz, dv = a secz tan zdz,
we get dv a sec z tan zdz f
= | seczdz
Vo= a? Va*sec?z —
= log (sec z + tan z) + e by (16)
=log(secz +Vsec’z—1)+¢ by 28, p. 2

2
=log<§+ 2—2—1>+c=log(v+\/vz—— a2)+ C.

Proofs of (22) and (23). These follow at once from the corre-
sponding formulas for differentiation, XXII and XXIV, p. 36.
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A large number of the fractional forms to be integrated have a
single term in the numerator, while the denominator is a quadratic
expression with or without a square.root sign over it. The following
outline will assist the student in choosing the right formula.

NUMERATOR OF FIRST NUMERATOR OF ZERO DEGREE
DEGREE
dv 1
—arc tan C, or,
No radical j‘@ —logv +C f o2 P +
in denominator v f v 1 v—a Iy
v—a? 2a "v4a
dv .
o1 f_—:arcs1n—+0 or
Radical fv"dv =T +C Vot — v? a
in denominator f dv —_—
n—— —-—:log(v+\/v2:|:a2)+0
o==d Verae

Students should be drilled in integrating the simple forms orally
and to tell by inspection what formulas may be applied in inte-
grating examples chosen at random.

EXAMPLES
For formulas (18)—(23).

Verify the following integrations :

dz 1 2z
. | ———=-arctan— + C.
1 f4£2+9 garetan— +

Solution. This resembles (18). For, let v2 = 42 and a% = 9; then v = 2z, dv = 2dx,
and a = 8. Hence if we multiply the numerator by 2 and divide in front of the
integral sign by 2, we get

f f d(2x)
4w2+9 2 (2a:)2+(3) 2 (27)2 + (3)%
= %al*c tan% +C. By (18)
2. fﬁjzémggz—l—:ﬁua 6.,f\/z2_ log (z+ Va2 +9) + C.
fm %arcsmT+G 7. fmf—fz;zgarctan§+0.
4. fﬁ:arcsin§+0. fg%:é—b‘;clogg—;%+0.

Tatde 7 3 +V5
:log(m+\/;l‘2——9)+0'. 9. —I-—:—IOgm + +C.

5 f—dz
Vaz—9 5—-2% 6v5 a3—V5
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10. f\/ixjm# = —arcsinz? + C. 13. fT:m——_zﬁ = arc vers g +C
11 fa:\/4:52 = %a,rcsec?+0 14. fa2 i —logzzi:+0
%:%amtant—z+0. 15. f%:arcsme‘+0.
16. f\/37js582 = %5 arcsin \/gs + C.
17. f_a/oT—l; v_log(ﬁv+V—)+C
18. I%: <—1i arc tan (Sﬂ;it) +C.
19. f———dm——— = arc sin (logz) + C.
1— log?z

dz 1
R L Vit + &) + C.
20. [ = log (ex + ViR + ) +

dy 1 0
21, | ——==-1 Vbty? — a2) + C.
f,/bzyz__az bog(by+ vi-e)+
22. f::arCSinu-l-b'l'C-
Va2 — (u + b)?
23 garctanz_e+0.

: f(z—e)2+b2:b

—arc ta.n +C.

24. - -
fa:2+2z+5 2

HINT. By completing the square in the denominator, this expregsion may be brought to
a form similar to that of Ex. 17. Thus,

dx dx dx 1 r+1
= = =-arc tan=——+ C. By (18)

fm2+2m+5 f(:c2+2x+l)+4 @+12+4 2 2 ¥ (18
Here v=2+1and a=2.

1 z+1
2

1+G’.

25. f———dm——:arcsin2z_—
\/2+:1;—a:2

HiINT. Bring this to the form of Ex. 16 by completing the square. Thus,

2
‘'=arc sin

+C’ By (20)

f Vor z—a? f \/2—(«:2-95):«[ \/2—(m2—m+})+}=f \/g—:c—})ﬁ

Here v=2—4 and a=$.

arc ta,n2m+l

26 f——i
E R Y AN

+0C

3r—1
27. =— t: - C.
Jrvrri o v
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1 dx
28. —_—— =~ =5
f\/2—3z—4:c2 2f\/%——-%ib—w2 2f\/%—(12+%“’+391)+391
1 . 8x+3
= —are sin + C.
2 \ZT
da .
29. f———-:arcsm(2a:—-3)+0.
V8 —x2—2
dv 1 v— 5
=-1 C.
0. [ “oors 4 Buo1T
31. f_dz!__leng
v+3y+1l 5  20+3++5
32. —log(t+ +\/t2+t+>
f\/1+t+t2
dz
33. »mzarctan(2z—1)+0.
ds
34, [———=1log(s+a+V2as+s?)+C.
fv2as+sz
. dx 1
Y ——== =+ C.
35 f Vo abarc seca +
. 2 N
36. 8 2%dz 1arc vers 183 4 C.
\/x" 976 3
37. Gt+ede a.rc tan = +—log(ac2 + 2?) + C.
a2+a;2> a B

HinT. A fraction with more than one term in the numerator may be broken up into the
sum of two or more fractions having the several terms of the original numerator as numer-
tors, all the denominators being the same as the denominator of the original fraction. Thus,
the last example may be written

(b +ex) dx f bdx + f exdy b f dx te f wdx
= = s
a? + a2 a2 + a2 a? + a2 a? + a2 a? + a2

each term being integrated separately.

38. Qz%m 3log @2+ 9)—= a.rc ta.n— +C.

39. f:i;_—% 110g(3m-'—2)——\5—/—610g:—j—§;—j§+0
40. f\g/:):_sz =—8Vo—#—2arcsin + C.
41.f%d7::\/xﬁ_+—i+3log(z+\/m+0.

a2, %:g\/tﬁz—g—%log(t\@ +VEE—9) + C.
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43. Integrate the following expressions and verify your results by differentiation :

(a{fﬁ' ()fW @ %
(b)ﬂff 5—% o f 12 ZZZ:- 3 @ f f27d2u%§
()IW 2Ztt+2 () f%. ()f\/23j0302.
()f T (1)f — (t)f#m.
(e)f%- (m)ff#ﬁ. W [
SRR B el
O farew @ f s s

168. Trigonometric differentials. We shall now consider some trigo-
nometric differentials of frequent occurrence which may be readily
integrated by being transformed into standard forms by means of
simple trigonometric reductions.

Example I. 7o find f sin™x cos" zdw.

When either m or n.is a positive odd integer, no matter what
the other may be, this integration may be performed by means of

formula (4), f !
vy = .

For the integral is reducible to the form
f (terms involving only cogz) sin zdz,
when sin z has the odd exponent, and to the form
f (terms involving only sin x) cos zdz,

when cos = has the odd exponent. We shall illustrate this by means
of examples.
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ILLusTrATIVE ExamprLe 1. Find f sin2x cos® xdi.

Solution. f sin?x cosbzdx = f sin?x costx cos zdz
:fsin?aa(l — sin%x)? cosxdx by 28, p. 2
——f(smzm — 2sintx + sinfx) cosxdx

——f(sm x)2 cos xdx — 2f (sinz)* cos zdx + f(sm )8 cos zdx

sindxz 2sin®z sin’z
—3—5+7+C. By (4)

Here v = sinz, dv = cosxdx, and n = 2, 4, and 6 respectively.

ILLusTRATIVE ExaMPLE 2. Findfcos%vdm.

Solution. f cos®zdr = f cos?x cos xdr = f (1 — sin%z) cos zdx
:fcosmdx—fsin% cos xdx
ind
=sing — Sz + C.
EXAMPLES
14
1. fsin%da: =} cosdx — cosx + C. 5. fsin3 66 cos 66d = 5'1]2460 + C.
ins 4
2. fsinzcc cosade = S0 % +C. 6. fcos3 20 sin26df = — 008820 + C.
3
3. fsinzcos:r,d:c—smz+0* 7. fcos xdx_cscm—lcsc%+0,
: sintx 3
3
4.fcos2asinada:—cosa+0. 8 fwzseoa+cosa+0.
cos?

9. fcos*cc sindzde = — L cosbx + }cos’z + C.

5
cos’ + c.

10. fsin%da', =—cosT + gcos*‘:z; —

11. f cosbadr = sinx — gsm3
3
12. fsin:hﬁ cos® pdg = {5 sin17a¢ — o sinzft ¢+ C.

* This was integrated by the power formula taking n=1, v =sin, dv=cos xdx. To illus-
trate how an answer may take on different forms when more than one method of integration
is possible, let us take n=1, v=cos , dv=-sin xdx, and agaih integrate by the power

formula. Then
- . cos2z
fsm z cosxdr= —f(cos x) (—sinx dx) =~ —+ c,

a result which differs from the first one in the arbitrary constant only. For,

0822 1-sin22 sm2:c sinZx 1
s =R +0'= +

2 2 2 2 2 2

Hence, comparing the two answers, C'=-3}+(C".
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13. f sin} @ cos50d6 = § sin$ 6 — g, sin™* 0 + & sin’f 6 + C.

14.fsm1/ dy =— 2Vcosy ( ——coszy+ cos‘* >+C.

Veosy
cos® tdt, 1
15. - 1n§t<1——sm2t+ sm‘t) + C.
f Vsint 2
16. Integrate the following expressions and prove your results by differentiation :
(a) f sin326d4. £) f cosb ax sin axdz. (k) f sindmt cos2midt.
(b) f cosﬂgdﬂ. (8) f sin? 2z cos?—xdz. (1)) f sin® nidt.
2 3 3 '
(c) f sin 2 cos 2 xd:c (h) f cos?3 z sin 3 zdx. (m) f sintz cos zdx.
(6] f sin3¢ cos? tdt. (i) f sin®bs cos bsds. (n) f costy sin ydy.
.z s [ Y
(e) f cossin adx. @) f cos? 3 sin? 3 de. (0) f cos?(a + bt)dt

Example II. 7% find f tan*xdz, or f cot”xdx.

These forms can be readily integrated, when n is an integer, on
somewhat the same plan as the previous examples.

ILLusTRATIVE ExampLE 1. Findftan“zd.t.

Solution. f tantzdr = f tan?z (sec?x — 1) dx by 28, p. 2
= f tan?z sec?xdr — f tanZzdz
=f(ta,n z)%d (tan x) —f(sec“’a: —1)dz

3
=tagx—tanm+z+0.

Example III. 7% find f sec” zdz, or f esc™ xdz.

These can be easily integrated when n is a positive even integer,
as follows:

ILLUSTRATIVE EXAMPLE 2. Findfsec“a:da:.

_Solution. f secbxdr = f (tan2z + 1)2secZxdr by 28, p. 2
= f (tan z)%sec?xdr + 2 f (tan z)2sec?zdz + f sec2xde
5 3
— tan®x + 2tan x + tang + C.

When n is an odd positive integer greater than unity, the best plan is to reduce to
sine or cosine and then use reduction formulas on p. 303.
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Example IV. 70 find f tan™x sec*zdzx, or f cot™ x csc” xdz.

When = is a positive even integer we proceed as in Example III.
ILLustrATIVE ExampLE 3. Find f tan®x sectxde.
Solution. ’ f tan®x sectxdr = f tanbz (tanZz + 1) secxdx by 28, p. 2
= f (tan z)8 sec?zdx + f tan®x sec?xdx
tan®z = tan’z

= C. 4
9 + 7 + By 4)

Here v = tan z, dv = sec?zdz, etc.
When m is odd we may proceed as in the following example.
ILLusTRATIVE ExampLE 4. Find f tan’z secdxdr.
Solution. f tan®z secdzdr = f tantz sec?z sec x tan zde
=f(sec2x — 1)2sec?x sec  tan xdx by 28, p. 2

= f (secbz — 2sectx + sec?x)secx tanxdz
sec’z 2seclz  secdw
= — C. By (4
7 5 tg t v

Here v = secz, dv = secz tan zdz, etc.

EXAMPLES
2 2
1. ftanszda: = tar21 i + log cosz + C. 3. fcotsa:da; =— cot’z log sinx 4+ C
2. ftan22xda::ta'nzz—m+0. 4. fcotza;d:c:——cota;—x+0.

4% g — ot T z
5.fcot 3dx_ cot3+3cot3+m+0.

6. fcot“acda:—i-cot*a+ $cot?a + logsina + C.

7. fta,rﬁ%dy = tan4g—2 ta,nzz + 410gsec?i+ C.

tan’z + 3tanSz
7 5

9._fcs6“a;da: =— cotx — 2cotdz — tcotSz + C.

8. fsecsa‘,dx = + tandz 4 tanz + C.,

tan’¢ tan®¢
7 + 5

11. ftansosecf'eda =}sec’d — Lsecbd+ C.

10. f tant ¢ sect pdop = +C.

cotbx cotdz
6 8
5 9
2tanzx 2tanZz
+

5 9

+C.-

12. fcot-”:c cschzdr = —

13. ftan%:csec‘md:c = + C.
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7

8 ord 3
15‘fsec bl a:ta,ncz—2cota—00t a+C.
tant 3

5 3 _ g f(secty 2sec’y 1
14. ftan ysec? ydy = 2 sec y(—ll +3 +C.

16. f(ta,nzz + tantz)dz = ftan3z + C.

17. f (tant + cot )3 dt = 4 (tan2t — cot?t) + log tan2t 4 C.

18. Integrate the following expressions and prove your results Ly differentiation:

(@ [tan?21at. (&) fsec?6 tan26ds. m [ \gaf;

® [ cotz»gdt. () [ esers cots dg. m [0 :I’If:

(©) [ tan® asds. W [ %;. () [sectada,

() f cot.3zdz. G) f tan3t sec? tdt. ®) f esct zdz.

@ [ tz:ft. (k) [ cotty cstydy. (@) [tana sec? ada.
o [ gtg%. W f — (@) [ eota esctada.

Example V. 70 find f sin™z cos” xdz by means of multiple angles.

When either m or = is a positive odd integer, the shortest method
is that shown in Example I, p. 208. When m and » are both positive
even integers, the given differential expression may be transformed by
suitable trigonometric substitutions into an expression involving sines
and cosines of multiple angles, and then integrated. For this purpose
we employ the following formulas:

sin u cos u = } sin 2u, 36, p. 2
sin*u = § — 4 cos 24, 38, p. 2
cos’u = § + % cos 2u. 39,p. 2

ILLUSTRATIVE ExamrLE 1. Findfcos2zdz.

