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PREFACE

THE object of this book is to afford recreation for an
idle hour and to excite the interest of young students in
further mathematical inquiries. The topics discussed have
therefore been selected with a view toward interesting
students and mathematical amateurs, rather than experts
and professors.

The Table of Contents is logically arranged with respect
to chapters; but it will be found that within the latter, the
topics are subject to no regular law or order. Some of
these are long, others short; some are serious, others are
frivolous; some are logical, others are absurd. It is feared
that many things which might have been included have
been omitted, and that still others which should have been
omitted, have been included. The indulgence of readers is
craved for this seeming lack of consistency and it is sub-
mitted in extenuation that the very character of the sub-
ject, partaking as it does somewhat of the nature of the
curio collection, renders a more orderly treatment practi-
cally impossible.

The subject matter has been collected from many and
divers sources and it is hoped that in spite of the complex
nature of the work, the selection will appeal to the readers
to whom it is addressed.

H.E. L.

December, 1916.
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RECREATIONS IN MATHEMATICS

CHAPTER 1

ARITHMETIC
1

F’?" OUNTING a series of things and keeping tally of
the tens on the fingers were processes used by
L 4 primitive peoples. From the ten fingers arose
ultimately the decimal system of numeration.
Recording the results of counting was done by the Egyp-
tians and other ancient nations by means of strokes and
hooks; for one thing a single stroke | was made, for two
things two strokes || were used, and so on up to ten which
was represented by M. Then eleven was written | N, twelve
11N, and so on up to twenty, or two tens, which was repre-
sented by MMN. In this way the numeration proceeded up
to a hundred, for which another symbol was employed.
Names for 11, I11, LI, AN, etc., appear in the Egyptian
hieroglyphics, but a special symbol for each name is not
used. Probably the Hindoos first invented such symbols,
and passed them on to the Arabs, through whom they were
introduced into Europe.

2
GREEK NOTATION
The Greeks used an awkward notation for recording the

results of counting. The first nine letters of the Greek

alphabet denoted the numbers from one to nine, so that «
I
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represented one, 8 two, vy three, and so on. Then the follow-
ing nine letters were used for ten, twenty, thirty, etc., so
that « represented ten, A twenty, u thirty, and so on. Then
the remaining letters 7, v, etc., were used for one hundred,
two hundred, etc., but as the Greek alphabet had only
twenty-four letters, three symbols were borrowed from
other alphabets. This was an awkward notation, and there
seems to have been little use made of it except to record
results. A number having two letters was hence between
ten and one hundred, and one having three letters was
between one hundred and one thousand; thus, \d was
twenty-four and 7«6 was one hundred and fourteen. The
Greeks were good mathematicians, as appears from their
work in geometry, but only a few writers used this arithmet-
ical numeration in computations, saying, for example, that
the sum of ke and N3 was py. In those days the abacus or
swan pan, similar to that seen in Chinese laundries in the
United States, was employed to make arithmetical com-
putations. From very early days this simple apparatus has
been used throughout the East, and it is said that compu-
tations are made on it with great rapidity.

3
ROMAN NUMERATION

The Romans represented the first five digits by I, IT, III,
IIITI, and V, a V prefixed to the first four gave the digits
from six to nine, while ten was represented by X, fifty by L
and one hundred by C. This notation is still in use for a
few minor purposes, it being modified by using IV for four,
IX for nine, etc.; when a watch face is lettered in this nota-
tion, however, ITII is always used for IV, because Charles V
said that he would allow nothing to precede a V. The
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Roman notation was employed only to record numbers, and
it does not appear that arithmetical operations were ever
conducted with it. Perhaps this awkward notation re-
tarded the development of mathematics among the Ro-
mans.

Frontinus, a Roman water commissioner, wrote in 97
A.D. a treatise on the Water Supply of the City of Rome, a
translation of which, with an excellent commentary by Clem-
ens Herschel, was published at Boston in 1889. A long list
of the dimensions of the water pipes then in use is given,
these being expressed in digits and fractions. The fraction
1/12 was denoted by a single horizontal stroke —, 2/12 by
two strokes —, 3/12 by three strokes —=—,and so on up to
5/12. Then 1/2 was represented by .S, while the fractions
from 7/12 to 11/12 were represented by adding strokes to
the S, thus, S~ —, indicated 1/2 + 4/12 or 5/6. The
fraction 1/24 was indicated by £. The smallest fraction
used was 1/288 which was represented by ®. The follow-
ing is the description of the pipe No. 50 given by Frontinus:

Fistula quinquagenaria: diametri digitos septem S— = — £ quinque,
perimetri digitos XXV LD VII, capit quinarias XLS = LDV.

Of which Herschel’s translation is as follows:

The s50-pipe: seven digits, plus 1/2, plus 5/12, plus 1/24, plus 5/288 in
diameter; 25 digits, plus 1/24 plus 7/288 in circumference; 4o quinarias,
plus 1/2, plus 2/12, plus 1/24, plus 5/288 in capacity.

The digit was one-sixteenth of a Roman foot and the
quantity of water flowing through a pipe of 1} digits in
diameter was called a quinaria. Frontinus takes the quan-
tities of water flowing through pipes as proportional to the
squares of their diameters, for he says that pipes of 2 and
34 digits in diameter discharge four and nine quinarias
respectively.
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4
THE ARABIC SYSTEM OF NUMERATION

The Arabic method, by which the symbols, 1, 2, 3, etc.,
were used for the first nine integers, seems to have first
originated in India, from whence it was carried by the Arabs
to Europe, about the year 1200.

Long before this time Greek and Arabic astronomers had
used the sexagesimal system in the division of the circle, and
this, with Arabic numerals, was employed about 1200 in
Europe for expressing numbers not at all connected with a
circle. Thus, 28, 32" 17" 45" 20” meant 28 units plus
32/60, plus 17/3600, plus 45/216000, plus 20/1296000.
This method of expressing fractions was certainly more
convenient than the Roman method as used by the water
commissioner Frontinus.

How the Arabic method of numeration was introduced
into Europe is told by Ball in the following interesting
account of one of the early Italian mathematicians.

b
LEONARDO DE PISA
From Ball's Short Account of the History of Mathematics. Fourth
Edition (London, 1908), pages 167-170.

Leonardo Fibonacci (i.e., filius Bonacci), generally known
as Leonardo of Pisa, was born at Pisa about r175. His
father Bonacci was a merchant, and was sent by his fellow-
townsmen to control the custom-house at Bugia in Barbary;
there Leonardo waseducated, and he thus became acquainted
with the Arabic or decimal system of numeration, as also
with Alkariami’s work on Algebra. It would seem that
Leonardo was entrusted with some duties, in connection
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with the custom-house, which required him to travel. He
returned to Italy about 1200, and in 1202 published a work
called Algebra et almuchabala (the title being taken from
Alkariami’s work), but generally known as the Liber Abaci.
He there explains the Arabic system of numeration, and
remarks on its great advantages over the Roman system.
He then gives an account of algebra, and points out the
convenience of using geometry to get rigid demonstrations
of algebraical formulas. He shows how to solve simple
equations, solves a few quadratic equations, and states some
methods for the solution of indeterminate equations; these
rules are illustrated by problems on numbers. The algebra
is rhetorical, but in one case letters are employed as alge-
braical symbols. This work had a wide circulation, and
for at least two centuries remained a standard authority
from which numerous writers drew their inspiration.

The Liber Abaci is especially interesting in the history
of mathematics, since it practically introduced the use of
Arabic numerals into Christian Europe. The language
of Leonardo implies that they were previously unknown to
his countrymen: he says that having had to spend some
years in Barbary he there learnt the Arabic system, which
he found much more convenient than that used in Europe;
he therefore published it “in order that the Latin race might
no longer be deficient in that knowledge.” Now Leonardo
had read very widely, and had travelled in Greece, Sicily,
and Italy; there is therefore every presumption that the
system was then not commonly employed in Europe.

The majority of mathematicians must have already
known of the system from the works of Ben Ezra, Gerard,
and John Hispalensis. But shortly after the appearance
of Leonardo’s book Alfonso of Castile (in 1252) published



6 RECREATIONS IN MATHEMATICS

some astronomical tables, founded on observations made in
Arabia, which were computed by Arabs, and which, it is
generally believed, were expressed in Arabic notation.
Alfonso’s tables had a wide circulation among men of
science, and probably were largely instrumental in bringing
these numerals into universal use among mathematicians.
By the end of the thirteenth century it was generally
assumed that all scientific men would be acquainted with
the system; thus Roger Bacon writing in that century
recommends algorism (that is, the arithmetic founded on
the Arab notation) as a necessary study for theologians
who ought, he says, “ to abound in the power of numbering.”
We may then consider that by the year 1300, or at the
latest 1350, these numerals were familiar both to mathe-
maticians and to Italian merchants.