Solution. f cos?xdr = f (3 + 4 cos22x)dr 38,p. 2
:%fdm+%fcos2mdz:;+isin2z+C.

ILustrative Examere 2. Find f sinZx cos? xdi.

Solution. f sin?z cos?xdx = } f sin2 2 xdx 36, p. 2
—:.*f(*—%cos‘ia:)d:c 38, p. 2

T 1
=-— —sindx 4 C.
8 32 +
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IrLosTraTivE ExamprLe 3. Find fsin‘* z cos?xdx.
Solution. f sintz cos?xdr = f (sin ¢ cos x)2 sin? xdz
=f}sin22:c(«}—1}cos2az)da; 36,p.2; 88, p. 2
:&fsin22a:dm— ﬁfsin22zcos2a:d:c
= }f@ — $cos4x)dr — ‘}fsin22a; cos 2 xdx
x sin4x sind®2cz

LIkl c.
16~ 64 ®

Example VI. 7% find f sin mx cos nxdz, f sin mx $in nxdx, or f co8 mz
cos nxdzx, when m + n.

By 41, p. 2, sin mz cos nz = 1 sin (m + n) 2 + 1 sin (m — n) .

.'.fsinmxcos nede = %fsin(m+n)xdx+ ‘yfsin(m—n)xdw
__cos(m+mn)z cos(m—mn)z
T 2(m+n) 2(m —n)

+C.
Similarly, we find

. . __sin(m+n)z  sin(m—n)z
fsmmxsmnxdz_ 3 (m+ ) + 30m —n) + C,

sin(m+n)xz  sin(m—n)zx
CoS Mz cos nxdr = (n+mn) ( ) + C.
2(m + n) 2(m —n)
EXAMPLES
1.fcos%dz:§+isin2:c+0’.
3z sin2zx sindzx
2. int gder = — — C.
Jom 8 1 ' 82 T
3x sin2x sindx
3. [ costaxdr = — ——4C.
f 8 + 4 32 +
ind
4, fsin“wdz:%(ﬁx—4sin2:c+§m3ﬂ+§sin4x>+Cc
s
5. fcos“a:dx:ll—e(5a:+4sin2m—sm 2w+§sin4m)+ C.
- .
6. fsin‘acos2ada=—-sm 2a ﬁ—Sm4a+0.
48 16 64
. 1 sin 8¢
4 410t — _© o
7. fsm t costidt = 158 (St sin 4t + 3 >+ C.
8. fcos“zsin%cdz:—1—(5z+§sin32m—-sin4m—§w)+0.
128 3 8
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cos8y_coé2y

9. 3ysinbydy =— C.
fcos y sin 6 ydy 5 n +
sinllz  sinz
10. [ sin 52z sin 6zdz = — — 4+ C.
f " 22 + 2 +
11. fcos4scos7sds:sm118 imﬁ}—[—(}.
22 6

169. Integration of expressions containing Va* — 1 or Vit £ a? by
a trigonometric substitution. In many cases the shortest method of
integrating such expressions is to change the variable as follows:

When Va? — 2* occurs, let z = a sin z.
When Va®+ 22 occurs, let x = a tan 2.
When Vz:— a® occurs, let x = a sec 2.*
dx

_ zﬁ)%

ILLusTrATIVE ExamprLe 1. Find f

Solution. Let z = a sinz; then dx = a coszdz, and

dz a cos zdz a cos zdz
f(a2 —ai f(a“’ i f af cos’ 2

— a?sin? z)‘%
1 dz 1 tanz
:Tf = sec?zdz = ——+ C
a2J cos?z a2 a?
z
=— " ___1C.
T evVa—a?
Since sinz xg, draw a right triangle with x as the opposite o
leg to the acute angle 2, and a as the hypotenuse. Then xz
the adjacent leg will be Va?—z? and tanz= z .
Va2 - a2 z
dx as—x?
ILLusTRATIVE ExamprLe 2. Find f— .
VI +1

Solution. Let xz =tanzt; then dr = sec?zdz, and

f dx _ f sec? zdz _ sec?zdz
Va2 + 1 tanz Vtan?z + 1 tanz.secz
secz dz

=|—dz= —:fcsczdz

tanz sinz

N

= log(cscz — cotz) = logl—t—l— +C
z

‘ ] S
Since tanz=z, cotz=1,and cscz-i""_“. '\é
x z

* We may also use the substitutions ¢=a cosz, = a cot z, and x = a csc 2 respectively.
1 In this example a=1.
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EXAMPLES

=V —a2—aa.rcsec + C.
f\/aQ—zﬁdx:Q\/(ﬂ—m2+§arcsina+C.

V2 2 v r2 2
3. f—z—j—g—dzzlog(z+vz2+a2)——z—+a—+
x i x
2 — x2 §
4. f;f_ﬁ:%arcsinw—me+0.
5 f dz _ @2x2—1) Va4 1
everl 34
. V2 2
6. f (_u_:— ria + C.
2 Ve + a? a?z

xt

de
Lfsin“:c'
(z2 + 1)dx .
T+ 2 :
(az+b)dz.
Vo—@

4. ft,ansgde.

®

f(4a:—- l)de
\/1—5:0-

“S A=
=
8. fm.‘

4x2dx
1— 4zt

10. f (tan8z — 1)2dz.

11. f tan3d sec34dé.
int T dz.
12. f sin’ 2d:c

de
13. .
f costd

Vit _ o2 2 _ 42\3
f po adx‘:(a: a)‘£+0

3 aZe?

MISCELLANEOUS EXAMPLES

14, [ ———.
ft2+6t+5

3 cos 8df
15.
fo — 7sind

(a2= + 1)2
16. f —\/sz

17. —a
f\/l+3s—32
18. fcosﬁ:gdm.

19. fﬂ‘;";_ﬂ
20. fxsd“”

21 fsi3020.

22. f'%

23, f\/idf .

305

C.

&
mfm

1 + sec2d
28.
f1+tan0

29 fd—x
V2 —1

30. f(a— 3a2)m 2 adz.

2,
a1 | _ 2@
(a— atyt
3
32, [Let2
vz
log8 zdx
33. | ——.
=5
34, (e =atds,
35, [L&—b
2 4 4m?

1—2z
36. f 92— n2
37. f cos®ax sin axdz.
38. f cot?3 aydy.

39. f sin2 6 xdzx.
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40. The following functions have been obtained by differentiating certain func-
tions. Find the functions and verify your results by differentiation.

(a) ba® + sin2zx.
Solution. In this example (53 + sin 2x) dx is the differential expression to be inte-

4
grated. Thus f (5% + sin2z)dx = i‘im——— %cos 2z 4+ C. Ans.
Verification. d%:(é%—%cos%v + C) = 623+ sin 2z.
(b) 52° — 6. G et o 4= 20 a—29)°
(c) 222 — 3z — 4. Vg? — ha? vy
20z + sin?. o —m S — .
(d) cos aa;+sma (k) s ()dz2+4x;f1
(e) Va + bzx. 0 bt+c ) () secA%
() wtb Va2 — b? 1
bx + a 5—6s Q) ——-
® vy Vi—dit2z
g . z _z
5+2w ) 2 28 (V) (5 — e 92
—2z 1
342z 8 (1 4 22)2.
(h) 1l (o) sin mx cos mz. (W) 2*( 1}-3:)
1—8z. (p) cos24pa; (x) :c—” x2—1.
D= (@) tant 7. - ) V1t



CHAPTER XXIII
CONSTANT OF INTEGRATION

170. Determination of the constant of integration by means of initial
conditions. As was pointed out on p. 281, the constant of integration
may be found in any given case when we know the value of the
integral for some value of the variable. In fact, it is necessary, in
order to be able to determine the constant of integration, to have
some data given in addition to the differential expression to be
integrated. Let us illustrate this by means of an example.

ILLusTRATIVE ExamprLe 1. Find a function whose first derivative is8x2— 2z + 5,
and which shall have the value 12 when ¢ = 1.

Solution. (8z% — 2 4 5)dx is the differential expression to be integrated. Thus
f(3m2— 22 + 5)do =2 — 2% + bz + O,

where C is the constant of integration. From the conditions of our problem this
result must equal 12 when ¢ = 1; that is,

12=1—-14+56+C,or C=1.

Hence x3 — 22 + 5 + 7 is the required function.

171. Geometrical signification of the constant of integration. We
shall illustrate this by means of examples. /

Y,

the curve at every point of which the tangent has the \\ o

slope 2z. /@

4
Solution. Since the slope of the tangent to a curve at
any point is Z—Z, we have, by hypothesis,
dy Y

o)

=

IrLusTrRATIVE ExampLeE 1. Determine the equation of

— =2z,
dx
or, dy = 2xdzx.
Integrating, y=2 f xdx, or, /
(4) y=22+0,

where C is the constant of integration. Now if we give to C a series of values, say
6, 0, — 3, (A) yields the equations

y=x24+6, y=2a2 y=ua%2-38,
whose loci are parabolas with axes coinciding with the axis of ¥ and having 6, 0, — 8
respectively as intercepts on the axis of Y. '
307
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All ofd the parabolas (4) (there are an infinite number of them) have the same
value of diai ; that is, they have the same direction (or slope) for the same value of z.

It will also be noticed that the difference in the lengths of their ordinates remains
the same for all values of z. Hence all the parabolas can be obtained by moving any
one of them vertically up or down, the value of C in this case not affecting the slope
of the curve.

If in the above example we impose the additional condition that the curve shall
pass thlough the point (1, 4), then the codrdinates of this point must satisfy (4), giving

. =14 C, or C=3.
Hence the particular curve required is the parabola y = z2 + 3.

- InLustrATIVE ExampLE 2. Determine the equation of a curve such that the slope
of the tangent to the curve at any point is the negative ratio of the abscissa to the
ordinate.

‘Solution. The condition of the problem is expressed

by the equation dy z
dz ¢y’
or, separating the variables,
ydy = — zdx.
.. . v__ 2
Integrating, =" 3 + C,
or, . 24 y2=2C.

This we see represents a series of concentric circles with their centers at the origin.
If, in addition, we impose the condition that the curve must pass through the point

(3, 4), then 9416=2C.
Hence the particular curve required is the circle x2 4+ y2 = 25,

The orthogonal trajectories of a system of curves are another sys-
tem of .curves each of which cuts all the curves of the first system
at right angles. Hence the slope of the tangent to a curve of the
new system at a point will be the negative reciprocal of the slope of
the tangent to that curve of the given system which passes through
that point. Let us illustrate by an example.

IrLusTrATIVE Exampre 8. Find the equation of the orthogonal trajectories of the
system of circles in Illustrative Example 2.

Solution. For the orthogonal system we will then

have dy vy
L & o
or, separating the variables,
dy _dw “"{/mg..' X
S
Integrating, logy = logx + logc = log cx,
or, y = cx.

Hence the orthogonal trajectories of the system of circles 2 + y% = C is the system
of straight lines which pass through the origin, as shown in the figure.
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172. Physical signification of the constant of integration. The fol-
lowing examples will illustrate what is meant.

ItLustraTIvE Examrre 1. Find the laws governing the motion of a point which
moves in a straight line with constant acceleration.

Solution. Since the acceleration [: dv from (14), p. 92] is constant, say f, we
h dt :
ave do

=0
or, dv = fdt. Integrating,
4) v=/ft+ C.

To determine €, suppose that the initial velocity be'v,; that is, let .
v=v, when t=0.
These values substituted in (4) give

v,=0+0C, or, C=u,
Hence (4) becomes

(B) v =ft + v,
Since v = Z—'z [(9), p. 90], we get from (B)
ds .
@ = ft + v,
or, ) ds = ftdt + v,dt. Integrating,
©) s=1/+ vt + C.

To determine C, suppose that the initial space (= distance) be s, ; that is, let
s=38, when t=0.
These values substituted in (C) give
$,=04+04+0C, or, C=s,
Hence (C) becomes
(D) s =3/t +vt + s,
By substituting the values f=g¢, v,=0, 8,=0, s=~% in (B) and (D), we get the
laws of motion of a body falling from rest in a vacuum, namely,

(Ba) 4 v=gt, and

Da) h = }gt?.

Eliminating ¢ between (Ba) and (D a) gives
| v=V2 gh.

IrrusTrATIVE ExamprLE 2. Discuss the motion of a projectile having an initial
velocity v, inclined at an angle a with the horizontal, the resistance of the air being
neglected. .

Solution. Assume the XY-plane as the plane of mo-
tion, OX as horizontal, and OY as vertical, and let the
projectile be thrown from the origin.

Suppose the projectile to be acted upon by gravity
alone. Then the acceleration in the horizontal direc- Ol 70¢05%

tion will be zero and in the vertical direction — g. Hence from (15), p. 93,
% = 0, and
dt

aoy__,
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Integrating, vy=0C;, and v,=—gt+ C,.
But %z, cos a = initial velocity in the horizontal direction,
and v,8in @ = initial velocity in the vertical direction.
Hence C; = v,cos a, and C, = v,sin a, giving
(E) Vg = vy COS @, and v, =— gt + v, sin a.
But from (10) and (11), p. 92, v, = Z—j, and v, = Z_Ztl ; therefore (E) gives
% =, cos‘a:., and {tli_?t/ =—gt + yysina,
or, dx = v, cos adt, and dy =— gtdt + v,sin adt.
Integrating, we get
F) z=v,cosa-t+Cy and y=—3gi2 4 v sina-t+C,.

To determine Cg and C,, we observe that when
t=0, =0 and y=0.
Substituting these values in (F') gives
Cg=0, and C,=0.

Hence
(&) T =wvycosa-t, and
(H) y=—4gt* + vysina-t.
Eliminating ¢ between (G) and (H), we obtain
ge*
1) y=ctana — —————,
2v,% cos?

which is the equation of the trajectory, and shows that the projectile will move in a
parabola,

EXAMPLES

1. The following expressions have been obtained by differentiating certain functions
Find the function in each case for the given values of the variable and the function:

Derivative of Value of Corresponding A
function variable value of function . nswers
@) ©—8. 2. 9. T _8z+1s.
2 2?2 bad
(b) 8+ x— bx2. 6. — 20. 304+3m+§——,—3—.
4 20,2

(c) ¥®— b2y. 2. 0. yz - 3’—2?’— +202— 4,
(d) sina + cosa. 1_2'- 2. sina — cosa + 1.

1 1

e) ~ — . 1, 0. log (2t — t2).
© ;-53 g (21— 1)
(f) sec?d + tand. 0. 6. tand + logsecd + b.
L4 T w

— a. — arctan— 4+ —.
®) 2 4 a2 ‘ 2q : na+4a
(h) bx® + ax + 4. b. 10.

1
() vVi+—. 4, 0.
Vi T

(j) cot¢ — csc? . 3’ 3.
(k) 3eett. 0. z.
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2. Find the equation of the system of curves such that the slope of the tangent
at any point is: ’

2
(a) z. Ans. Parabolas, y = % + C.
(b) 2z — 2. Parabolas, y =22 — 22 + C.
2
(c) L Parabolas, yE =z + C.
Y
2 2 g8
(d) z. Semicubical parabolas, % = % + C.
y .
3 2
) % Semicubical parabolas, % :% t+C.
(f) 8z Cubical parabolas, y = x® + C.
3
(g) 2+ 5x. ‘ Cubical parabolas, y :% + gm’-+ C.
3
(h) _12 . Cubical parabolas, % =z +C.
Y
i) %’ Equilateral hyperbolas, y2 — x2=C.
G) — v, Equilateral hyperbolas, 2y = C.
z
b2 2 2.2
k) —- Hyperbolas, a?y? — b%z? = C.
a?y
% .
0 ——- Ellipses, b%y2 + a2z2 = C.
by x2 z
(m) xy. logy=§+0, ory =ce?,
(n) y. logy = + C, or y = ce=.
(0) m« Straight lines, y = ma + C.
(p) ii; Circles, 22+ 24+ 22 — 2y + C = 0.
3. Find the equations of those curves of the systems found in Ex. 2 (a), (c), (d),
(i), (j), (m), which pass through the point (2, —1). o4

Ans. (a)a?—2y—6=0; (m) y=—e 2 ; etc.

4. Find the equations of those curves of the systems found in Ex. 2 (b), (), (g), (h),
(0), (p), which pass through the origin. Ans. (b) y =22—2x; (0) y = mzx; etc.

5. Find the equations of the orthogonal trajectories of the following systems of
curves found in Ex. 2:

2
(a) y=%+C, Ex. 2 (a). Ans. y =— logz + C.
(b) %:a}+ C, Ex. 2 (o). logy =— + C.

v_e 1
(c) T3 + C, Ex. 2 (d). logy_.5+C.
(d) y2—a%=C, Ex. 2 (i). zy = C.
(e) 2y = C, Ex. 2 (j). . y2—a2=0C.

2

(f) ¥ = ces, Ex. 2 (n). %:—:c+0.
g) vy =mx + O, Ex. 2 (0). my 4+ = C.

(h) 22+ 92+ 22— 2y + C =0, Ex. 2 (p). y—1l=c(@+1).

Y
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6. Find the equation of the curve whose subnormal is constant and equal to 2a.
dy Ans. y?2=4azx + C, a parabola.
2 ‘

7. Find the curve whose subtangent is constant and equal to a (see (3), p. 77).
Ans. alogy =z + C.

8. Find the ciurve whose subnormal equals the abscissa of the point of contact.
Ans. y? — x% = 2 C, an equilateral hyperbola.
" 9. Find the curve whose normal is constant (= R), assuming that ¥ ="R when
z=0. Ans. 2?2 4+ y2 = R?, a circle.

. — 3}
Hint. From (6), p. 77, length of normal =y f1+ (cl—la/:) , or dr==(R2—y?2) %ydy.

10. Find the curve whose subtangent equals three times the abscissa of the point
of contact. Ans. x = cyd.

11. Show that the curve whose polar subtangent (see (7), p. 86) is constant is the
reciprocal spiral.

Hint. From (4), p. 77, subnormal=y

12. Show that the curve whose polar subnormal (see (8), p. 86) is constant is the
spiral of Archimedes.

13. Find the curve in which the polar subnormal is proportional to the length
of the radius vector. Ans. p = ce®,
14. Find the curve in which the polar subnormal is proportional to the sirie of the
vectorial angle. Ans. p=c— acosf.
15. Find the curve in which the polar subtangent is proportional to the length
of the radius vector. Ans. p = ce?d,
16. Determine the curve in which the polar subtangent and the polar subnormal
are in a constant ratio. Ans. p = cead,
17. Find the equation of the curve in which the angle between the radius vector
and the tangent is one half the vectorial angle. ) Ans. p =c(1— cosé).
18. Determine the curves in which the subtangent is n times the subnormal ; and
find the particular curve which passes through (2, 3).
. Ans. Vay =g + C; \/7_L(y-—3):x—2.
19. Determine the curves in which the length of the subnormal is proportional to
the square of the ordinate. Ans. y = cek=,

20. Find the curves in which the angle between the radius vector and the tangent
at any point is n times the vectorial angle. Ans. pr = csinnd.

Assuming that v = v, when ¢ =0, find the relation between v and ¢, knowing that the
acceleration is:

21. Zero. Ans. v= Vg

22. Constant = k. ' v = vy + kt.
: 2
23. a + bt. . _v:v0+at+%.

Assuming that s = 0 when ¢ = 0, find the relation between s and ¢, knowing that the
velocity is:

24. Constant (= v). Ans. s =wyt.
. 2
25. m + nt. 3:mt+%-

26. 8+ 2¢— 82 . 8=3t+ 02—
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27. The velocity of a body starting from rest is 5 t2 feet per second after ¢ seconds.
(a) How far will it be from the point of starting in 8 seccnds ? (b) In what time will
it pass over a distance of 360 feet measured from the starting point ?

Ans. (a) 456 ft.; (b) 6 seconds.

28. Assuming that s = 2 when ¢ = 1, find the relation between s and ¢, knowing that
the velocity is: ‘

@) 3. Ans. s=8t—1.

() 2¢t—3. s=12—3t+ 4.
2 ’ B, 5

(c) 242t —1. 3:§+t_t+§.

(d) % s=logt + 2.

(e) 483 — 4. s=1tt—4t 4 5.

(ﬁk s=—Sikye
2’ ' ==3 .

29. Assuming that v =3 when ¢ = 2, find the relation between v and ¢, knowing
that the acceleration is:

(a) 2. Ans. v=2t—1.
(b) 822 + 1. v=0+1—1.
4
(0) B8 — 2t. v:%—ﬁ+&
1 . t 2
() =+t =log-+—+1.
@ 3+ v=logs+ 5+

30. A train starting from a station has, after ¢ hours, a speed of * — 21¢2 4 80¢
miles per hour. Find (a) its distance from the station; (b) during what interval the
train was moving backwards; (c) when the train repassed the station; (d) the dis-
tance the train had traveled when it passed the station the last time.

Ans. (a) }¢* — 73 4+ 402 miles; (b) from 5th to 16th hour;
(c) in 8 and 20 hours; (d) 46584 miles.

31. A body starts from the origin and in ¢ seconds its velocity in the X direction
is 12t and in the Y direction 4t — 9. Find (a) the distances traversed parallel to each
axis; (b) the equation of the path.

" 4 2 i
Ans. (a) x =612 y:§t3—9t; (b)y:<§z—9>\/(;-

32. The equation giving the strength of the current ¢ for the time ¢ after the source

of E.M.F. is removed is (K and L being constants)
Ri=—L (E .

Codt Rt

Find ¢, assuming that I = current when ¢{ = 0. Ans. i=1Ie I-

33. Find the current of discharge ¢ from a condenser of capacity C in a circuit of
resistance R, assuming the initial current to be I, having given the relation (C and R
being constants) di  dt . £

7 = CR Ans. i = I eCk,

34. If a particle moves so that its velocities parallel to the axes of X and Y are
ky and kx respectively, prove that its path is an equilateral hyperbola.

35. A body starts from the origin of codrdinates, and in ¢ seconds its velocity parallel
to the axis of X is 6, and its velocity parallel to the axis of ¥ is 3#2 — 3. Find (a) the
distance traversed parallel to each axis in ¢ seconds; (b) the equation of the path.

Ans. () € =38, y=1t—38t; (b) 27y2 = (x— 9)2



CHAPTER XXIV
THE DEFINITE INTEGRAL

173. Differential of an area. Consider the continuous function ¢(z),
and let . . ¥ =¢(@)

be the equation of the curve AB. Let CD be a fixed and MP a
variable ordinate, and let » be the measure of the area CMPD.*
When z takes on a sufficiently small increment Az, « takes on an
increment Au (= area MNQP). Completing the rectangles MNRP
and MNQS, we see that

area MNRP < area MNQP < area MNQS,
or, MP-Az < Au < NQ-Azx;
and, dividing by Az,

MP < Au < NQ.t
Az

Now let Az approach zero as a limit; then since P remains fixed
and NQ approaches MP as a limit (since y is a continuous funection

of z), we get du
—=y(=MP
dz y( )
or, using differentials, du = yda

Theorem. 7he differential of the area bounded by any curve, the axis
of X, and two ordinates is equal to the product of the ordinate ter-
minating the area and the differential of the corresponding abscissa.

174. The definite integral. It follows from the theorem in the last
section that if- 4B is the locus of

y=9¢(),
then du = ydz, or
4 du = ¢ () dz,

* We may suppose this area to be generated by a variable ordinate starting out from C'D
and moving to the right; hence u will be a function of @ which vanishes when 2= a.
1 In this figure MP is less than NQ; if MP happens to be greater than NQ, simply
reverse the inequality signs.
314
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where du is the differential of the area between the curve, the axis
of x, and any two ordinates. Integrating (4), we get

u :f(;b () dz.

Since f ¢ (z) dz exists (it is here repre-
sented geometrically as an area), denote
it by f(2)+C.

(B Sou=f(x)+ C.

We may determine €, as in Chapter XXIII, if we know the value

of u for some value of z. If we agree to reckon the area from the
axis of g, i.e. when

o) r=a, wu=area OCDG,
and when z=10, wu=area OEFG, etc.,
it follows that if

D) z=0, then u=0.

Substituting (D) in (B), we get
u=f(0)+C, or, C=—f(0).
Hence from (B) we obtain
&) u=f(@)—f(0),
giving the area from the axis of y to any ordinate (as MP).

To find the area between the ordinates €D and EF, substitute
the values () in (®), giving

an area 0CDG =f(a)—f(0),
@ area OEFG =f (b)) —f(0).
Subtracting (#") from (&),

(H) area CEFD = f(b)— f(a).*

Theorem. The difference of the values of f ydx for x=a and z=105

gives the area bounded by the curve whose ordinate is Y, the axis of X,
and the ordinates corresponding to x=a and z="b.

This difference is represented by the symbol t

€)) ﬁ ;/dx, or, ﬁ l:;b (@) dz,

* The student should observe that under the present hypothesis f(x) will be a single-
valued function which changes continuously from f(a) to £ (b) as x changes from « to b.
1 This notation is due to Joseph Fourier (1768-1830).
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"

and is read “the integral from @ to & of ydz.” The operation is
called integration between limits, a being the lower and b the upper
limit.*

Since (I) always has a definite value, it is called a definite integral.
For, if '

[e@a=r@+c,

then faqb () dx:[f(x)+ O]u
=[f(O+C] - [f(@©+C],
or £¢ (@).dz=f(b)—f(a),

the constant of integration having disappeared.

We may accordingly define the symbol

ﬁiﬁ(m)dx or ﬁ;dz

as the numerical measure of the area bounded by the curve y= ¢ (2),'
the axis of X, and the ordinates of the curve at r=a, x=>5b. This
definition presupposes that these lines bound an area, i.e. the curve does
not rise or fall to infinity, and both a and b are finite.

‘We have shown that the numerical value of the definite integral
is always f(5)—f (&), but we shall see in Illustrative Example 2, p. 324,
that f(b)—f (@) may be a number when the definite integral has no
meaning.

175. Calculation of a definite integral. The process may be sum-
marized as follows:

First Stee. Find the indefinite integral of the given differential ex-
pression. .

Seconp Step. Substitute in this ipdefinite integral first the upper
limit and then the lower limit for the variable, and subtract the last
result from the first.

It is not necessary to bring in the constant of integration, since
it always disappears in subtracting.

* The word limit in this connection means merely the value of the variable at one end of

. its range (end value), and should not be confused with the meaning of the word in the

Theory of Limits.
1 (x) ¢ is continuous and single-valued throughout the interval [«, b].
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. 4
IrLusTrRATIVE ExamprLe 1. Find f x2dz.
1

' 374
Solgtion. fa;zdm [2]1:%—;—):21. Ans,

m
ILLusTRATIVE ExampLE 2. Find f sin adx.
v

Solution. f"sin zdr = [—- cos 9:] T [— (- 1)] - [— 1] =2. Ans.
0 )

dx
o a2+ x?

ILLusTRATIVE ExamprLe 3. Find

Solution. f aL:[} arc tana—;] u: 1arc tanl—larc tan 0
0 a? + x? a alo a a
' =" _0="". Ans.
4a 4a
EXAMPLES
8. il
1.£ 822y = 38. 13.f4sec4€d0:§.
V]
a (14
2. a2y — 23)de = —. 2 o
j;( PR =g u [ r\/2_rda;:
0 T
3. ——1 5 _
f 5. [ (3Vi- )l =2VE—5

wr

rorde
16. | ——=—-
j;) V2 —g2 2

5.j;(a;2—2:c+2)(z——1)d:c=—i. - f”%/—dl .
Va2r—y '
1 dg
6. [ 2 _=+v3-1
b 9
‘/;’ V3—2z 18. f %(yz——b2)4dy:——2§f5ﬂl~
7 (PP 8 g ’
“Jozy1 3T ¥ = ]
19. 2af (2 + 2 cosf)tdf = 8 a.
0
8. \'/_g_m_:_w__ il
j;’ vV2—-322 43 20.f2sin3acos3ada=117.
0
o T3 _ Yz, n
22 ~a:2 21. fz,rta,nada:(). —+ +
10 1ody 2w 1
“Joyr—y+1l 33 n
29 4sec 6df = log <1 + 1/5)
1 fsm—t:1°g2. : “Jn V3
“Ja142m 2 R

o ™
2 2 6de T

. 25 = 1. 23. C—OS— =
12 /; sin gpdg =1 o 14 sin2§ 4
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176. Calculation of areas. On p. 316 it was shown that the area
between a curve, the axis of X, and the ordinates z=a and z =25 is
given by the formula

b
Area = f ydx, Y| ' bp
a
where the value of y in terms of z is substituted
from the equation of the given curve.