So great was Leonardo’s reputation that the Emperor
Fredrick IT stopped at Pisa in 1225 to test Leonardo’s skill,
of which he had heard such marvellous accounts. The
competitors were informed beforehand of the questions to
be asked, some or all of which were composed by John of
Palermo, who was one of Fredrick’s suite. This is the first
time that we meet with an instance of those challenges to
solve particular problems which were so common in the
sixteenth and seventeenth centuries. The first question
propounded was to find a number of which the square,
when either increased or decreased by five, would remain a
square. Leonardo gave an answer, which is correct, namely
41/12. The other competitors failed to solve any of the
problems. (See No. 33 for a problem in Algebra.)
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6
EARLY ARITHMETIC IN ENGLAND

The earliest book on arithmetic printed in England was
“The Grounde of Artes, by M. Robert Recorde, Doctor of
Physik.” First issued in 1540 it was republished in numer-
ous editions until 1699. The following extracts from the
edition of 1573 give an idea of the method of instruction.

Master. — If numbering be so common that no man can doe anything
alone, and much less talke or bargain with other, but still have to doe with
numbre; this proveth not numbre to be contemptible and vile, but rather
right excellent and of high reputation, sithe it is the grounde of all mens
affaires, so that without it no tale can be told, no bargaining without it
can dully be ended, or no business that man hath, justly completed. . . .
Wherefore in all great workes are Clerkes so much desired? Wherefore are
Auditors so richly feed? What causeth Geometricians so highly to be
enhaunced? Because that by numbre suche things they find, which else
would farre excell mans minde.

Scholar. — Verily, sir, if it be so that these men by numbring their
cunning doe attaine, at whose great workes most men doe wonder, then I see
well that I was much deceived, and numbring is a more cunning thing than
T take it to be.

Master. — If numbre were so vyle a thing as you did esteem it, then need
it not to be used so much in mens communication. Exclude numbre, and
answer to this question: How many years old are you?

Scholar. — Mum.

Master. — How many daies in a week? How many weeks in a yeare?
What landes hath your father? How many men doth he keep? How long
is it sythe you came from him to me?

Scholar. — Mum.

Master. — So that if numbre wante, you answer all by Mummes.

The master then goes on to show how useful numbers are
in “Musike, Physike, Law, Grammer” and such like, and
then proceeds to teach him numeration, addition, sub-
traction, and so on. The master explains and illustrates
the process and then tests the scholar by requiring him to
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perform an example, the latter explaining as he goes on
and asking questions on doubtful points. Thus, in addi-
tion, after having explained the process of carrying, the
master gives the scholar the numbers 848 and 186 to be
added.

Scholar. — I must set them so, that the two first figures stand one ouver
another, and the other each ouer a fellow of the same place. And so like-
wise of other figures, setting always the greatest numbre highest, thus, as
followeth:

848
186
Then I must add 6 to 8 which maketh 14, that is mixt numbre, therefore
must I take the digit 4 and write it under the 6 and 8, keeping the article 1
in my mind, thus:
848
186
4
Next that, I doe come to the second figures, adding them up together,
saying 8 and 4 make 12, to which I put the 1 reserved in my mind, and that
makethe 13, of which numbre I write the digit 3 under 8 and 4, and keep the
article 1 in my mind, thus:
848
186
4 34
Then come I to the third figures, saying 1 and 8 make g, and the 1 in my
mind maketh 10. Sir, shall I write the cypher under 1 and 8?

Master. — Yea.

Scholar. — Then of the 10 I write the cypher under 1 and 8 and keep the
article in my mind.

Master.— What needeth that, seeing there followeth no more figures?

Scholar. — Sir, 1 had forgotten, but I will remember better hereafter.
Then seeing that T am come to the last figures, I must write the cypher under
them, and the article in a further place after the cypher, thus:

848
186
1034

Master. — So, now you see, that of 848 and 186 added together, there
amounteth 1034.

Scholar. — Now I think I am perfect in addition.
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Master. — That I will prove by another example. There are two armies:
in the one there are 106 8co and in the other g400. How many are there
in both armies, say you?

In those old days it seems that the multiplication table
was learned only as far as five times five, and hence a
process was necessary for multiplying together two numbers
like 6 and 8. The following is the process as given by
Recorde. The numbers 6 and 8 were placed on the left-
hand side of a large letter X, thus:

BN
6\
Then each was subtracted from 10, the remainders placed
directly opposite on the right-hand side, and a line was
drawn under the whole, thus:

8\ <2

6/ 4
Next the units figure of the product was found by multiply-
ing together the remainders 2 and 4, and the other figure of

the product by subtracting crossways either 2 from 6 or 4
from 8; thus, 2 times 4 is 8, and 2 from 6 (or 4 from 8) is 4;

therefore,
8><2
6 4

48
and hence six times eight makes forty-eight.

Napier’s bones, used in England in the seventeenth cen-
tury, consisted of nine sticks numbered at the top 1 to 9
inclusive, each stick having on its side the first nine mul-
tiples of the number at the top. These bones were hence
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merely a multiplication table. ¥ When it was desired to
multiply a number by 57, the sticks headed 5 and 7 were
taken and their multiples used. Thus suppose that 8¢9 was
to be multiplied by 57. First, looking on the stick s, the
89
ST
40
45
56
9
5073
multiples of 5 by 8 and g were taken off and set down as
shown, then looking on the stick 7 the multiples of 7 by 8
and g were taken off and set down; then the addition gave
the product of 89 by 57. Thus were arithmetical opera-
tions performed in England less than four hundred years
ago.

7
THE SIGNS OF ARITHMETIC

The signs + and — are supposed to have been first used
in Holland in the fifteenth century, to denote excess or
deficiency in weight of bales of goods. The normal weight
of a certain bale being, say, 4 centners, it was marked
4 c. + 5 1b. if it weighed 5 lb. more than the normal, and
4 c. — 5 lb. if it weighed 5 Ib. less. These signs were used
in a similar sense in Widman’s Arithmetic published at
Leipzigin 1489. It was not until about 1540 that they were
used as signs of operation, that is, as directions to perform
addition or subtraction.

The sign = was first used in works on Algebra, the earliest
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mention being in Recorde’s Whetstone of Wit issued in
1557, his selection of that sign being because “no 2 thyngs
can be moare equalle.”

The decimal point came much later, for fractional num-
bers were generally written in the duodecimal or sexagesi-
mal form prior to the fifteenth century, as has already been
explained. Napier and Briggs, the inventors of logarithms
seem to have been the first to use, about 1620, the decimal
method and the decimal point, although at first there was
no point, but a line was drawn under all the decimals.

It is scarcely more than a hundred years since the decimal
point came to be generally used in the United States. For
example, Willett’s Scholar’s Arithmetic, used in the public
schools of New York City was issued in a fourth stereotype
edition in 1822. On page 23 it is said that in adding sums
of money, the dollars, cents, and mills should be kept
separate by placing a point between them, but the point
used is a colon. On page 24 in subtraction, it is said that
dots must be used to keep these units separate, but the dot
used is a comma. Under multiplication the colon is used
in some examples and the comma in others. Under divi-
sion (page 27) the comma is used, and also numbers like
$56.43 are written $56 43cts. Under “Reduction of Fed-
eral Money” on page 55, the single parenthesis is used as
a decimal point; the problem being to reduce 387652 mills
to dollars, the number is first divided by ten and the result
stated as 38765(2; then this is divided by 100 giving
387(65:2, and finally the answer is given as 387 65cts 2m.
Nothing more is said about decimals until we come to
“Decimal Fractions” on page 151, and there the period is
formally introduced as the decimal point, and the opera-
tions on numbers containing decimals are well explained;
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even then it seems necessary to mention that a quantity
like $590.217 means 590 dols. 21 cts. 7 m. A large part of
the time of the children who used this book was devoted to
intricate problems concerning pounds, shillings, pence, and
farthings.

The signs X and + to indicate the operations of multi-
plication and division were not in common use before 1750.
Prior to this date parentheses were not used in a case like
a(d+c +d), but a straight line was drawn over the
b+c+d.