IrLustrAaTIVE Examere 1. Find the area bounded by
the parabola y = x?, the axis of XX, and the ordinates = = 2

and © = 4. c
Solution. Substituting in the formula
4 2374
Area ABDC = f o do = [;]

2 3 ]2

64 8 56 o 4 B X
::3—5:3:18%-. Ans.
EXAMPLES

1. Find the area bounded by the parabola y = &2, the axis of X, and the ordinate
x=3. Ans. 9.
2. Find the area above the axis of X, under the parabola y2 = 4z, and included
between the ordinates ¢ = 4 and z = 9. Ans. 25%.

3. Find the area bounded by the equilateral hyperbola 2y = a2, the axis of X, and
the ordinatesz = ¢ and z = 2 a. Ans. a?log 2.

4. Find the area between the parabola y = 4 — «% and the axis of X. Ans. 10%.-
5. Find the area intercepted between the codrdinate axes and the parabola
2

a;% + y‘% =al. Ans. %-
6. Find the area by integration of the triangle bounded by the line y = 5, the

axis of X, and the ordinate x = 2. Verify your result by finding the area as one half
the product of the base and altitude.

7. Find the area by integration of the triangle bounded by the line y = 2z + 6,
the axis of X, and the ordinate x = 4. Verify your result as in the last example.

8. Find the area by integration of the trapezoid bounded by the linex — y + 4 =0,
the axis of X, and the ordinates ¢ =— 2 and ® = 4. Verify your result by finding the
area as one half the product of the sum of the parallel sides and the altitude.

9. Find the area by integration of the trapezoid bounded by the line = + 2y —
6 = 0, the axis of X,and the ordinates x = 0 and & = 8. Verify your result as in
the last example.

10. Find the area by integration of the rectangle bounded by the line y = 5, the
axis of X, and the ordinates x = 2 and & = 6. Verify your result geometrically.

11. Find by integration the area bounded by the linesz =0,z =9,y =0,y =1T.
Verify your result geometrically.

12. Find the area bounded by the semicubical parabola y® = x2, the axis of X, and
the line x = 4. Ans. §/1024.
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13. Find the area bounded by the cubical parabola y = 23, the axis of X, and the
ordinate z = 4. Ans. 64.

14. Find in each of the following cases the area bounded by the given curve, the
axis of X, and the given ordinates :

(@) y=9— a2 r=—3, z=38. Ans. 36.
(b)y:l_f?. z=0, z=8. log V/65.
(c) y.=sinz. =0, m:;—r- 1.

(@) y=a3+ 3a% + 2. r=—38, z=38. 54.

) y=a>+z+1. rT=2 x=3. 9%.

) y=ct+4a®+ 22248 x=1c=2 284,
() ¥*=—4z. z=—1, z=0. —4. b
(h) zy =12 z=a, z=D0. k210g(;'
(i) y=2x+ 3. ‘ =0, x=4.

(G) ¥* =4z + 16. r=—2z=0.

(k) y =2% + 4x. r=—4, z=—2.

() ¥ = cosz. m:O,z:E.

(m) zy =12. r=1, z=4.

15. Find the area included between the parabolasy? =4z and 22 =4y. Ans. 5.

16. Find the total area included between the cubical parabola y = 2® and the
line y = 2. Ans. 2.

17. Prove that the area bounded by a parabola and one of its double ordinates
equals two thirds of the circumscribing rectangle having the double ordinate as
one side.

18. Find the area included between the parabolas ¥2 = 4 4+ = and y2 = 4 — .

19. Find the area between the curve y = ) : and the line y = E

x2
Ans. log4— 3.
20. Find by integration the area of the triangle bounded by the lines

z+3y—3=0, bx—y—15=0, z—y+1=0. Ans. 8.

177. Geometrical representation of an integral. In the last section
we represented the definite integral as an area. This does not neces-
sarily mean that every integral ¢s an area, for the physical interpre-
tation of the result depends on the nature of the quantities represented
by the abscissa and the ordinate. Thus, if z and y are considered as
simply the cobrdinates of a point and nothing more, then the integral
is indeed an area. But suppose the ordinate represents the speed of
a moving point, and the corresponding abscissa the time at which the
point has that speed; then the graph is the speed curve of the motion,
and the area under it and between any two ordinates will represent
the distance passed through in the corresponding interval of time.
That is, the number which denotes the area equals the number which
denotes the distance (or value of the integral).
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Similarly, a definite integral standing for volume, surface, mass,
force, etc., may be represented geometrically by an area. On p. 366
the algebraic sign of an area is interpreted.

178. Mean value of ¢ (x). This is defined as follows:

b
[ #@ax " o
Mean value of ¢(x)} _Ya . I R o
from x=atox=> b—a P
Since from the figure /
A C| B
Ol r=a x=0b

f b¢> () do = area APQB,

this definition means that if we construct on the base AB(=0b—«a) a
rectangle (as ALMB) whose area equals the area of AP@B, then

area ALMB _ AB-CR _ altitude CR.
b—a AB
179. Interchange of limits.

Since . fb¢(x) dz=f(b) —f(a),
and [ @ o=t -ft= -1/ -F@),
we have fbcﬁ(x)dx:—facﬁ(x) dx.

Theorem. Interchanging the limits is equivalent to changing the sign
of the definite integral.

180. Decomposition of the interval of integration of the definite
integral.

Since f "6 @) do =1 (@) —f (@),

and [ ¢@as=rd>-s@.
we get, by addition,

fxlqb (z)dz +f ¢ (@) de=1() —f(a).
a , @
But f ¢ (@) de=f()—f(a);

therefore, by comparing the last two expressions, we obtain

[#ea= ["peoars [“soa

mean value =
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Interpreting this theorem geometrically, as in § 174, p. 315, we
see that the integral on the left-hand side represents the whole
area CEFD, the first integral on the right- - R
hand side the area CMPD, and the second
integral on the right-hand side the area
MEFP. The truth of the theorem is there- \ \
fore obvious. '

Even if z does not lie in the interval —p; f_b <

1 1 -
between a and &, the truth of the theorem
is apparent when the sign as well as the magnitude of the areas is
taken into account. Evidently the definite integral may be decom-
posed into any number of separate definite integrals in this way.

el

\

181. The definite integral a function of its limits.

b
From [ $@ar=r®—s@
we see that the definite integral is a function of its limits. Thus

b b
f ¢ (2) dz has precisely the same value as f ¢ (z) da.

Theorem. A definite integral is a function of its limats.

182. Infinite limits. So far the limits of the integral have been
assumed as finite. Even in elementary work, however, it is some-
times desirable to remove this restriction and to consider integrals
with infinite limits. This is possible in certain cases by making use
of the following definitions.

When the upper limit is infinite,

+o .. b
p@ o=, [s@a,

and when the lower limit is infinite,

[ @ar= 1 (s

provided the limits exist.

a

+eo dy

R

. “dr _ limit bdr _ limit 172
Solution. L E b=+l Eﬁb:_*_w[_g]l

_ limit 1 _
_b:+w[—3+1]_1' Ans.

IrLustrATIVE Exampre 1. Find f
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+o 3
ILLusTrATIVE ExampLe 2. Find f M.
o x2+44a2
to 8aldr limit ? 8a’dx limit i
Solution. f _— = _— = 2 a1 el
0 a2+ 4az V=toJog2ydq2 b:+oo[4a arc tan a]o

_ limit 20 L R 2

_b:+m[4a alctanéz =4a '§~27ra . Ans.
Let us interpret this result geometrically.

The graph of our function is the witch, the

locus of
8ad

Y = ———— .
v 22+ 4a*
8 addx

———— =4«2arctan L .
%+ 4u? 2a

b
area OPQb = f
[

Now as the ordinate @b moves indefinitely to the right,

b
4g?arc tan —
2a
is always finite, and

limit P b1_ 2
b=+ o [4a alctanﬂ] = 2ma?,

which is also finite. In such cases we call the result the area bounded by the curve, the
ordinate OP, and OX, although strictly speaking this area is not completely bounded.

. +odrp
IrLustrATIVE Exampre 3. Find f —
1 z
+todr limit (bdx limit
ion. —= — = log b).
Solution jl‘ T Tb=twl, b:_i_w(og)

The limit of logb as b increases without limit does not exist; hence the integral
has in this case no meaning.

183. When y = ¢ (x) is discontinuous. Let us now consider cases
when the function to be integrated is discontinuous for isolated
values of the variable lying within the limits of integration.

Consider first the case where the function to be integrated is con.
tinuous for all values of 2 between the limits @ and & except z = a.

If a < b and e is positive, we use the definition

b L b
) [e@a==5[ s@an
and when ¢ () is continuous except at z = b, we use the definition
b .. b — €
@ [s@a=15[" ¢@a

provided the limits are definite quantities.
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e do
IrrustrATIVE ExanmprLe 1. Find f _.
i 0 /a2 — g2
Solution. Here _ becomes infinite for * = a. Therefore, by (B),

az—:c2
__limit pe—¢  de _ limit | . x|2—E
-0 ———==__¢|2rcsin>
w/ T e 0 Var—g2 € alo

= = limit [arc sin (1 — E>] —arcsinl= 2. Ans.
=0 a 2

€=
. ldx
ILLUSTRATIVE EXAMPLE 2. Fmdf ="
[

1 . .
Solution. Here — becomes infinite for x = 0. Therefore, by (4),

z

fldw limit ('dz _ limit (1 _ 1)
o2z e=0J. 2 Te=0\¢

In this case there is no limit and therefore the integral does not exist.-

If ¢ lies between a and b, and ¢ (2) is continuous except at z= ¢, then,
e and ¢ being positive numbers, the integralbetween a and b is defined by

(C') f‘l’ (x)d lllllltf (;b(:c) dx+ lnmt gb(z) d,

provided each separate limit is a definite quantlty.

Sa 2xdr

* @yt

Solution. Here the function to be integrated becomes infinite for x = a, i.e. for a

value of z between the limits of integration 0 and 3a. Hence the above definition
(C) must be employed. Thus

3¢ 2xdr _ limit £o—c 2xdr limit 3¢ 2zdz
f e=0 te=o e 2
(@* — a®)®

0 (22— a2)} B 0 (@— )}
]y B ]
= it g Y~ — @ 4 8aF] + I (3950 — 8 Va ¥ op— ]
=8a¥ + 6at =9at. Ans.
To interpret this geometrically, let us plot

the graph, i.e. the locus, of
22

(@ — ay}

ILLustrATIVE ExampLe 1. Find

Y=

and note that * = a is an asymptote.

area OPE :fa_s—@z—
0

z2 — a2)¥
=3\3/(a—e)2— a? + 3at.
Now as PE moves to the right toward the asymptote, i.e. as e approaches zero,

3V (a—e)ﬁ—a2+3a*
eni_l_liot [3\”/—(05T¢)E—;2 + Saﬁ‘] = 3a§“,

is always finite, and
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which is also finite. As in Illustrative Example 1, p. 323, 3at is called the area
bounded by OP, the asymptote, and OX. Similarly,

3a 2
area B'QRG = [ 2 YR -3Vt e —a
ate (g2 g2k
is always finite as QE’ moves to the left toward the asymptote, and as ¢’ approaches
zero, the result 6a¥ is also finite. Hence 6a¥ is called the area between QR, the
asymptote, the ordinate x = 8a, and OX. Adding these results,fwe get 9a§‘, which

is then called the area to the right of OY between the curve, the ordinate x =3 a,
and OX.

. 2a  dx
ILLusTrATIVE ExampLe 2. Find f —_—
0o (r— a)?
Solution. This function also becomes infinite between the limits of integration.
Hence, by (C),
2a dr  limit pe—¢ de limit f"’“ dz
o @—a)2 €=0Jo @—ap “=0Jor.@—a2 ¥

_ limit [_ L] e limit [_ _l_]?a

Te=0] z—alo =0 z—alare
limit (1 1 limit 1.1

=e=o<;—;>+a=o<’;+g)'

In this case the limits do not exist and the inte-
gral has no meaning.

If we plot the graph of this function and note the
limits, the condition of things appears very much the
same as in the last example. It turns out, however, that the shaded portion cannot
be properly spoken of as an area, and the integral sign has no meaning in this case.

That it is important to note whether or not the given function becomes infinite

within the limits of integration will appear at once if we apply our integration
formula without any investigation. Thus

2a dx 1 2a 2
0 (x—a)2_[_9:—a]o T d

a result which is absurd in view of the above discussions.

>+

EXAMPLES
to  dr T +o 1
1. —_— . 7. —axgpy = —.
j:) a4 22 2a ./; ¢ 4
+w + o dx 1
2. [T 2 __-T. s [ = S
1 zvV2x2—1 4 e (@+2)» @m—1)2a)y1
tedr 1 ’ 9. le“dx:e.
8. [T =z S
. [ de  m 10. f+m———dz =7
“Jo @y 2ab —w 22422+ 2
4
(-wda; 11. faxQVaz—a;Zda;:ﬂl—-
b. —=1. 0 16
J1 o x?
‘ o gide 3vV2—4
12. = @

6. f+’°°e—xdx =1 . 1T 2
) (@ +a?)z



CHAPTER XXV
INTEGRATION OF RATIONAL FRACTIONS

184. Introduction. A rational fraction is a fraction the numerator
and denominator of which are integral rational functions.* If the
degree of the numerator is equal to or greater than that of the
denominator, the fraction may be reduced to a mixed quantity by
dividing the numerator by the denominator. Ifor example,

2t +84° bx+3
———.—_-1,2 —3 - .
22+ 2241 t +x’~’+2x+1

The last term is a fraction reduced to its lowest terms, having
the degree of the numerator less than that of the denominator. It
readily appears that the other terms are at once integrable, and hence
we need consider only the fraction.

In order to integrate a differential expression involving such a
fraction, it is often necessary to resolve it into simpler partial frac-
tions, i.e. to replace it by the algebraic sum of fractions of forms such
that we can complete the integration. That this is always possible
when the denominator can be broken up into its real pnme factors
is shown in Algebra.t

185. Case I. When the factors of the denominators are all of the first
degree and none repeated.

To each nonrepeated linear factor, such as z — a, there corre-
sponds a partial fraction of the form

A

r—a

Such a partial fraction may be integrated at once as follows:

fAdx:Afdx '
z—a z—a

=Alog(z— a)+C.

* That is, the variable is not affected with fractional or negative exponents.
1 See Chap. XIX in Hawkes’s ‘*‘Advanced Algebra,” Ginn and Company, Boston.
325
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@z + 8)dx

IrLusTrATIVE Exampre 1. Find f
B+ a?— 2

Solution. The factors of the denominator being z, x — 1,  + 2, we assume *

2%+ 3 A B C
A == )
“) z@—1)(x+2) :c+m—1+:r,+2

where A, B, C are constants to be determined.
Clearing (4) of fractions, we get

(B) 224+ 3=A@x-1)x+2)+B@x+2)z+C@x—1)z,
20+3=(A+B4+C)22+(A4+2B—-C)z—2A4.
Since this equation is an identity, we equate the coefficients of the like powers

of © in the two members according to the method of Undetermined Coefficients,
and obtain three simultaneous equations

A+B+C=0,
(©) {4+2B-C=2,
—24 =38,

Solving equations (C), we get
-A:'—%}, B:%, C:_%'

Substituting these values in (4),

2x 4+ 3 ___3+ 5 1
t@—1)@+2) 2t 8@—1) 6@+2)

2x 4+ 3 3
e ——da‘,:-—-—
fw(m—l)(x+2) 2[ 3fm——1 6fw+2
=—4logx + $log(x — 1) — 3 log(x + 2) + loge

c(x—l)
ﬁ@+2¢

= 1 . Ans.

A shorter method of finding the values of 4, B, and C from (B) is the following
Let factorx =0; then 3 =—24, or A=—13%
Let factorz—1=0,orxz=1; then 5=3DB, or B= 3.
Let factorz+2=0,orz=—2; then —1=6C,or C=—1.

A useful exercise is to integrate without determining the constants
4, B, C, ete. For instance, in the above example,

Qz+3)dx . (Ade Bdx Cdx
el g b i s
=A4logxz+ Blog(z—1)+Clog (z+ 2).

*1In the process of decomposing the fractional part of the given differential neither the
integral sign nor dx enters.
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EXAMPLES
]
@z—Dde _, @=2"
@—1)(@—2) z—1
zdx _110 (x + 3)8

@+)(@E+3)@+5 8 “@+55@+1)
f (x—1)do log c(:c+4)%.

22+ 62 +8 (x+2)%

8z — 1)dz

224+ —

f(w2+m——l)d:c logvﬂaz(a;—2)3(m+3)2+0.

B4+ ax2—6x

=log[c(x + 3)*(x — 2)].

(x + 2)15

G,Ig—i—;ai—d;: 2— 6z + log P +C.
B'fm:mg’“*% Sprip g se e
o =

(Gl ) L O el ) L U ' P
tt-nt+a t
@2—5)dz 1 z—vV2 1 z—V3

11, | ——— =—_log 4+ —log=——+=+0C
#—5224+6 9v2 z4V2 2v3 2+V3

: a1, 5
12. — 1,5,
fl P ydz 453

5 dx 11
13 [ el
o1t8z+22 £
t(@?+ 60— 8)dz _ 200
=1log 220,
14. f &4z %51

186. Case II. When the factors of the denominator are all of the first
degree and some repeated.

To every n-fold linear factor, such as (¢ — )", there corresponds
the n partial fractions

A B
4.t

@—a)y (z—a)"! rT—a

The last one is integrated as in Case I. The rest are all integrated
by means of the power formula. Thus

Jato A et gt
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3
ILLusTRATIVE ExampLe 1. Findfidm.

z(@—1)°%
Solution. Since & — 1 occurs three times as a ‘factor, we assume
®¥»4+1 A B C D

x(m—1)8_§+(x_—1)3+(m—1)2+w—1'

Clearing of fractions,

2 +1=4@—1)>+ Bx + Cz(x — 1) + Dx(x —1)2
B+1=A+D)z3+(—34+C—-2D)a2+B34A+B—-C+Dx—4
Equating the coefficients of like powers of @, we get the simultaneous equations

A+ D=1,
—34+C—-2D=0,
344+B—-C+D=0,
—A=1
Solving, A=—1,B=2, C =1, D=2, and

%:—%+(x—21)3+@—11)2+xi1'
.-.f%ﬁ—i)gdm:—logw—ﬁ—;i—l+ 2log(zx—1)+ C
R
EXAMPLES

l’f(w—l)?zm—2):xi1+logz:f+c'

x2dx 4
= 1 1 C.
CT2t@+D) agzleEthE
(x—8de 3 1 (x — 2)2
3'fm”—4m2+4m_m—2+0g a2 +0
241 1 2
dt=— —— — —— 41 -1+ C.
@—1p @—1 z_itlesl@—D+
5 — a8 4 1)dx 2 1 1 —
f(w @+1) m+a:+—+—+10gz lic
4 — g3 222 x T
Bx+2)de 4z 43 2?
= 1 C.
e+’ 2@+ipl By
x2dx 5x 4+ 12 T + 4\2
7. =— 1 C.
f(w+2)2(w+4)2 Z+6z18 Og<w+2)+
y2dy 4
8. = 1 1 C.
f?/3+5y2+8y+4 y+2+ g+ D)+
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¢ 1 t+\/2

f(ﬂ—w TiE— Tave Bt e

a3

2 a2
—al % ¢
of(s+ o el o)+ S o

m
. dz = log m —n,_— C.
1f<z+7n (z+n)>z og(z + m)™(z + n) i +

© dr
12. =1—log2
f1 2(1+2) o8

® dt
13. —_—=
fl TETE
4 (14 3z)de 8 3
14. ~ 7 " —=log=-+ —.
fla',+2w2+ac3 0°5+5

187. Case III. When the denominator contains factors of the second

degree but none repeated.
To every nonrepeated quadratic factor, such as 2*+ pz + g, there

corresponds a partial fraction of the form
Adr+B
P+ pr+q

This may be integrated as follows:

<Ax+Ap Ap+B>d
(Az+B)dx 2 2
2+ pr+q 2+ pr+q

[Adding and subtracting A7p in the numerator.]
f <Ax + %)dm f(— 142]’ +B> dz
= 2+ pr+q + 2+ pr+q

Lz+p) (Zat+ <2B —Ap> dz
2+ + 2 2 2
N e

[Completing the square in the denominator of the second integral.]
— Ap 2z+4p
=—lo @+ pz + + L aretan ——=TL_ 4 ¢,
g pr+q) f—q - y
Since 2’4 pz + ¢ = 0 has imaginary roots, we know from 8, p. 1

that 4 ¢ — p* > 0.
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4dr
3+4:c.

4 4 BstcC
z@+4) ¢ #+4

ILLustraATIVE ExamprLe 1. Find f
T

Solution. Assume
Clearing of fractions, 4 =4 (2% + 4) + z(Bx + O) = (4 4+ B)a® + Cx + 4 A.
Equating the coefficients of like powers of z, we get

A+4+B=0, C=0, 44 =4.

4 1 T

This gives 4 =1, B=—1, C =0, so that =-— .
z@2+4) =z 2244

- fz(:c2+4)_f fw2+4

T

:logm—élog(z‘l+4)+logc:logﬁ- Ans.
EXAMPLES
1.fm(z‘:z+l)=1ogv;?+o
2.fmm:%)lo (z++lt2+ alcta,n——{-C
@22 —3z—3)de |, (@—2z+5)F 1 =10

= - t
@—1)@—2z+5) e—1  tghetn

x2dx 1 '1+:z> 1
4[1—:};‘* Z lﬂm—éarctanz+0.

sf —1100—x4__.131'ctanx+0
@@ttty 4 C@+D2@241) 2 )

(x® — 6) dx 1 x22+4 3 xz 3 x
= lo + —arctan - — —arc tan — 4 C.
xt 4 622 4 8 g\/m2+2 2 2 V2 V3

(ba? —1)de 1 2—2zx+4+5 b z—1 2 ®
— o Zarct 2 an - A
f(a;2+3)(a;2—2x+5) og 713 +2mc an 3 \/éalctan\/§+0
dx (x + 1)2 1 2x—1
8. ——l — 4+ ——arctan — C.
fz3+1 6 :c2——ac+1+\/§ V3 +

22dz 1 z—1 V2 z
9. =log + “Zarctan - + C.
fz4+z2_2 6 x:’(z+1) 3 11\/2-‘-

2 5)
ﬂ:—l:logt—-{-t—@+\/§arctant\/z+(}.
#+1 V2 e—ivV2+1 1-¢
dy 1. ¥ 4y+1 1 2y +1
11. = =log =——— + — arc tan — C.
f1—y3 62y 1 Vs '
3
_—-—296(11; :_log\ﬁ,
o (T+2%) @ +2) 2
1 222+ 243 T
T —log4 —
o (@ +1)(@2+1) g4ty
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188. Case IV. When the denominator contains factors of the second
degree some of which are repeated.

To every n-fold quadratic factor, such as (2*+4 pz + ¢)", there cor-
respond the » partial fractions

Ax+ B ‘ Cz+D
) — - 3 o
@ +pz+qt (@ +prt+q)

Lz +M
2"+ pr4q

To derive a formula for integrating the first one we proceed as

follows:
<Am+ﬂ’—@+3>dz
Az + B do — 2 2

@Fprt oy @+ pz+ )"

[Adding and subtracting ﬁg—’ in the numerator.]

_f(Ax+£2£>dz f<~A—f+B>dx
@ +pe+q)

@rpr o)
A . . (‘2 B—Ap)f dx )
=3[ @t Grrpde+ () [t

The first one of these may be integrated by (4) p. 284; hence

Az + B A
O by b Temr e

+<23—Ap>f dz
2 @+ pz+ )"

<x + g)
Let us now differentiate the function

Thus @tpoto)
4 _ ry
P x+2 - 1 2(n 1)<z+2> N
de\(@+pr+ )" @+pr+rt @EHprtor
P 2(n—1 < Jf)
o a Ty ) | —@n-3) . (=Dl
@+pr+)) \(@+pr+ !

@+pz+"

2 2 2 2
[Since 22+ px+ q=(2+]2—) +(q—%), and (w+€) =(x2+px+q) —((1 —%)]
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Integrating both sides of (C),
p
vt 2 2 3 f dz
— e — n — N —
@ +pr+n (@ +pr+ 9!

+2(n—1)<q—%2)fﬁ—ﬁ,

or, solving for the last integral,

o3

dz i
“ f @E+pr 0" 50, 1) <9—1§><z2+pw+q)"-‘

i 2n—3 f dz
2 f"{" m_i__ u—l.
2(%—1)(9—%) ( P 9

Substituting this result in the second member of (B), we get *

&) f((Ax+B>dx _AWP -4+ (2B 4) (21 +1)

o+t 22— +px+ "
(ZB—Ap)(Zn—s)f dx
(-1 @Ag—p) J P +px+ 9"

It is seen that our integral has been made to depend on the inte-
gration of a rational fraction of the same type in which, however, the
quadratic factor occurs only » —1 times. By applying the formula
(E) n—1 times successively it is evident that our integral may
be made ultimately to depend on

f dz
P+ pr+q

and this may be integrated by completing the square, as shown on
p- 296. )

In the same manner all but the last fraction of (4) may be inte-
grated. But this last fraction, namely,

Le+ M
x2+pa:+q’

may be integrated by the method already given under the previous
case (p. 329).

* 49 —p2>0, since 22 + px + ¢ =0 has imaginary roots.
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(@ 4+ 22+ 2)de
(@ + 2)2
Solution. Since x? + 2 occurs twice as a factor, we assume
24+ 224+2 Ax4+ B  Cx+ D
@422 @422 1242

IrrusTRATIVE ExameLe 1. Find f

Clearing of fractions, we get

24+ 22+2=Ax + B+ (Cx + D) (2 + 2).

B+a24+2=084+ D22+ (4 +2C)x+ B+2D.

Equating the coefticients of like powers of z,
C=1, D=1, A4+2C=0, B4+2D=2.

This gives A=—-2, B=0, C=1, D=1..
3 2

Hence vtz +2:— 2z z+1,and
(x* + 2)2 @2+2)?% 2242

(@ + 22+ 2)rln _ 2 xdx xdx dx
f (% + 2)% f(x2+2)2+fm2+2+fx2+2

333

+—alctfm—+—log(m2+ 2) + C.

a;2+2 V2

223 + 2+ 3
(12 + 1)2
Solution. Since x2 4 1 occurs twice as a factor, we assume
228 +2+4+3 Ax+B  Cx+ D
@+1) @412 2241
Clearing of fractions,

‘223424 3=Ax+ B+ (Cx + D) (2% + 1).

ILLusTRATIVE Exampre 2. Find f

Equating the coefficients of like powers of x and solving, we get
A=—-1, B=3, C=2, D=0.

223+ + 3 —z+3 2 xdx

H dx =
ence (a;2+1)2 (m2 +1)2 fzi_l_l
x4+ 3
—log(x2+l)+f( Tr1e

Now apply formula (E), p. 332, to the remaining integral. Here
A=—1 B=3, p=0, ¢g=1, n=2.
Substituting,- we get

—w+3d 1432 §f de 1438w

@+1)2 2@ +1)  2Jz24+1 2(@2+1)
Therefore

223+ + 3 143z

@1 1) de = log(z* + 1) + m+ 8 arctana + C.