The use of the shilling mark / to indicate division is
comparatively recent, it having been first employed about
1860. In this country it was rarely used until after 1890,
but is now very commonly found in algebraic notation, and
it will generally be used in the later chapters of this volume.

4
— <+ 261.
261 or 4 + 261
This new division mark is of especial advantage in sim-
plifying printed work, either in setting algebraic expressions

in type or in writing fractions with a typewriter.

Thus, 4/261 has the same meaning as

ARITHMETIC AMUSEMENTS
8
Multiply 37037037 by 18; also multiply it by 27.
Multiply 1371742 by 9; also multiply it by 8.
Multiply 98765432 by o9; also multiply it by 1 1/8.

9

Think of any number, multiply it by 2, then add 4,
multiply by 3, divide by six, subtract the number you
thought of, and the result will be 2.



ARITHMETIC i3

10

Think of any number, and add 1 to it, then square these
two numbers and subtract the less from the greater. Now
if you will tell me this difference, I can easily know the
number you thought of, for I merely subtract 1 from the
number you give me, then divide by 2, and the result is the
number of which you thought.

11

To find the age of a man born in the nineteenth century.
Ask him to take the tens digit of his birth year, multiply it
by ten and add four; to this ask him to add the units figure
of his birth year and tell you the result. Subtract this
from 124 and you will have his age in 1920. Thus for a
man born in 1848, 4 X 10 = 40, 40 + 4 = 44, 44 + 8 =
52, 124 — 52 = 72, which will be his age in 1920, if then
living.

12

Ask a person to multiply his age by 3, add 6 to the prod-
uct, then divide the last number by three and tell you the
result. Subtract two from that result and you have his
age.

13

A woman goes to a well with two jars, one of which holds
3 pints and the other 5 pints. How can she bring back
exactly 4 pints of water?
14

By the help of the following table the age of a person
under 21 can be ascertained:
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A B C D E

Ask the person to tell you in I 2 4 8 16
which column his or her age 3 3 5 9 17
occurs. Then add together the 5 6 6 10 18
numbers at the tops of those 7 7 7 11 19
columns and the sum will be the 9 10 12 12 20

age. Thus, if a person says that 11 11 13 13
his age is found in columns B and I3 14 14 14
E, then 2 416 =18 which is 15 15 15 15§
his age. 17 18 20
19 19
16

All integral numbers are either prime or composite. A
prime number is one which has no integral divisors except
itself and unity. There is no simple method of ascertain-
ing what numbers are prime except that of the “sieve of
Eratosthenes.” By this method the odd integral numbers
are written in ascending order, thus, 3, 5, 7, 9, 11, 13, 15, 17,
19, 21, 23, 25, 27, 29, etc., then every third number after
three, every fifth number after 5, every seventh number after
7, and so on, are crossed off, and those remaining are primes.
Thus from the above numbers, 9, 15, 21, and 27 are first
crossed off, then 15 and 25, and then 21; the remaining
numbers 3, 5, 7, 11, 13, 17, 10, 23, 29, together with 2, are
the prime numbers less than thirty. This process becomes
very laborious when the numbers run into millions.

16

A perfect number is one which is equal to the sum of its
divisors. Thus, 6 equals 1 + 2 + 3 and 1, 2, and 3 are the
divisors of 6. The next perfect number is 28, the third one
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is 496, and the fourth one is 8128. Beyond this there are no
perfect numbers until 33 550 336 is reached. Then come
8 589869 056, 137 438 691 328 and 2 305 843 008 139 952 128.
This seems to be the largest perfect number thus far found.
All of the above numbers end in 6 or 28. It is not
known whether or not an odd number can be perfect,
but the indications are against this being the case. The
above numbers are taken from Ozanam’s Recréations
Mathématiques, published at Paris in 1750. Other num-
bers which he gives are not perfect, because he unfortu-
nately made errors in computing them. Ozanam’s book
was first published in 1698; it passed through many edi-
tions and was also translated into English.

17

At rare intervals natural calculating boys come to public
notice. One of these was Zerah Colburn who was born in
New England in 1804 and taken to London when eight
years old to exhibit his powers. He could mentally multiply
any number less than 10 into itself successively nine times
and give the results faster than they could be written down.
He was asked what number multiplied by itself gave
106 989 and he instantly replied 327. With equal prompt-
ness he stated that the number which multiplied twice by
itself gave 268 336 125 was 645, this being a problem in
cube root for which an ordinary computer would require
several minutes. He was asked to name a number which
would divide exactly 36083 and he immediately replied
that there was no such number, in other words he recog-
nized this as a prime number just as readily as we recognize
29 or 37 to be one. He could very quickly multiply to-
gether two numbers of four or five figures, and perform
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many other remarkable mental feats. These natural cal-
culators are rarely able to explain their processes, and their
powers fade away and disappear as they grow up and
become educated.

18

How many people know that the square of 3 plus the
square of 4 equals the square of 57 All surveyors and
draftsmen know it, also most machinists and carpenters,
but to those in other trades it is probably quite unknown.

Another interesting arithmetical theorem is that the cube
of 3 plus the cube of 4 plus the cube of 5 equals the cube of
6. Probably few students who read this book have ever
before heard of this important relation.

19

In one hand a person has an odd number of coins or
pebbles and in the other hand an even number, the knowl-
edge of the same being unknown to anyone except himself.
Ask him to multiply the number in the right hand by 2 and
the number in the left hand by 3. Then ask him to add
together the two products and tell you their sum. If this
sum is odd the left hand has the odd number of coins, but if
the sum is even, the left hand has the even number of coins.

20

One tumbler is half full of wine and another tumbler is
half full of water. A teaspoonful of wine is taken from the
first tumbler and put into the other one. Then a teaspoon-
ful of the mixture is taken from the second tumbler and put
into the first one. Is the quantity of wine removed from
the first tumbler greater or less than the quantity of water
removed from the second tumbler? Ball in his Mathe-
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matical Recreations and Essays says that the majority of
people will say it is greater, but that this is not the case.
H. E. Licks, who has studied this problem, claims that the
two quantities are exactly equal.

21

A stranger called at a shoe store and bought a pair of boots
costing six dollars, in payment for which he tendered a
twenty-dollar bill. The shoemaker could not change the
note and accordingly sent his boy across the street to a
tailor’s shop and procured small bills for it, from which he
gave the customer his change of fourteen dollars. The
stranger then disappeared, when it was discovered that the
twenty-dollar note was counterfeit, and of course the shoe-
maker had to make it good to the tailor. Now the question
is, how much did the shoemaker lose?

22

At an humble inn where there were only six rooms, seven
travellers applied for lodging, each insisting on having a
room to himself. The landlord put the first man in room
No. 1 and asked one of the other men to stay there also for
a few minutes. He then put the third man in room number
two, the fourth man in room No. 3, the fifth man in room
No. 4, and the sixth man in room No. 5. Then returning to
room No. 1 he took the seventh man and put him in room
No. 6. Thus each man had his own room!

23
An Arab merchant directed by will that his seventeen
horses should be divided among his three sons, one-half of
them to the eldest, one-third to the second son and one-
ninth to the youngest son. How to make the division was
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a serious problem, for the eldest son claimed nine horses,
but the others objected because this was more than one-half
of seventeen. In this dilemma they applied to the Sheik
who put his white Arabian steed among the seventeen
horses, directed the eldest son to take one-half of the eight-
een or nine, the second son to take one-third of the eighteen
or six, and the youngest son to take one-ninth of the eighteen
or two. Thus, since nine plus six plus two are seventeen,
the horses were divided satisfactorily among the three sons.
“Now,” said the Sheik, “will I take away my own horse,”
and he led the Arabian steed back to his peg in the pasture.

24

To add 5 to 6 in such a way that the sum may be 9.
Make six marks at equal distances apart, thus //////.
Between the first and second marks draw a slanting line so
as to form the letter V; then do the same between the
fourth and fifth marks; finally add to the last line three
horizontal marks so as to form the letter E. Then the
problem is solved, for the five marks added to the given six
marks have made NINE.

Another interesting problem in this line is to add three
marks to a given five so as to make a quotation from
Shakespeare. The added three marks give KINI, and you
ask, where in this is found the required quotation. After a
few minutes silence I reply, ‘A little more than kin but
less than kind.”