+ arc tanz,
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EXAMPLES
x

t: C.
(m2+1)2 2(:‘]:2_*_1)+ arc tanz 4
2 tre—1 2 — T

+ lo; x2+2%— arc tan — + C.
G T Ty e e

2 xdr 1 x? 41 z—1

I+2)(1+a?)? 4 Og(ac+1)2 2(x2+1)+0

2 _ q2\2 2
4f(z a)-dx:m + 2 ax —2aarctan§+0.
z? + a? 22 4 a? a
(4m+3)dxﬁ4x3+5m—2+ 1

(422 +8)° ~ 8(427+3)  16v3

2z
arc tan — + C.
V3

% zf-tl_'-_ (m_+—zlfl+\/§arctan2mtl+0.

(9:2 * 25)2‘:;2”3:3”)”2 =5 (m25+ 5+ lei S+ 5 10g(@ 4+ 2) — 9 log (2 + 9) + C.
| (;Li_x‘zl’);(ifldf)g = @ _3::)2(;2:: 5 + log (:2 n i + arc tanz 4 C.

(a',(z3 = ;Z:.dzy =3 (;3_35 3 :—T— 5 Tavsem 2i/_§ 2+o.

Since a rational function may always be reduced to the quotient
of two integral rational functions, i.e. to a rational fraction, it follows
from the preceding sections in this chapter that any rational function
whose denominator can be broken up into real quadratic and linear
factors may be expressed as the algebraic sum of integral rational
functions and partial fractions. The terms of this sum have forms all
of which we have shown how to integrate. Hence the

Theorem. The integral of every rational function whose denominator
can be broken up into real quadratic and linear factors may be found,
and 1s expressible in terms of algebraic, logarithmic, and inverse-trigono-
metric functions ; that is, in terms of the elementary functions.



CHAPTER XXVI

INTEGRATION BY SUBSTITUTION OF A NEW VARIABLE.
RATIONALIZATION

189. Introduction. In the last chapter it was shown that all rational
functions whose denominators can be broken up into real quadratic
and linear factors may be integrated. Of algebraic functions which
are not rational, that is, such as contain radicals, only a small number,
relatively speaking, can be integrated in terms of elementary functions.
By substituting a new variable, however, these functions can in some
cases be transformed into equivalent functions that are either in the
list of standard forms (pp. 284, 285) or else are rational. The method
of integrating a function that is not rational by substituting for the
old variable such a function of a new variable that the result is
a rational function is sometimes called integration by rationalization.
This is a very important artifice in integration and we will now take
up some of the more important cases coming under this head.

190. Differentials containing fractional powers of x only.

Such an expression can be transformed into a rational form by means
of the substitution z =2

where n is the least common denominator of the fractional exponents of z.
For z, dz, and each radical can then be expressed rationally in terms of z.

ab — midx.

IrrusTRATIVE ExamprLe 1. Find f

T
Solution. Since 12 is the L.C.M. of the denominators of the fractional exponents,
we assume

T =212,
Here de =122z, af = 28, at = 28, ot =28
' #_ gt 8 _ 48
fx i dz:fz il 12z11dz:12f(z13—z8)dz
at 28

:§z14—§z9+0=gm%—§azi+0. :

[Substituting back the value of z in terms of x, namely, z= x‘l’.]

The general form of the irrational expression here treated is then

1
R (2") dr, .
where R denotes a rational function of z™
335
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191. Differentials containing fractional powers of a + bx only.
Such an expression can be transformed into a rational form by means
of the substitution o+ by=2"
- b

where n s the least common denominator of the fractional exponents of
the expression a + bx.

For z, dz, and each radical can then be expressed ratlonally in
terms of 2.

ILLustrATIVE Exampre 1. Find f ____dac___
1+ 2)f + (1+ 2t
Solution. Assume 14+ x=22;
then dr =22dz, (14 x)%: 2%, and (1+ a;)% =2z.

dx
f f2zdz:2f2dz1
Q+o)t+ (14l Y2 +2 Gl
=2arctanz + C =2arctan (14 :c)}+ C,
when we substitute back the value of z in terms of z.

The general integral treated here has then the form

1
B[z, (a+ bx)z] dz,
where B denotes a rational function.

192. Change in limits corresponding to change in variable. When in-
tegrating by the substitution of a new variable it is sometimes rather
troublesome to translate the result back into the original variable.
When integrating between limits, however, we may avoid the process
of restoring the original variable by changing the limits to correspond
with the new variable.* This process will now be illustrated by
an example.

16 gt dg
IrLustraTIVE Exampre 1. Calculate f .
. o 144af
Solution. Assume & = z*%.

Then de = 42%dz, at = 22, at =2z Alsoto change the limits we observe that
when =0, 2z2=0,
and when =16, z=2.

16 oF gy 22.428dz 2 1
= =4 214 ——)d
Ji 1+t foara 4, (z +1+z2) “

2 2
—4f z2dz—4f dz + flf_zzzz[——4z+4arctanz]o

=4 4 4arctan2. Ans.

* The relation between the old and the new variable should be such that to each value
of one within the limits of integration there is always one, and only one, finite value of the
other. When one is given as a many-valued functior of the 0the1 care must be taken to
choose the right values.



INTEGRATION BY RATIONALIZATION 331
EXAMPLES
1 4 4 3 1g8de T 4.
—u:~ %——1 o(rs 1 . 3. — — =
l‘fzg_H g7 Tgleet A+ O o1ts 2 3
i o 1/2 6 3 d
T xr 9 3 X m
2. dw:—(—x?——mh)-l-C. 4, | ———————=2arctan2 — —.
f Gat 3\9 13 “fo(2+x)‘~/1+'z 2
3
5. = e _+_+2logx—24log(a;r‘r+1)+o
) 3 _
f dz :§ ‘EL-|-2logZ 1+4arctan.ﬁ+0.
z%—a:éf 3 8 +1
. 3Vadx 16 z¥ .
. - Ly 1 3
7 f2\/a_;—3 - 18[ +2+ + @t + 162 + 8210g (2 2)]+0
s.f4 © 4 9lgs. ” 10f _yly 32
°14+Vz Y2ty 2
_ ¥ 2 ) S
S.f”M:S—I—ﬂr. 11. lm—dm-:§<11—%>.
P @—2)F 48 2 ° 2z+8)% 8 V3
-‘5_ - -
12. fy7+y dy = 14[42 ?/% ‘, .ﬁ_l_?/_“:l_,,c; ' e
i+ yit 8 45
1
1. [ dz g @D =14 6 ‘
m(x+1)‘% (x+1)%+1

_2@atby)

zdr
14. = .
f(a+bx)g‘ 02 Va + bz

+ C.

2 2
15.f x2dx :Gw‘+6m+l

(dz+1)F 120z +1)F

16. fyvaa+ydy=7"%

@y—3a)@+y)bto.

17. fv +1+1 :(:c+‘1+4v\/x+1.+410g(,/—w+1'\_1)+G;'AA
Vz+1—1
dx
18.f1+\/___ 2(x+1)‘§‘ 3(x+1)§+310g<1+,/—)+0

TVe—2

.}19.f =41 de=2Vr—2 +\/_a,rctanﬂ¥+0.

64
20. [ ¥ 581
20. |

2tb b

22 d

Y@+t @+t

9 do

41—

=— 3.386.
T

=3{@+ D} +2@+ ¥ + 2log[(@ + I — 1]} + .
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193. Differentials containing no radical except Va + bx + x3.*

Such an expression can be transformed into a rational form by means
of the substitution mz P

For, squaring and solving for z,

Z—a 2(Z+ b2+ a)dz
T=13, then dz G+ 22
2
and Va+bx+x2(=z—w)=z—|_b—z_|_a-

b+ 22

Hence #, dz, and Va + bz + 2” are rational when expressed in terms
of 2

IrLusTRATIVE ExampLe 1. Find f—dx—
\/l+:4c+.1:2
Solution. Assume Vi+zrtat=2z—=zx.
Squaring and solving for z,
2 _ 2
_Z 1 . thend:c:2(2 +z+4+1)dz
2z+1 (22 + 1)2
2
and \/1+:c+z2(:z—z):z+;+l.
2z+41
2224+ 24 1)dz
2
of = @et ' _ (2% gz +1)e]
\/1+a:+a:2 24241 2z+41

2z41
=log[(2z +14+2V1+z+a?)c],
when we substitute back the value of z in terms of .
194. Differentials containing no radical except Va+ bx— x.1

Such an expression can be transformed into a rational form by means
of the substitution

Va+be—2[=V(z—a)(B—2)]= (2~ a)z[or=(B—12)z],

wherex — & and B — x are real ¥ factors of a + bx — 2%

*If the radical is of the form Vn+px+qx2, q >0 it may be written \/E\/Z’+§ x4+ 22,
and therefore comes under the above head, where a=",p=P

- q
+ If the radical is of the form Vn + pr—qx2, ¢ >0, 1t may be written Vq \/" Py_22
and therefore comes under the above head, where a = E » b —%
1 If the factors of @ + bx — 2 are imaginary, Va + bz — 22 is imaginary for all values of 2.
For if one of the factors is x — m + in, the other must be — (x — m — in), and therefore

b+ax—a2=—(x—-m+in) (x—m—in)=—[(x-m)2+n?],

which is negative for all values of x. 'We shall consider only those cases where the factors
are real.
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For if Va+br—2*=V(z—a)(B—2)=(z—a)z by squaring,
cancelling out (z — @), and solving for 2, we get

a’+ B then  du— 2 (@ — B)zdz

b

= 241° (z +1)*
and Va+br—[=(x—a)z]= 2+¢;)z.

Hence #, dz, and Va+ bz —2® are rational when expressed in
terms of z.

IvLustrATIVE ExampLE 1. Find f—dm—
V2 +a@—a?
Solution. Since 24+z—a=(z+1)2— ),
we assume Ve+1)2—2a) =(+ 1)z.
2 — 22
S i d solving f =-_~.
quaring and solving for z, © 711
— 6zdz
Hence de = ———, and 24 c—22[=(x+1)z]=
BT VEto—ai[=(+1)z]
de dz
——=—2|——=—2arctanz 4+ C
fv2+a:—z2 f22+1 Y
:—2aretan\/ 1+G’,
when we substitute back the value of z in terms of z.
EXAMPLES
1 1 Vm’—z+2+m—\/§+0

1. :i:—og —
fo:\/:cﬂ—a;+2 V2 \/zﬁ—m+2+m+\/2
2. f*:2arctan(a;+\/m2+2z—l)+C.

eVat+ 2z —1
3.‘/‘ _1 \/2+2:c—\/2-—x+0
rV2 4z —2? V2 v2+2:c+\/2—z
~ r2 —
4'IL:arctanH—mu+C'
rVal+dr—4 2
Vi dz 8 : - T
5. dr = — +log(e + 2 + Va2 + 4z) + C.
f z? ®+ Va2 4z °
Gf 8+ 62 1C.

2+3z— Mz)% 25V2 + 8z — A

T—a
7. +
f(2a.a:—m2)% a? V2 ax — x?

2v%
fw—lou(m+1+w/2x+z2)_;+c
\/2:c+a;2
9f _Otc—1+\/:c +z+4+1
zVa2+x+ 1 :r,+1+\/.'c2+:c+l

[2(3 x)
10. ———:——\ﬁarctan e/ ARy 3
fzvbz—G—xz 3 3(x—2)
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The general integral treated in the last two sections has then the
form " R (x, Va+ bz + cxz) dz,

where R denotes a rational function.
Combining the results of this chapter with the theorem on p. 334
we can then state the following

_ Theorem. Hvery rational function of x and the square root of a poly-
nomial of degree mot higher than the second can be integrated and the
result expressed in terms of the elementary functions.*

195. Binomial differentials. A differential of the form
2" (a + ba™)?dz,
where a and b are any constants and the exponents m, n, p are rational
numbers, is called a binomial differential.
Let ‘ z=2%; then dz=az""ldz,
and o 2(a+ b)) de = a2t T (a4 b)) P dz.
If an integer a be chosen such that ma and na are also integers, |

we see that the given differential is equivalent to another of the same
form where m and n have been replaced by integers. Also
z"(a + bx )P de ="t (az~ "+ b)?de

transforms the given differential into another of the same form where
the exponent » of z has been replaced by —n. Therefore, no matter
what the algebraic sign of » may be, in one of the two differentials
the exponent of z inside the parentheses will surely be positive.

When p is an integer the binomial may be expanded and the dif-
ferential integrated termwise. In what follows p is regarded as a

fraction ; hence we replace it by Z, where r and s are integers.!
v S _
We may then make the following statement:

Every binomial differential may be reduced, to the form

-
z"(a'+ ba™)* dz,
where m, n, r, 8 dre integers and n is positive.

* As before, however, it is assumed that in each case the denominator of the rational
function can be broken up into real quadratic and linear factors.

1 1t is always possible to choose « so that ma and na are lntegels, for we can take «r as
the L.C.M. of the denominators of m and n.

} The case where p is an mteger is not excluded, but appea,ls as a specw.l case, namely,
r=p, s=1,
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196. Conditions of integrability of the binomial differential

(4) x™(a + bx")*dx.
Cask 1. Assumg a4+ bz"= 2.
1 r
Then (a+ba"y =2 and (a+ba")y=z¢;
1 m
also x=<z’;a>, and x’"=<z;a> H
1_

hence de = Z%v, z“’(zs; a) da.

‘Substituting in (4), we get

m+1

a™(a+ ba")* dx— b—z’*“ 1<Zs; a> "

The second member of this expression is rational when
m+1
n

is an integer or zero.