25

Two impossible problems: (1) If 3 is one-third of 10, what
is one-quarter of twenty? (2) A man who had a bale of
cotton sold it for $50, bought it back for $45, and then sold
it again for $65. What was the net gain to the man?
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26

The Indian mathematician Sessa, the inventor of the
game of chess, was ordered by the king of Persia to ask as a
recompense whatever he might wish. Sessa modestly re-
quested to be given one grain of wheat for the first square
of the board, two for the second, four for the third, and so
on, doubling each time up to the sixty-fourth square. The
wise men of the king added the numbers 1, 2, 4, 8, 16, etc.,
and found the sum of the series to sixty-four terms to be
18 446 744 073 709 551 615 grains of wheat. Taking gooo
grains in a pint we find the whole number of bushels to be
over 32 000 000 000 000, Which is several times the annual
wheat production of the whole world.

27

H. E. Licks once had a class of students well versed in
arithmetic, algebra, trigonometry, and calculus, but not one
of them could solve the following simple problem, as they
knew nothing about bookkeeping. The problem is hence
here given for other young people.

A Coal Company appointed an agent, agreeing to pay
him a salary of $265 for six months, all of the coal at the end
of that time and all of the profits to belong to the Company.
The Company furnished him with coal to the amount of
$825.60 and in cash $215.00. The agent received for coal
sold $1323.40, paid for coal bought $937.00, paid sundry
expenses authorized by the Company $129.00, paid his own
salary $265.00, paid to the Company $200.00, delivered to
indigent persons by order of the Company coal to the
amount of $13.50. At the end of the six months the
Company took possession and found coal amounting to
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$616.50. The agent then paid to the Company the money
belonging to them. How much did he pay? Did the
Company gain or lose by the agency and how much?

28
THE FIFTEEN PUZZLE
About the year 1880 everyone in Europe and America
was engaged in the solution of this interesting puzzle. A
square shallow box contained fifteen blocks numbered 1 to
15 inclusive and these could be moved about one block at a

time, on account of the blank space. The blocks being
placed in the box at random, say as shown in Fig. 1, the
problem was to arrange them in regular order in the manner
shown in Fig. 2. It was a fascinating exercise to shift these
blocks until 1 was brought to the upper left-hand corner,
then to bring 2 next to it, and thus keep on until the regular
order of Fig. 2 was secured. But sometimes it happened,
when the lowest row was reached, that the order of Fig. 3
resulted; for this case mathematicians proved that it was
impossible to cause the blocks to take the regular order of
Fig. 2. Mathematical analysis also showed that for many
random positions of the blocks (Fig. 1), one-half of them
would result in the order of Fig. 2 and one-half in the order
of Fig. 3.
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There is, however, a way by which the arrangement of
Fig. 3 can be brought into regular order. Move the blocks
until the upper left-hand corner is blank and the blocks 1,
2, 3 fill the other spaces of the upper row, then continue
until the blocks 4, 5, 6, 7 fill the second row and 8, ¢, 10, 11
the third row, then the lowest row can be arranged in the
order 12, 13, 14, 15. This is a solution of the puzzle, if the
statement of the problem is merely that ““ the blocks are to
be arranged in regular order.”

This puzzle comes under that branch of arithmetic known
as permutations and combinations, and much mathematical
thought has been expended upon it. The number of ways
in which the fifteen blocks can be put at random in the box
(Fig. 1) is 1 307 674 368 cco. In the early stages of the
craze it was not recognized that half of these combinations
lead to the result of Fig. 2 and half of them to the result of
Fig. 3. Hence when Fig. 3 was reached, the player usually
kept on trying to obtain the arrangement of Fig. 2. Finally,
after mathematicians had proved that it is impossible to
bring Fig. 3 to agree with Fig. 2, the craze abated.

It has been stated that this interesting puzzle was in-
vented in 1878 by a deaf and dumb man as a solitaire game.
In the height of the craze persons in public conveyances
could be seen every day attempting to solve the puzzle.
Some physicians thought that this work was a beneficial
mental exercise, but others claimed that it led to nervous
disorders. A poet well expressed the latter opinion as

follows:
Put away his crack-brain puzzle,
He has climbed the asylum stair;
Numbers thirteen, fifteen, fourteen,
Turned his head and sent him there!



CHAPTER II
ALGEBRA
29

r UCLID used algebra in a geometric form, ex-

pressing the equations always by words. For
) example: if a straight line be divided into two
G parts, the square on the line is equal to the sum
of the squares on the two segments plus twice the rectangle
of those segments; this in modern algebra is the theorem
(¢ + b)? = @® + b* + 2 ab. Until the sixteenth century all
algebraic equations were generally expressed in words; for
instance, Omar Kayyam wrote about 1100, “Cubus, latera
et numerus aequalis sunt quadratis,” meaning %* 4+ bx + ¢
= ax?. Cardan about 1550 wrote “Cubus p 6 rebus
aequalis 20,” meaning &* + 6 & = 20. Ramus about the
same time wrote 7 ¢ + 3/ — 2 where / meant the unknown
quantity and ¢ its square. At this date R; 17 was intro-

duced which later became V'17; here the R signified radix
or root.

Vieta, the founder of modern algebra, wrote about 1580
1C — 8Q + 16 N aequ 4o, signifying &3 — 8% + 16x =
40, since C meant cube, Q meant square and N meant first
power of the unknown quantity. Fifty years later De-
cartes introduced x to represent the unknown quantity in
the equation. Algebra as we now know it is scarcely more
than three hundred years old.

22
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The earliest note of an equation is found in the Egyptian
records of Ahmes in the following form ‘“heap, its two-
thirds, its half, its seventh, its whole gives g7,” that is, heap
is the unknown quantity x, and 2/3x 4+ 1/2% + 1/72
+ x = g7 is the equation to be solved. It was a long time,
however, before equations of the second degree appeared,
except in the geometric form of Euclid. Here the Greeks
led the way, and the equation of the third degree appeared
first in the famous problem of the duplication of the cube.
This leads to #* = 2 @® where # is the edge of a cube having
a volume double that of the cube whose edge is a.

31

Algebra is a fascinating study with a notation and rules
all its own. It is easier than geometry, because reasoning
on the original problem is not required at every step, this
reasoning being done automatically, as it were, by the
operations on the symbols. It is a kind of generalized
arithmetic whose rules and operations throw much light on
the process of common arithmetic. The first important
points to be learned are the properties of the signs 4+ and —
in multiplication, and when the student thoroughly under-
stands that —a multiplied by —b& gives +ab, he has
entered upon a new field of intellectual pleasure. All
young people ought to know something of the elements of
algebra.

ALGEBRAIC AMUSEMENTS

32

Methods much in vogue a hundred years ago for solving
simple equations were those called Single Position and
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Double Position. The former may be illustrated by the
following problem: What number is it of which its double,
its half, and its third are equal to 34? Assume the number to
be 48; then its double is g6, its half is 24, and its third is 16,
and the sum of these is 136. Then state the proportion,
the required number is to the assumed number as the given
result is to the computed result, or x : 48 :: 34 : 136 from
which the required number is 12. Why this proportion
gives the correct result was rarely explained, so that the
method was one of memory rather than of reasoning.

33

One of the problems put to Leonardo de Pisa at the con-
test before the Emperor Fredrick II in 1225 (No. 5) was as
follows, the letters «, x, ¥, , being introduced to simplify
the enunciation: Three men 4, B, C, possess a sum of
money #, their shares being in the ratio 3 : 2 : 1. A takes
away x, keeps half of it, and deposits the remainder with
D; B takes away y, keeps two-thirds of it, and deposits the
remainder with D; C takes away all that is left, namely g,
keeps five-sixths of it, and deposits the remainder with D.
The deposits with D are found to belong to 4, B, C, in the
proportions 3 : 2 : 1. Find #, x, 9, 2. Leonardo showed
that the problem has many solutions, one of these being
U =47,%=33,Y =13, = I

34

A positive quantity a® has two square roots +a and —a.
But a negative quantity —a? has no square roots except the
imaginary ones +aV —1 and — ¢V —1. The imaginary
quantity vV —1 first came to light through algebraic equa-
tions. Thus the equation > — 6 ¢ + 11 = o has the two
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roots x = 3 +Vv =2 and x =3 — V=2, each of which
satisfies the equation. Such roots were at first called
impossible values, but later it was found that they have a
good geometric representation, which will be spoken of
later.

36

A quantity has three cube roots. For example, the three
cube roots of 8 are +2, —1 + VvV —3, and —1 — V—3,
as may be easily verified. Likewise a quantity has four
fourth roots, five fifth roots, and so on.

36

The symbol o/o indicates an indeterminate quantity
whose value can be found by consideration of the quantities
which give rise toit. What is the value of (¢® — 8%)/(a —b)
when ¢ and b are each equal to unity? Most beginners in
algebra will reply o. But, performing the division indi-
cated, it will be found that (¢®* — 8°)/(a — b) has the value
a* 4+ ab + b which becomes 3 when ¢ =1 and b = 1.
Hence for this case the value of o/o is 3. ’

37

The equation a® 4+ b* = ¢%, in which a, b, ¢ are integers,
cannot be satisfied except when ¥ = 2. For this value of
x there are numerous solutions, as may be seen in the next
chapter. Fermat’s ‘‘last theorem” states that integral
values for a, b, ¢ cannot be found when x is greater than 2.
The equation a® + b® + ¢® = d* can, however, be satisfied
in integers when x =3, and 3* + 4® 4+ 5° = 6° is one
solution.



26 RECREATIONS IN MATHEMATICS

38

Ask a person to think of a number while you call it x, then
ask him to multiply it by 2 and add 6 to the product; this
gives you 2 # + 6. Then ask him to square the number he
thought of and add it to this, which gives you #* 4+ 2 x + 6.
Next he is to subtract 5 from this, which gives you #* +
2z + 1. He is now asked to take the square root of this,
and you have x 4+ 1. If now he gives you this result, you
have only to subtract 1 from it to know the number he
thought of at first. Endless exercises like this can be made
by the use of a little algebra.

39

There is a rule for determining whether or not a given
number is a prime, but it gives rise to such large numbers
that its use is generally impracticable. Let »! denote the
product of the first # integral numbers or #! =1 X 2 X 3
X ...n Then if n! 4 1 is exactly divisible by » 4 1
the number # + 1 is a prime. For example, to find if 7 is a
prime,let# + 1 = 70orz =6,then1 X 2 X 3 X4 X5 X
6 = 720, and 720 + 1 = 721 which is exactly divisible by 7;
hence 7 is a prime.

40

The following interesting problem is said to be due to Sir
Isaac Newton: Three cows eat in two weeks all the grass
on two acres of land, together with all the grass which grows
there in the two weeks. Two cows eat in four weeks all the
grass on two acres of land, together with all the grass which
grows there in the four weeks. How many cows, then, will
eat in six weeks all the grass on six acres of land together
with all the grass which grows there in the six weeks? In



ALGEBRA 27

this problem it is, of course, understood that the quantity
of grass on each acre is the same when the cows begin to
graze, and also that the rate of growth is uniform during the
time of grazing. Let x be the quantity of grass which
grows on one acre in one week. Then from the statements
of the problem it is not difficult to show that x is the same
as the quantity of grass which was on one-fourth of an acre
when the grazing began. The reader can now easily com-
plete the solution without algebra and show that the answer
to the problem is five cows.

ALGEBRAIC FALLACIES
41

A fallacy is improper reasoning which leads to an absurd
result. Some of the fallacies are very puzzling to a be-
ginner. The improper use of the quantity o/o lies at the
basis of an extensive series of fallacies. For example, take
the equation 15x + 12 = 6 x + 30. This may be written
15t —30=6x—12 or 53x—6) =2(3x—6); di-
viding by 3 # — 6 gives the absurd result 5 = 2. Here the
true solution is 32 — 6 =0 or x = 2. Hence the last
equation is really 5§ X o =2 Xo or 5 =2 X o/o. The
value of o/o is not 1 as the previous division has incorrectly
assumed, but it is 5/2, so that the true result of the division
is the correct conclusion 5 = 5. The following fallacies rest
upon this improper use of o/o and it is left to the reader to
detect the place where the incorrect reasoning begins.

42

To prove that the numbers 1 and 3 are equal. Let
a = b, then ab® = @*; subtracting 4® from both members
gives ab® — b® = @® — b®; dividing by @ — b gives b = a? +
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ab + b%; in this make ¢ = 1 and b = 1, and there results
I =3
43
Any number ¢ is equal to a smaller number 8. Let ¢ be
their difference so that ¢ = & + ¢; if this equation be mul-
tiplied by a — b, there is found
a?—ab=ab—04ac— b
or
a? — ab — ac = ab — b* — be.
Dividing both members of the last equation by ¢ — b — ¢,
there results ¢ = b, which proves the proposition enunciated.

44
To prove that —1 = 41. Let 2? — 1 = o; divide by
2+ 1 and there is found x — 1 =0 or x = + 1; divide
by — 1 and then x +1 =0 or x = —1. Therefore
—1= +41I.
45

To solve the equation § + 25—355 — 4% =290 peque.
7 —x 15—«

ing the first member so that 7 — x shall be the common
denominator of both terms gives
4% —20 _4x—20 1 __ 1
7—x 15 — & 7—% 15— %
from which results the theorem that 7 = 15!

46

Another class of fallacies embraces those which neglect
to consider that a quantity has two square roots of equal
value except that one root is positive and the other nega-

~
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tive. As an example take the true equation 16 — 48 =
64 — 96; add 36 to each member giving 16 — 48 + 36 =
64 — 96 + 36. Each member is now a perfect square or
(4 — 6)? = (8 — 6)>. Taking the square root of each side,
gives 4 — 6 =8 — 6 or the absurd result 4 = 8. The
fallacy here lies in taking the wrong square root, the correct
extraction for this case being (4 — 6) = —(8 — 6) which

gives the correct conclusion —2 = —2. The following fal-
lacies are based upon the neglect to consider all the roots of
a quantity.

Solve the equation % 4 2 Vx = 3. Proceeding in the
usual manner there are found ¥ = 1 and * = 9. The first
satisfies the equation, but the second does not. Will the
reader explain?

47

To solve the equation x — a = V42 + a?; squaring both
sides and reducing gives —2 ax = o, whence ¥ = o. But
this root does not satisfy the given equation and hence the
solution cannot be correct. Where lies the fallacy?

Any two numbers are equal to each other. Let ¢ and
be the two numbers and assume the equation (x — a)® =
(x — b)®. Taking the cube root of both members gives
x —a=x—>, whence ¢ =b. Perhaps the advanced
student may be able to show that the equation (x — @)® =
(x — b)*has the threeroots * = 3 (@ +b) =2 V=3 (a — b)
and x = 1 (¢ + ).

To solve the equation x —a = (x2 —aVa? +a2)’l‘.
Square each member twice and there will be found x =
4/3a and * = o. The first root satisfies the equation, but
the second does not. Why not? Here it may be shown
that ¥ = oo is the true value of the second root.
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48

Absurd fallacies like the following make good amusement
for evening parties of young people: (1) Given the equa-
tions 32 ounces = 2 pounds, and 8 ounces = 1/2 pound;
multiplying these equations, member by member, gives
256 ounces = 1 pound; where is the fallacy? (2) Each of
the following statements is true; 1 cat has 4 legs, o cat has
2 legs; add these, member by member, and there is found
1 cat has 6 legs; where lies the fallacy?

Sometimes beginners make mistakes like the following:
V24 V3=vV6 a@+d=0a5 2°=o0; 22+ =25
%t -+ x% = x. Where is the error in each of these?

49

What is the sum of the infinite series 1 — 1 +1 — 1 +
1 —,etc.? If 1 be divided by 1 + « there is found:

i/(14+x) =1 —x+2— 2+t — 25+, etc,,
and, making x = 1, it appears that the sum of the given
infinite series is 1/2. But suppose we divide 1 by 1 + «
+ % giving

i/i4+x+2) =1—x+2 —xt+ 25 — & +,etc,
and then make ¥ = 1, which shows that 1/3 is the sum of
the given infinite series. Which value is correct, 1/2 or 1/3?

60

The theory of logarithms belongs in Algebra. Since
(—a)? = a? it may be thought that log (—a)? = log a® or
2 log (—a) = 2 log a, from which it appears that log (—1)
= log 1, but this is not true on account of a concealed
fallacy. Other interesting problems may also be stated:
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(1) What is the value of x in the equation (3/4)"°¢* 4
(4/3)'°8® = 25/12? (2) What is the value of « in e* = 1,
where e is the number 2.7128 and 7 is V —1?

61

A woman came to town with a basket of eggs. To the
first customer she sold half her eggs and half an egg. To
the second customer she sold half of the remaining eggs and
one-half an egg. To a third customer she sold half of the
remaining eggs and one-half an egg. Then counting the
eggs in her basket she found exactly three dozen. How
many eggs had she at the start?