CasE II. Assume a + b2"= 'z

0

Then = z“;ib » and a4 ba' =22 = zsa_z' 7
Hence (a+bay=d (2 —b) "z
1 1 m m
also r=a'(Z—b) ", a"=a"(@—0b) *;
1 1
and dx:—fa"z“"l(z“‘—b) "
n
Substituting in (4), we get
r S m + 1, r (m + 1 ,. )
xm(a—l—bzn)sdx=_ 2 (7 — b) -
The second member of this expression is rational when m+1 g

is an integer or zero.
Hence the binomial differential

2" (a+ ba") dz
can be integrated by rationalization in the following cases : *

* Assuming as before that the denominator of the resulting rational function can be
broken up into real quadratic and linear factors.
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1 , ,
= an integer or zero, by assuming

a+brt=2

Case I. When 2

Case II. When

1 , ,
m+ -+ T = am wnteger or zero, by assumng
n 8 :

a + ba" = Zx".

EXAMPLES
1. 3 1 2a + b2?
(a4 bx?) tdr = - ——
f(a+bz2)% f (@+ by N e
Solution. m =3, n=2, r=—3, $s=2; and here m+1 =2, an integer. Hence
this comes under Case I and we assume
2 _ g\3
a + bx? = 22; whence © = (z ) , = 2z yand (a + bm2)% =28,
b 133 (22— a)’}

22— a\} 2dz 1
f(a+bzz)% f( >.b’}(z2—-a)%.z_8

=§f(1—az—2)dz=%(z+ az-1) + C

_l2cz+bac2
B Va1 b
2f _ez-na+a)t +0
m4v1+m2 348
Solution. m =— 4, n =2, I:—%; and here m+l+r:._ 2, an integer. Hence
8 n 8
this comes under Case II and we assume 1
2
1+ 22 = 2222, z=(1_+z_)_;
T
2
whence 2 = 1 y 14a2= d N \/1+:r,2=_z__;
22—1 22—1 (22—-1)%
also :L:———l——, x‘:g—la; and d:c:._.ﬂs_
(2—1)t (2 —1) (22 —1)2
_1)% .
—1)dz
S [ e
(z2_1)2 (2 — 1)1}
28 (222 — 1) (1 + 22)}
=z2——4OC==_"71 7 4
gt 328

(322 —2) (1 + o)}
=40

8. [o(+antde=

T
4. + C.
f(l+x2)2 V1+a?
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de 8
5. 1+z2’}(” L) 8. 2 =3 .
[ * Vo 15
1, Vi@ '
6. [———=_—"1log¥¥r —T' =24 @« ——— ma?
f:l:Vaz—a;Z 2a VE—#2+a 9-];\/(12—-3;2(&1;_7.
_ 1 .
7. f@2(1+x2) =—a(l+2?) ‘}<2z+g>+0. lofxz ’—_aﬁ-zzdz_"“.
. (]
11. 2 (a2 — a2 S dp = .
j;m(a z2) 2
2 2
12f _1 Va4 y a+O
2/(a2+1/2)’} 2a Va2+y2+a

1g5t

13. ft3(1+2t2)’}dt—(1+2t2) L)

14. fu(1+u)%du:§5(l+ uy? (Bu—2)+ C.

2
15. alda _ ad +0.

@+ba2)t  Ba(d+bar)}

16. f96 a+eddg=pa+et—ga+obrparomtic

3
17. f 3z3 4+ 2a 10
z2(a + a;3)3 2 a%x(a + m”)“

197. Transformation of trigonometric differentials.

From Trigonometry

(@) sinz = 2singcos-293, 37, p. 2
(B) cos z = cos® —2—— sm”% 37, p. 2
tan =
But, Sinfz 1 = 1 = 2 ’
? eso s t22 41 1+ tan*=
2 co §+ + tan 3
z 1
and cos 5=

sec = 1 4 tan? z
If we NOw assuie

z
tan= =2, or, z=2arctanzg,

2
2

we get " sin

ST
—
+
N
ol R
<
-
+
N&
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Substituting in (4) and (B),

sinw=--2, cosz= -4

T 14+ U142
Also by differentiating z = 2 arc tan z we have dz = 12_:12
2

Since sin z, cosz, and dz are here expressed rationally in terms of
2, it follows that

A trigonometric differential involving sin z and cos z mtwnally only
can be transformed by means of the substitution

tan g =z,
or, what is the same thing, by the substitutions

— 2 . 2dz
1422 1422

. 2z
sing=-——, cosz=
142

into another differential expression which is rational in 2.

It is evident that if a trigonometric differential involves tan z, cot z,
sec z, csc z rationally only, it will be included in the above theorem,
since these four functions can be expressed rationally in terms of
sin z, or cos z, or both. It follows, therefore, that any rational trigono-
metric differential can be integrated.* '

EXAMPLES

7 i 1
1. fwzltanﬁ?+ tanZ 4+ = log tan < + C.
sinz (14 cosx) 4 2 2 2 2
Solution. Since this differential is rational in sinz and cosz, we make the above
substitutions at once, giving

v <l+ 2z ) 2dz
(1+sinz)de 14221427
sinz (1 + cosz) 22 <1 1—z2>

1422 1422

(I+22+22)dz

— 7’ —1
2+ 22+ 122 2f(”+2+z )dz

1 /22
=§<§+2z+logz>+0
1 .
Ztan“’ + tan < 3 + %log(tan z) + C.

*See footnote, p. 341. -
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™

2‘f§_”.—=1. s.f & __2 Lo
014 sinx 1—sinz 1—tan§
s, [ _ :
‘/; 1—cosz
7 1 tan—- — 2
9. [ ——— = Zlog| ——
fzﬁL:E, f4——5sinz 38 9tan® _1 +C
“Jo 5+ 8cosz 2
T
— 7 - dz 1 x Y
03+2cosy /3 10. fm_éalctan(2tané)+c.
m
7 da T
6. 2__ 7" =" . dx _l
/; 24 cosa  g~/3 11. fm_garctan(3tanx)+0.
d$ —
7. (P = _=1-+v3.
ax1+4 cosx 12f arctan(\/3ta,n + C.
3 2—c0st V3

(51;3,11; + 4>+ c.

13. fL = 1 arc tan
54 4sin2x 3

cosxdx T T T
14. =2 tan(tan- )—tan- 4+ C =« — tan= + C.
fl+cosa; are al( 2) 2+ an2+

15. Derive by the method of this article formulas (16) and (17), p. 284

16.fsmx.dm = 2 ﬂv-}-2241(:t;a11<9:1:an2>+C’_;m+a:+0.
1+sinz 1+tam2 1+1;:L115

198. Miscellaneous substitutions. So far the substitutions considered
have rationalized the given differential expression. In a great number
of cases, however, integrations may be effected by means of substitu-
tions which do not rationalize the given differential, but no general
rule can be given, and the experience gained in working out a large
number of problems must be our guide.

A very useful substitution is

1 dz

xr=—> dx:———2,
2 2

called the reciprocal substitution. Let us use this substitution in the
next example. -

TLLUSTRATIVE EXAMPLE

Va2 — 22
E 1. Findfaiimda:
X

. S 1 d
Solution. Making the substitution 2 = -, dr =— —: » we get
z Z

f Va? — (a2 — 1)} P %)%
xt - Y

3a? 3 a2x? +0.

o :——f(a222 —radz =—
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. EXAMPLES
dz 1
D =_1 C.
lfac(a3+z3) 8ad Oga3+z3+

? 3x—5
= - c.
2. f 2)3dx log(@—2) — =55 +
o¥de 1822 4 27w 4 11
(x+1)*t 6(@x+1)8

T
4. —
f(ag + .1}“)7 a2 -\/a2 + mZ

1 cr

b, | ——==log —m —x—.,
fm\/a2+z2 ¢ a4 Va?ita?

da
6. —_—=
f;z:\/1+al:+av2

Vi+lo 2 3
7.f_'; g_”d@:§(1+1ogw)z+c.

2
sf ¢ dwl (3ew—4)(ex+1)¥+0
(ex + 1)+
dz 1
o | — log (e — 2) + C.
9fe2w—2er 268 4 4°g( )+
10.f ade :llog 1 ——1—_arcta,n——
(1+a;3)§ 2 (a:3+1)§—m V3

[ '@ — s _
1 m4

;(sm0+ (sinf + cosf)dd log3
12!; 3+sm26? T4

13. f d—thctane—r
06T+ e % 4

a

dx
14. ——=T.
‘/‘; Vaz — x?

15.f1°g56“"e’°—1
o Te+3

de =4 — .

16.flx/2t+t2dt:\/§——%log(2+\/§).
log 2

17. f Vee da:——2—-

245 2 1 1)d.
18.‘/; _@+Ddz

=log3.
cVet4+ 72241

+ log(z + 1)+ C.

cx
log .
2424+2V1i42 422

1
il
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Assume 23 = z.
Assume ¥ — 2 = 2.
Assume ¢ 4+ 1 =2.

1
Assume x = =.

z

a
Assume © = —.

z

1
Assumez = =.

z
Assume 1+ logz = 2.

Assume e* 4+ 1 =z,

Assume e* = 2.

2
— +114C.
@+ 1)
28
Assume 28 = .
— 23

1
Assume ¢ = Z

Assume sinf — cosé = z.
Assume e* = 2.

Assume ¢ = a sin?z.
Assume ez — 1 : 22,
Assume t 4+ 1 =z,
Assume ez —1=g¢,

1
Assume ¢ — = Z.



CHAPTER XXVIL
INTEGRATION BY PARTS. REDUCTION FORMULAS

199. Formula for integration by parts. If « and » are functions of
a single independent variable, we have, from the formula for the dif-
ferentiation of a product (V, p. 84),

d (w) = udv + vdu,
or, transposing, udv = d (wv) — vdu.

Integrating this, we get the inverse formula,

4 f udv =uv — f vdu,

called the formula for integration by parts. This formula makes the inte-
gration of udv, which we may not be able to integrate directly, depend
on the integration of dv and vdu, which may be in such form as to be
readily integrable. This method of integration by parts is one of the
most useful in the Integral Calculus.

To apply this formula in any given case the given differential must
be separated into two factors, namely, w and dv. No general directions
can be given for choosing these factors, except that

(2) dz is always a part of dv;

(b) it must be possible to integrate dv; and

(c) when the expression to be integrated is the product of two fumne-
tions, it 1s usually best to choose the most complicated looking one that it
18 possible to integrate as part of dv.

The following examples will show in detail how the formula is
applied :

ILLusTRATIVE ExampLe 1. Find f  cos xdx.

Solution. Let u=2o and dv=coszdr;
then du=dr and v =fcosacdz = sinz.
Substituting in (4
g in (4), u  dv u v v du
f x cosxdr = sinax — | sinz de

=g sinz + cosz + C.
847
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ILLustrATIVE Exampre 2. Find fm log zdzx.

| Solution. Let u=1logz and dv=axdz;

2
then du:@ and v:fa;dx:x—.
il 2
Substituting in (4),
22 22 dx
- - |alogaxder =logx - — — [ =—.=
f g g 2 2 @
2 22
=—logx — = C
2 st

IrLusTrATIVE Exampre 3. Find f zewrde,

Solution. Let u=-e> and dv=uwxdr;
%
then du = e®. adxr and v:fmd:r,:g—;—-

Substituting in (4),
zewrdy = ean. T z—zearada;
2
aZerz @
— = | x%eaxdz.
5

But a2eszdz is not as simple to integrate as zexrde, which fact indicates that we did’
not choose our factors suitably. Instead, :

Jet u=2 and dv=ewdr;

then . du =dr and v:fealda::?.

Substituting in (4),
eaz eax
fmeafdm:m--z—fgdm
g 0=f(a;—1)+0.
a 24 a a/ .
It may be necessary to apply the formula for integration by parts
more than once, as in the following example:

ILLUusTRATIVE Exampre 4. Find f x2eaxdy.,

Solution. Let u=22 and dv=edr;

eax

then du = 2zdx and v:fe“dz:-z

Substituting in (4),
fa:zeaxd:v:ﬂ-e——fixﬂxdm
a a

r2e0% 2
(B) = —Efze dx.
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The integral in the last term may be found by applying formula (4) again, which
gives ; )
a a

Substituting this result in (B), we get

2 pax
waeaxdz:me —2eaz<m—1)+0:f<a;2_2_x+g)+o_
a, a a?

a a? a

Among the most important applications of the method of integration
by parts is the integration of

() differentials involving products,
(b) differentials involving logarithms,
(c) differentials involving inverse circular functions.

EXAMPLES
8 1
1. 2] =1 — =)+ C.
fac og xdxr 3<0g:1: 3)+
2. fasinada:——acosa+sinct+0.

3. farcsin:cda: =garcsinz + V1—2z2+4 C.

HinTt. Let u=arc sin  and dv=dx, ete.

4. floga:dw =z (logex —1) + C.

5. farc tanxdr = zarc tanx — log (1 + a:'z)’} +C.

+1
6. fxnloga:dm:::n+l<logz—;%)+0. n#— 1.
2
7. fmarctanmdx:w ;'131‘ctanx—g+0.

- 8. farccotydy: yarccoty + $log(1+ y?) + C.

9. fa:omi:c:ax[ d —L]+ C. a>0and % 1.
loga logZa] .
t2 21 2 :
10. | t2atdt = at ————+——|4+C. a>0and #1.
f [loga logZa + log? a] >0 and =

11. fcosé’ log sin df = sin 6 (log sin§ — 1) + C.
12. fxzemdm=em(x2—2z+2)+0.

13. fa:sinxcosa:dm:%sin2x—},azcos2m+0.
14. fx?a—xdz:e—m(2—2m_z2)+c.

15, farctan\/;d:c::carcta,n\/;:—\/;+ arcta.n\/:;+0.
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16 fzazda:— G [:c—-— +C. 20. [z®lo zda;—x—i(lo z 1>+C
' T loga loga. ) g =7\%%* "4 ‘
1
17. fola;logmda:=—}, 21.ﬁarcsinzdz=g—l. )
1 1 -
18. j; logydy =—1. 22. j; arc tanGdH_Z—log'\/é.
T 1 1
19. j;za2sinada=1r—2. 23.‘/;3210gsds=—§.
2
24.fz8eazdm=f(s_?ﬁ+6” %)+C.
a a

25.f¢2sin¢d¢=2cos¢+2¢sin¢—¢ﬁcos¢+C.
26. f (logz)2de = x[log2x — 2log = + 2] + C.

P
27. fata,n2 ada = atana——— + logcos a + C.

logzdr

——logae —log(z + 1)+ C.
@ 1 ~+1 g g(@+1)+
Hint. Let u=logx and dv= i—, ete.