At first thought this problem is impossible, for the idea of
a woman selling half an egg and then walking along with the
other half seems absurd. But trying algebra, let x equal
the original number, then at the first transaction she sold
1x 4 1and had left 1 x — 2. Thus proceeding to the last
sale we put the final expression equal to 36 and find x = 295.
One-half of 295 is 1473 and } an egg added makes 148.
Thus she sold the first customer 148 eggs and had 147 left;
to the second she sold 733 + % or 74 and then had 73 left;
to the third she sold 36% + % or 37 and had 36 eggs
left. Hence no division of an egg was necessary in making
the three sales.

62

The following are problems proposed by the ancient
Hindu mathematicians:

(1) The square root of half the number of bees in a swarm
has flown out upon a jessamine bush, 8/g of the whole
swarm has remained behind; one female bee flies about a
male that is buzzing within a lotus-flower into which he was
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allured in the night by its sweet odor, but is now imprisoned
in it. Tell me the number of the bees.

(2) A sixteen-year old girl slave costs 32 Uishkas, what
costs one twenty years old by inverse proportion, the value
of living creatures being regulated by their age, the older
being the cheaper.

(3) Beautiful maiden with beaming eyes, tell me, as thou
understandest the right method of inversion, what is the
number which multiplied by 3, then increased by £ of the
product, divided by 7, diminished by 1/3 of the quotient,
multiplied by itself, diminished by 52, by extraction of
square root, addition of 8, and division of 10 gives the
number 2?

(4) Of aflock of ruddy geese, ten times the square root of
the number departed from the Manasa lake on the appear-
ance of a cloud, an eighth part went to the forest of Sthala-
padminis, and three couples were engaged in sport on the
waters abounding with delicate flowers of the lotus. Tell
me quickly, dear girl, the number of the flock.

63

It is said that the age of Diophantus when he died is
known from the following problem: Diophantus was a child
for one-sixth of his life, a youth for one-twelfth, and a
bachelor for one-seventh; five years after his marriage a
son was born who lived one-half as long as his father and
who died four years before his father. When and where
this problem was first propounded, I know not, but Cajori
in his History of Elementary Mathematics says that it was
an epitaph. Compute, young man, the age of Diophantus.

Plutarch relates the legend that the poet Homer died of
vexation at being unable to solve a riddle propounded to
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him by some young fishermen, in answer to his question as
to how many they had caught. ‘“As many as we caught,”
they said, “we left, as many as we did not catch, we carry.”

b4
THE CATTLE PROBLEM OF ARCHIMEDES

Condensed from Popular Science Monthly, November, 1905.

Lessing, librarian at Wolfenbiittel, discovered there about
1770 the manuscript of a Greek poem which enunciated a
problem of great difficulty. The name of Archimedes
appears in the title of the poem, it being said that he sent
the problem in a letter to Eratosthenes to be investigated
by the mathematicians of Alexandria. It may well be
doubted, however, if Archimedes was the real author, since
no mention of the problem has been found in ancient
writings.

The following statement of the problem has been abridged
from the German translations published by Nesselman in
1842 and by Krumbiegel in 1880:

Compute, O friend, the number of the cattle of the sun which once
grazed upon the plains of Sicily, divided according to color into four herds,
one milk white, one black, one dappled, and one yellow. The number of the

bulls is greater than the number of the cows and the relations between them
are as follows:

White bulls = (1/2 + 1/3) black bulls + yellow bulls.
Black bulls = (1/4 + 1/5) dappled bulls + yellow bulls.
Dappled bulls = (1/6 + 1/7) white bulls 4 yellow bulls.
White cows = (1/3 + 1/4) black herd.

Black cows = (1/4 + 1/5) dappled herd.

Dappled cows = (1/5 + 1/6) yellow herd.

Yellow cows = (1/6 + 1/7) white herd.

If thou canst give, O friend, the number of each kind of bulls and cows, thou
art no novice in numbers, yet cannot be regarded as of high skill. Consider,
however, the following additional relations between the bulls of the sun:
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White bulls 4 black bulls = a square number.
Dappled bulls 4 yellow bulls = a triangular number.

If thou hast computed these also, O friend, and found the total number of
cattle, then exult as a conqueror, for thou hast proved thyself most skilled
in numbers.

It is seen that the exercise as stated involves two prob-
lems, the first to find integral numbers that satisfy the first
seven conditions, and the second to find integral numbers
that satisfy all nine conditions. The Wolfenbiittel manu-
script has an Appendix giving 4 031 126 560 as the total
number of cattle, but this satisfies only the first seven con-
ditions. For this first problem let W, B, D, ¥, represent
the number of white, black, dappled, and yellow bulls, and
let w, b, d, y, represent the number of white, black, dappled,
and yellow cows. Then follow the seven equations:

W=%:B+Y (1) b= D+d (5
B=%D+Y (2 =3 ¥ +9) (6
D=HW+¥ () y=#W+w) @

w=1y B+ ()

and these contain eight unknown quantities. The problem,
hence, is of the kind called indeterminate, for many sets of
numbers may be found to satisfy the seven equations.
That set having the smallest numbers is the one required,
for any other set may be found by multiplying these by the
same integer. If B and W are eliminated from equations
(1), (2), (3) there will be found 891 D = 1580 ¥, and hence
D = 1580 and ¥ = 8g1 are the smallest integral numbers
satisfying it; from these are found B = 1602z and W =
2226. These numbers are now multiplied by an integer m
and substituted in equations (4) to (7); then proceeding
with the elimination, it is found that 4657 is the least value
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of m that will make the results integral numbers. Ac-

cordingly,
B = 7460514 b = 4893 246
W = 10366 482 w = 7 206 360
D = 7358060 d = 3515820
Y = 4149387 Y = 5439213

are the least numbers satisfying the conditions of the first
problem. The total number of cattle is 50 389 082, not too
many to graze upon the island of Sicily, the area of which is
about 7 ooo ooco acres.

The second or complete problem includes the determina-
tion of numbers which not only satisfy equations (1) to (7),
but also

W + B = a square number, 8)
D + Y = a triangular number, (9)

and this is to be done by finding an integer V to multiply
into each of the results of the first problem, or

17 826 996 N = a square number,
11 507 447 N = a triangular number.

A number N that will satisfy one of these conditions can be
found without difficulty but to determine NV so that both
conditions will be satisfied is a task involving an enormous
amount of time and labor. In fact, this required number
N has never been completely computed.

A solution which satisfies (8) as well as (1) to (7) is easily
made. Since W 4 B is 17826 966 N or 4 X 4 456 749 N,
and since 4 456 749 contains no number that is a perfect
square, it is plain that V must be 4 456 749. Accordingly,
each of the numbers found in the first solution must be
multiplied by this value of NV in order to satisfy (1) to (8)
inclusive; the number W + B is then 79 450 446 596 co4
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which is a perfect square, but D 4 ¥ is 51 285 802 gog 803
which is not a triangular number.

It is now time to explain what is meant by a triangular
number. The number ten is triangular because ten dots
can be arranged in rows in the form of a triangle, the first
row having one dot, the second two, the third three, and the
fourth four dots. The next higher triangular number is 15
and the next 21, and in general 3 # (» + 1) is a triangular
number whenever # is an integer, #» being the number of
rows in the triangle. The number 51 285 802 gog 803 is
shown not to be a triangular number by equating it to
3 n (n + 1) and computing # from the quadratic equation
thus formed when it is found that # is not an integer.

Now since 51 285 802 gog 803 is the number of yellow and
dappled bulls which results from a solution which satisfies
equations (1) to (8) inclusive, it is plain that the ninth
condition may be expressed by

51 285 802 gog 803 %% = 2% (n + 1),

in which x and # are to be integers. When x? has been
found each of the numbers of the first solution is to be multi-
plied by 4 456 749 4 in order to give the number of bulls
and cows in each herd which satisfy the nine imposed
conditions.

These numbers were readily seen to be so great that the
island of Sicily could not contain all the cattle the prob-
lem seems to demand. This requirement, however, was
understood to be only figurative, and mathematicians
agreed that the numbers might be found altho no useful
purpose would be attained by computing them. Thus the
question rested until 1860 when Amthor demonstrated that
206 545 figures are necessary to express the total number of
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cattle and that 766 X 1052 gives their approximate
number. This is an enormous number, and it is not diffi-
cult to show that a sphere having the diameter of the milky
way, across which light takes ten thousand years to travel,
could contain only a part of this great number of animals,
even if the size of each is that of the smallest bacterium.