(x+1)2
3 2
29. f::ﬂa,rmsinar:da::%arcsina:+gB ;'2\/1—a:2+0.

30. fsecz @ log tan #df = tan @ (log tan § — 1) + C.

31. flog (log ) d_:c =logz - log (logx) — loga + C.

32. flo"(” + l)d” =2V +1[log( + 1)— 2] + C.

33. fxa (a— w?)%dx =32 (a—22)t — A (a—a2) 4+ C.
HiNT. Let u=22 and de = (a - x2)}adz, etc.

2
34. f\/az-—a;zdazzg\/ﬁ—m?-l- %arcsin§+ C.
a

35. j‘ - =—§(z2+2)(1—:c2)‘}+0.
v . .
36. f\/a2+zﬁdx::—;—\/a?+a:2+%log(ao+\/a2+z2)+0.
. i
2, 2
37. f%:—gv‘ a2——a:2+%a,rcsin:f+0.
2
38.fwz— 2 [lon2x+élog:c+ ]+C.
z? 3ot 3

200. Reduction formulas for binomial differentials. It was shown in
§ 195, p. 340, that any binomial differential may be reduced to the
form z™ (a + bx™)? du,
where p is a rational number, m and n are integers, and n is positive.

Also in § 196, p. 341, we learned how to integrate such a differential
expression in certain cases.
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In general we can integrate such an expression by parts, using (4),
p- 847, if it can be integrated at all. To apply the method of inteyra-
tion by parts to every example, however, is rather a long and tedious
process. When the binomial differential cannot be integrated readily
by any of the methods shown so far, it is customary to employ reduc-
tion formulas deduced by the method of integration by parts. By
means of these reduction formulas the given differential is expressed
as the sum of two terms, one of which is not affected by the sign of
integration, and the other is an integral of the same form as the origi-
nal expression, but one which is easier to integrate. The following
are the four principal reduction formulas :

xm—n+1(a+ bxn)lﬂ-l
(np+m+ 1){;

_ (m—n+1)a
(np+m+1)b

4 f x™(a+ bx")?dx =
x™="(a 4+ bx™)?dx.

x™+1 (a4 bx™)?
np+m+1
anp
m m\p—1
+_——np+m+1fx (a+ bx™)?~*dx.
x"‘“(a+ bxn)ﬁ+1
(m+1)a
_(np+n+m+1)
(m+1)a

(B) f x™(a+ bx")? dx =

© fx’" (a+bx")? dx=

b
fx_"'* "(a+ bx™)?dx.

xm+1(a+bxn)ﬁ+1
n(p+1)a
np+n+m+1f
——— | x™(a+ bx™)?*dx.
n(p+1)a ( )

While it is not desirable for the student to memorize these formulas,
he should know what each one will do and when each one fails. Thus:

(D) fx"'(a+ bx™y?dx=—

+

Formula (A) diminishes m by n.  (4A) fails when np +m +1=0.
Formula (B) diminishes p by 1. (B) fails when np +m +1= 0.
Formula (C) increases m by n. (C) Sfails when m +1= 0.
Formula (D) increases p by 1. (D) fails when p +1=0.
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I To derive formula (A). The formula for integration by parts is

4 fudv =uw —fvdu. (4), p. 847

We may apply this formula in the integration of

fa:’" (a+bz")? dx
by placing wu=2"""*'* and dv=(_a+ b2")?2""'dz;

(a+ bam)r+?

then du=(m—n +1)2"""dz and v= YCES) .

Substituting in (4),
(B) f 2" (a+ bz ) dzx =

xm—n-f-l (a _|_ bxn)p+1

nb(p+1)
m—mn+1
b (p+1)

But f a" " (a+ ba ) de = f o (a+ by (a4 ba) dz
=afa:”""(a+bx”)”daﬁ ‘

+ bfx’"(a + bz™)? da.
Substituting this in (B), we get
m—n-+1 bxn)pAl-l :
2™ (a + ba)rde == (a +
f (ot boryrde == nb(p+1)
_(m—n+1)a

m—n+1

o n(p+1)
Transposing: the last term to the first member, combining, and solv

ing for f " (a + ba™)Pdz, we obtain

2" (a4 baxy? t da. .

2" (a+ bx")”d:;.

xmontl(g 4 pxmyp+t
b(np+m+1)
a(m—n+1)

“boprmEi)

4 f x™(a+ bx™)?dx =
| a"-"(a+ brnyPdx. |

* In order to integrate dv by (4) it is necessary that x outside the parenthesis shall have
the exponent n—1. Subtracting n—1 from m leaves m — n +1 for the exponent of = in u:
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It is seen by formula (A4) that the integration of 2™ (a + ba™)?dz is
made to depend upon the integration of another differential of the
same form in which m is replaced by m — n. By repeated applications
of formula (A), m may be diminished by any multiple of n.

When np 4+ m +1= 0, formula (4) evidently fails (the denominator
vanishing). But in that case

m+41
rr- =0;
n +tr=0;
hence we can apply the method of § 196, p. 341, and the formula is
not needed.

II. To derive formula (B). Separating the factors, we may write
) fx"‘(a + ba™)? dz. =fx'"(a + bz™)? (a4 ba") do
= afx"‘ (a+bz")?dx
+ bfx"‘*"(a + ba™)? 1 da.

Now let us apply formula (A4) to the last term of (C) by substi-
tuting in the formula m + % for m, and p —1 for p. This gives

_ " (g+-ba™)?  a(m+1)
m-+n b n\ P ld Zm ((M-I— _ m n\ p—1 3
bfa; (a+bz™) z R | ptm il z™(a+bx™)? " du
Substituting this in (), and combining like terms, we get
x™t(a 4 bx™)?
m m\ p = 7
(B) fx (a+ bx™)?dx Py S——
anp
m bx™)2-1 dx.
+np+m+1fx (a+bx")?~tdx

Each application of formula (B) diminishes p by unity. Formula
(B) fails for the same case as (4).

III. 7o derive formula (C). Solving formula (4) for

f z™~"(a + bz™)? du,
and substituting m + » for m, we get
X"t (a4 bxm)P+t
a(m+1)
_b(np+n+m+1)
a(m+1)

(©) | x"(a+bx")?Pdx=

x™t (a4 bx™)?dx.
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Therefore each time we apply (C), m is replaced by m +n. When
m+1=0, formula (C) fails, but then the differential expression can
be integrated by the method of § 196, p. 341, and the formula is not
needed.

IV. To derive formula (D). Solving formula (B) for

fm"‘(a + bz™)? ' du,
and substituting p +1 for p, we get
x™t (g4 bxmyptt
an(p+1)
np4+n+mi1
Each application of (D) increases p by unity. Evidently (D) fails
when p +1=0, but then p =—1 and the expression is rational.

D) x™(a+ bx™yPdx = —

x™(a+ bx™)?t1dx,

EXAMPLES

z8dx __1 o
1.f — = s@+2 (-t

Solution. Here m =3, n=2,p=—%,a=1,b=—1.

‘We apply reduction formula (4) in this case because the integration of the differen-
tial would then depend on the integration of f z(1— zz)_‘}dx, which comes under (4),
p. 284. Hence, substituting in (4), we obtain
a3-2+1(1—a2)" 31 13 _241)

—1(—1+8+1) —1(—1+3+1)
=—ja2(l—at)t + &fx(l— 2?)~ ¥dz
=—jr(l—a)}—3(1—a)t+C
=—3@+2) (-2t +C.

4,
2. f& =— (1:::3 + §412:::)\/05" — %+ §a4a.rcsin§ +C.
2z} 4 8 8 a
(a? — 2%)
Hint. Apply (4) twice. ’

2
3. f(az +m2)’}dx=g\/az +a? +%log(a:+\/a2 +a%) + C.

HinT. Here m=0,n=2,p=4%, a=a2, b=1. Apply (B) ounce.

f:c"(l—a:?)“}dm: w-2(1—a2?)~ s

2 __ 1\%
4.f d:c———:(a; 1) +larcsecm+0.
25 Va2 — 1 22 2
HinT. Apply (C) once.
z%de T a? T
5. =—=-Va?— 2?4+ —arcsin =4 C.
v AR S S o
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6. = Z(x2 — 2a2) Va2 2 A
f = (x a®) Va2 + 22+ C
z5dx 4 2
=— V1—224 C.
V1—z2 < +15 ) S

- 4
8. fzz Va2 — gt de = 2(29;2 —a)Va? —a? + %arcsinf +0C.
a
HiINT. Apply (4) and then (B).

x 1 z
9. = —arctan= + C.
f(a2 + %2 2a?(a® + 2?) + 2 a3 are a,na +

HinT. Apply (D) once.

2 — 2
w. [ = YE—E 1y, T L.
3 \/a2 —x2 2 a?x? 28 T g 4Vat—a?
2 2
u. [EX =2 +2“1+C.
(@ + zﬂ)*’é (@ + )}
12[ (3a-—2x)z L0

a:2)’2 3at(a? — zz)%

4
13. f(a;‘-’+a2)?dz:§(2a;2+5a2)\/w2+a2+3~8ilog(a: +Va? 4+ a?) 4 C.
4
14. fx‘l(a:2+a2)5‘dm:§(2a:2+a2)Va:2+a2—a—log(x+\/a;2+a2)+C.

356

m+3a .
15.f 20“_:1:2 (2 ax — 2?) +—arcvers +C.
HiNT. ﬂ= 2 @a—x)"ide Apply (4) twice
’ V2 ax — x2 ' '
Va2 — r2
16. dz = — G,q z +C_
2 (a? — 22)} @z )
y*dy 2y2 +6r(y+38n s 5 ¥
17. = V21— 2 + 23 arcvers L + C.
f 2W = 5 ry — Y +2 alcxersr+
18f 2at-—t2 —(2at—t2)‘}+aarcversé+0.
s 33 3
= t: C.
(a2+sz)3 4a?(a® + s%)? 8a4(a2+s)+ s Aoty .t
r8dr 2
20. =—_—_38r"+4r3 4+ 8)V1I—13 4+ C.
S = G4 8V +
2,
21. fT“% 2. [6Va 1 Ba. 2. [ 22 s'ds
(a* — a?) (a+bs4)8
25dz 8d
22. 26. . 30, %X .
fx2(1+m2)% f\/z4+9 f\/g___as
z5de Va2 2 4 — 2
2. [ : g, [ YA TE 31.f4_y_dz/.
V1—qa8 z 4

— 2}
o fm' . [ O - fw -~
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201. Reduction formulas for trigonometric differentials. The method
of the last section, which makes the given integral depend on another
integral of the same form, is called successive reduction.

We shall now apply the same method to trigonometric differentials
by deriving and illustrating the use of the following trigonometric
reduction formulas :

sin™+1 x cos"tx

(E) f sin™x cos" xdx = min

n—1
+m+n

f sin™x cos™ % xdx.

spm-—1 n+1

F) f sin™x cos" xdx = — mni(——:glif
m—1
m+n
sin™*!x cos™*tlx

n+41
m+4n42

n41

+ f sin™—2 x cos™ xdx.

) f sin™x cos” xdx = —
sin™x cos™* % xdx.

sin®+1xcos®tlx

inm n dx_:
(¢:9) fsm X cos™ X p——

m n+2
+ min+a sin™+2 x cos™ xdx.
m+41

Here the student should note that

Formula (E) diminishes n by 2. (E) fails when m +n = 0.
Formula (F) diminishes m by 2. (F) fails when m + n = 0.
Formula (G) increases n by 2. (G) fails when n+1=0.
Formula (H) increases m by 2. (H) fails when m +1 = 0.

To derive these we apply, as before, the formula for integration
by parts, namely,

(4) fudv =uw —fvdu. (4), p- 847
Let uw=cos* 'z, and dv=sin"zcoszdz;
inm+1
then du=-~(n—1)cos" *¢sinadr, and »= o2,

m41
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Substituting in (4), we get

. sin™*'z cos" 'z
(B) sin™z cos™zdr =+
- m+41
n—1 .
+ 1 sin™*2z cos™~ 2xdz.
m
In the same way, if we
let w=sin""1z, and dv = cos"z sin zdx.
£
we obtain
. sin™ !z cos"tlz
) sin™z cos”xdr = — —————————
n+1
m—1 .
+ 1 sin™~ 2z cos™ * 2zdz.
n

But f sin™+22 cos" ~*zdr = f sin"z (1 — cos’z) cos"~*zdz
= f sin™z cos™ ~*zdz — f sin™z cos"zdz.

Substituting this in (B), combining like terms, and solving for
f sin™z cos*zdx, we get

sin™*1x cos" 'x

E sin™x cos™ xdx =
® =

n—1

sin™ x cos™ % xdx.
m+n

Making a similar substitution in (C), we get

sin™~ ! xcos"*lx
m+n

m—1

mgtn

(¢D) f sin™x cos” xdx = —

f sin™~ 2 x cos™ xdx.

Solving formula (E) for the integral on the right-hand side, and
increasing n by 2, we get

inm+1 n+1
() f sin™x cos"xdx = — b X8 X
n41
m+n+2

n+1

| sin™ x cos™*? xdx.



358 INTEGRAL CALCULUS

In the same way we get, from formula (F),
sin™** x cos"t! x
m+1

+ mtn+a 2f'sin”'“xcos":rdx.
m+1

(#H) f sin™x cos” xdx =

Formulas (E) and (F) fail when m +n =0, formula (G) when
n+1=0, and formula (H) when m+1=0. But in such cases we
may integrate by methods which have been previously explained.

It is clear that when m and n are integers, the integral

f sin™x cos" zdx

may be made to depend, by using one of the above reduction
formulas, upon one of ths following integrals:

f dz, f sin zdz, f cos xdx, f sin z cos zdz, f ﬂ = f csc xzdz,
sin z
f sec zdz, f ) f tan zdw, f cot zdz,
cos = cos z sin z

all of which we have learned how to integrate.

EXAMPLES

sing cosbx  sinz cosPz
6 24
Solution. First applying formula (F'), we get

1 .
1. fsin% costzdr =— + 16 (sinz cosz + z