It would be thought that, after this investigation of
Amthor, the cattle problem would have been finally dropped
but such was not the case. The way to solve it was well
understood from the theory of indeterminate analysis.
Let the preceding equation be multiplied by 8, unity be
added to each member and let 2 # + 1 be called y; then it
becomes

y? — 410 286 423 278 424 2 = 1

which is of the form y* — 4A#* = 1, and it is known that
when A4 is an integer there can always be found integral
values of x and y which satisfy the equation. The method
of solution cannot well be explained here, but it was de-
vised many years ago by Pell and Fermat and is well known
to those skilled in higher mathematics. For example, take
the simple case where 4 = 19, or > — 19 4?> = 1, then the
smallest integral values of y and x are 170 and 39.

In 1839 A. H. Bell, a surveyor and civil engineer of
Hillsboro, Illinois, began the work of solution. He formed
the Hillsboro Mathematical Club, consisting of Edmund
Fish, George H. Richards, and himself, and nearly four
years were spent on the work. They computed thirty of
the left-hand figures and twelve of the right-hand figures of
the value of x without finding the intermediate ones. This
value is * = 34 555 906 354 550370 . . . 252 058 980 100
in which the dots indicate fifteen computed figures, which
it is unnecessary to give here, and 206 487 uncomputed
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ones; the total number of figures in this number is 206 531.
The final step is to multiply each of the numbers of the first
solution by 4 456 749 and by this value of x?, thus giving:

Whitebulls =1506510 ...c.ccviiineeinininnn 341 800
Black bulls =II48097T vttt 178 600
Dappled bulls = 1133192 ...t 894 coo
Yellow bulls = 639034 .....c.ocvvviiniiinnnn 026 300
White cows =1100829 .........ciiiiiiiiinn 564 000
Black cows = 735504 ceeiiieiieinniaeeaaas 645 400
Dappled cows = 541460 .....viiiiiiiiiiiinnn. 318 ooo
Yellow cows = 837676 ...................... 113 700

Total cattle = 7760271 ..., 081 8o0

in which each line of dots represents 200 532 figures, the
total number of figures in each line being either 206 545 or
206 544. In each of these lines there are omitted twenty-
four figures at the left end and six at the right end which
were computed by the Hillsboro Mathematical Club.

This solution is published in the American Mathematical
Monthly for May, 1895, where Bell remarks that each of
these enormous numbers is ‘“one-half mile long.” A clearer
idea of its length may be obtained by considering the space
required to print it. Each page of this volume contains
32 lines and in each line about 50 figures may be printed, so
that one page could contain about 1750 figures. To print
a number of 206 245 figures would require 129 pages, and
to print the nine numbers indicated above a volume of over
1000 pages would be needed.

It is known that Archimedes speculated regarding large
numbers, for his book Arenarius is devoted to showing
that a number may be written that will express the number
of grains of sand in a sphere of the size of the earth. It
cannot be proved that Archimedes was the author of the
cattle problem, but as Amthor remarks, the enormous
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numbers in its solution render it worthy of his genius and
proper to bear his name. Its closing challenge still remains
open, for the complete solution has not yet been made; and
the investigations of Bell show that this would require the
work of a thousand men for a thousand years. The little
prairie town of Hillshboro, may, however, well exult as a
conqueror, for its mathematical club has made the most
complete of all solutions of the cattle problem and has
proved itself to be highly skilled in numbers.

65
MAGIC SQUARES

Fig. 4 shows the well-known magic square containing the
nine digits, the sum of each row, column, and diagonal being
15. These numbers may be arranged in other ways, for
instance, by taking the left-hand column as the top row, the
middle column as the middle row, and the right-hand column
as the lowest row. Altogether there are eight different
arrangements for this simplest of all magic squares.

t|14]is| 4 1ele| s
4|92 12| 7]e|9 313|810
315|7 8t 1o] 5 Szt |18
alt|e 13 21316 9| 7|14] 4
Fig.4 Fig. 5 Fig-6

A magic square of sixteen numbers is shown in Fig. 5, the
sum of each row, column, and diagonal being 34. Here also
there are many other arrangements. Fig. 6 shows another
magic square which has the same properties and there are
others which will be explained later.

A true magic square should have 1 for its smallest number
and contain all the natural numbers up to #?, where # is the
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number of cells in one row or column of the square. The
sum of the first #? natural numbers is S = $ #® (n* + 1), and
hence the sum of the numbers in one row, column, or diag-
onal is N = 3 n (n* + 1). Accordingly, for magic squares
of 9, 16, 25, 36, 49, 64 cells the fundamental data are:

Cells in one row n= 3 4 5 6 7 8
Sum of all numbers S =45 136 325 666 1225 2080
Sum of one row N =15 34 65 1II 175 260

A magic square with 25 cells has the sum of the numbers
in each row, column, or diagonal equal to 65. To form
such a square write the numbers 1, 2, 3, 4, 5 in each row of
the square in Fig. 7 so that the mean number 3 always comes

3|l4)s5{1]|2 15/20] 0| 5|10 18(24| 5|62
el>|4|5]1 20l 0| 5|10fis 22| 3| 915|168
1{2|>l4ls o] 5(i10]15]|20 V| T]13]18]25
5(1]2(3|4 S5|io]15|20]| 0o 1o {1723 4
415|123 jo|15]|20| 0| 85 1420|211 2|8
Fig. 7 Fig. 8 Fig.9

in one of the diagonals, then write the numbers o, 5, 10, 15,
20 in the rows of Fig. 8 so that the mean number 10 always
comes in the opposite diagonal. For Fig. 7 the sum of each
row, column, and diagonal is 15 and for Fig. 8 it is 50, the
total being 65. Then add the numbers in corresponding
cells and put the results in Fig. 9 thus forming a magic
square of 25 cells where the sum of each row, column, and
diagonal is 65.

Another magic square of 25 cells may be formed by tak-
ing the first five natural numbers in the order 4, 1, 3, 2, 5
and placing them in each row of a square in this order, 3
always coming in a diagonal cell; then in another square
writing 15, o, 10, 5, 20 so that 1o comes in each cell of the
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opposite diagonal; and finally adding the numbers in
corresponding cells. Other squares may be formed by
writing the first five natural numbers in different orders,
keeping always 3 in the middle, and arranging the auxiliary
numbers correspondingly. Altogether twelve magic squares
may be formed in this way, and from each of these still
others may be formed by interchanging rows and columns.

Any magic square with an odd number of cells # in one
row, can be formed in a similar way, by writing the first #
natural numbers in each row so that 3 (» + 1) comes in a
diagonal cell, then writing the numbers o, #, 2 #, 3 #, . . .
(m — 1) n, so that 3 (n — 1) » comes in the cells of the
opposite diagonal, and finally adding the numbers in corre-
sponding cells. Thus for #» = 4, the first set of numbers
might be s, 3, 1, 4, 6, 2, 7, when the second set must be 28,
14, 0O, 21, 35, 7, 42; here 4 must be written along one
diagonal and 21 along the other diagonal.

The formation of magic squares having an even number
of cells is not so easy and it seems that a general rule has
not been given. For 16 cells, however, the following rule is
applicable. Write in the upper and lower rows of a square
the numbers 1, 3, 2, 4; then in the two middle rows write
them in the reverse order. Again in the top row put the
numbers o, 12, 12, 0, and in the lowest row write 12, o, o, 12;
in the upper middle row put 8, 4, 4, 8 and in the one below
it 4, 8, 8, 4. The addition of these numbers will give a
magic square of 16 numbers which will be slightly different
from those shown in Figs. 5 and 6.

A magic square of 64 cells may be seen on page 163 of
Ball’'s Mathematical Recreations and Essays (London,
1911), which possesses the wonderful property that if each
number be replaced by its square the resulting square is
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also magic, the sum of the numbers in each line being
11 180.

We shall now briefly mention the magic squares some-
times called “diabolic,” or more commonly ‘“Nasik,” this
being the name of the town in India where A. H. Frost
invented them. Fig. 6 shows a Nasik magic square of 16
cells where the sum of each row, column, and diagonal is 34.
The sum of the numbers in each broken diagonal is also
34, a broken diagonal being one which is partly on one side
of the main diagonal and partly on the other side; thus the
numbers 11, 13, 6, and the number 4 constitute a broken
diagonal, as likewise do the numbers 2, 3, and 15, 14. In
this magic square the sum of the numbers in any small
square formed by four adjacent cells is also equal to 34.
Truly, this is a marvellous arrangement of the first sixteen
natural numbers.

Benjamin Franklin, the famous philosopher and diplomat,
amused himself with magic squares. At page 251 of
Volume 3 of his Collected Works (Philadelphia, 1808) may
be seen a square having eight cells on a side, or 64 cells in
all, in which the sum of each row and column is 260, while
the sum of the numbers in any four adjacent cells is 130.
This, however, is not a true magic square, as the sum of the
numbers is 292 for one diagonal and 228 for the other.
Franklin also devised a square of 2056 cells which is called
the ‘“magic square of squares,” and a magic circle having
many curious properties.

Squares having the sum of the numbers in each line
greater than 3% (»® 4+ 1) may be formed by adding an
integer I to each number so that the sum of all the num-
bers in each line is N =1# (#® + 1) +#nl. When N is
given, values of #» may sometimes be found which satisfy
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this equation. Thus for N = 1000 and # = 4 the value of
I is integral, namely, 187, so that if 187 be added to each of
the numbers in Fig. 6, the resulting numbers have the
property that the sum of each row, column, and diagonal is
1o0o. The greatest and least numbers in such a square
may be found from the expression N/n + 3 (n? — 1); thus
for N = 1000 and # = 5 they are 212 and 188.

Among other curious squares are those which are filled
with the first #* natural numbers by the knight’s move in
chess, each square being occupied only once by the knight.
Leonard Euler, the great mathematician, amused himself
with such squares and two which he constructed for squares
of five and seven sides may be seen in the Encyclopedia
Britannica; these squares, however, are not magic, although
they have certain curious properties. It is well known that
this problem may be solved on the common chess board in
many different ways; and one of these gives a square which
is magic.



CHAPTER 1II1
GEOMETRY

66

QUEEN of mathematics is the ancient geom-
etry as exemplified by Euclid. Elegant, chaste,
and beautiful is its logic, wonderful are its con-
clusions. It originated in Egypt and came to

its development at the great university of Alexandria where
Euclid was the founder of its mathematical school. The
Greek words vy and uerpov, which form the name of the
science, mean land and measure, respectively, so that
geometry was originally the measurement of land. In
Egypt where the annual inundations of the Nile easily
obliterate the boundaries of parcels of land, perhaps the
rules of geometry received their first practical application.

67

Euclid lived about 300 B.C. Tradition says that he was
mild and unpretending in manner and kind to all genuine
students of mathematics. On one occasion a student com-
plained that geometry brought no profit, whereupon Euclid
directed that three oboles be given him. To King Ptolemy,
who asked if there was not an easier way to understand
geometry than through study of the Elements, Fuclid gave
the reply “there is no royal road to geometry.”

58

The Elements of Euclid is the title given to that presenta-

tion of plane geometry which Euclid prepared about 300
44
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B.C. Written in Greek, it later was translated into Arabic,
then into Latin. Translations have appeared in all Euro-
pean languages which have been annotated by many differ-
ent editors. More than a thousand editions have appeared
since the invention of printing about 1480; in fact, no book
except the Bible has passed through so many editions as the
Elements of Euclid.

The first six books of Euclid were generally used in
colleges and schools in England and America until about
1860. The logic of the presentation is generally perfect,
and the treatise gives important facts of plane geometry.
It can be successfully used today, for it is certain that it is
much better than some texts now on the market and equally
as good as many of them.

GEOMETRIC AMUSEMENTS
69

The second proposition of the first book of Euclid affords
amusement to some beginners because it appears to them
that a much simpler method might have been used. The
first proposition is to construct an equilateral triangle upon
a straight line of given length. The
second is “to draw from a given point
a line equal to a given straight line”;
to do this Euclid lets 4 be the given
point and BC the given straight line;
then joining A and B he constructs
upon AB the equilateral triangle 4 BD
by the method of the first proposition.
From B as a center with a radius BC the
circle CC’ is described and DB is produced until it meets the
circle in £. Then from D as a center with the radius DE a

Fig. 10
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second circle EE’ is described and DA is produced until it
meets the circle in F. Accordingly, from the given point
A the straight line AF has been drawn equal to the given
straight line BC. The reader can easily supply the steps
of the demonstration, but can he state why Euclid did not
at once describe from the center 4 a circle with the radius
BC?
60

The fifth proposition of the first book of Euclid has
always been known as the “pons
asinorum,” and it has been gen-
erally implied that the boy who
failed to understand it was an
ass. The word “pons” or

Fig. I “bridge” perhaps originated
from the figure 'which roughly
resembles the rude bridge truss used to span narrow streams.

61

The most important proposition in the first book of
Euclid’s Elements of Geometry is the forty-seventh, namely:
The square on the hypothenuse of a right-angled triangle is
equal to the sum of the squares on the other two sides.
This truth was known to Hindoos and Egyptians long before
the time of Euclid, but Pythagoras, who lived 550 B.C.,
gave a formal demonstration which has caused his name to
be frequently applied to the theorem.

62

There are many right-angled triangles having the three
sides expressed by integral numbers. The simplest one has
3, 4, § for its sides and this was known to the Egyptians who
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used it many centuries before the Christian era in con-
structing the pyramid of Cephren at Gizeh. If each of
these sides be doubled we have 6, 8, 10 for the sides of a
right-angled triangle which has probably been known to
surveyors in all ages and which is now constantly used by
them in laying off a right angle with the chain. The follow-
ing are all the right-angled triangles with sides expressed in
integers for which the shortest side does not exceed 15:

32_|_ 42 — 52 112+602 — 612
52 4 12% = 132 122 4 16% = 20°
6+ 8 = 10? 122 + 357 = 37
72+242=252 132+842.__852
82+152=I72 I42+482=502
9% + 122 = 15?2 152 4+ 20% = 257
o* + 40° = 41° 15° +36” = 39°

102 + 24% = 262
63

Let 7 and n be any two integers; then if 2 mn be taken
for one of the legs of a right-angled triangle, the other leg is
m? — n? and the hypothenuse is m? + #%.  Thus let m = ¢
and # = 4, then the three sides are 72, 65, 97. Let the
reader use this rule to determine three right-angled tri-
angles each having 48 for one of its legs.

64

The following right-angled triangles with integral sides
have the same area: first triangle, 24, 70, 74; second
triangle, 40, 42, 48; third triangle, 15, 112, 133.

66

A castle wall there was, whose height was found
To be just fifty feet from top to ground;
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Against the wall a ladder stood upright,

Of the same length the castle was in height.
A waggish fellow did the ladder slide,

(The bottom of it) five feet from the side.
Now I would know how far the top did fall
By pulling out the ladder from the wall?

66

To divide a circle into three
equal parts. One method is as
follows: Divide a diameter AB
into three equal parts AC, CD,
DB; on AC and CB describe
the semi-circles shown, also on
AD and DB describe semi-circles;
then is the area of the given circle
divided into three equal parts.

Fig.12

67

When is the sum of the squares of two successive integers
a perfect square? This is answered by Osborne in Ameri-
can Mathematical Monthly for May, 1914. The two
smallest are o® + 12 = 12 and 3% + 42 = 52 Then come
20* 4 212 = 2¢? and 119° 4 120% = 16¢%. Five larger sets
are also found the largest of which is 803 760% + 803 761% =
1 136 6892

68

To divide a circle into # equal parts an approximate
solution is the following: Let AB be the diameter of the
given circle and CD a diameter perpendicular to AB.
Divide AB into n equal parts. On the diameter DC pro-
duced lay off CE equal to one-third of the diameter. From
E draw a straight line through the second point of division
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on AB and produce it to meet the circumference in F.
Then the arc AF is the nth part, very closely, of the cir-
cumference.

69

The trisection of the angle is one of the famous problems
of antiquity. It can be solved in many ways, but not by
plane geometry, for Euclid allowed no instruments but a
straight ruler and the compasses. However, if it be per-
mitted to mark or graduate the ruler, the problem can be
solved in the following manner, as was first shown by
Archimedes. Let BAC be the angle to be trisected and
from A as a center describe a semi-circle with the compasses.
Produce the radius B4
toward the right. From
one end of the ruler lay
off onit a distance equal
to the radius AC and
mark the point thus
found. Place the ruler
so that one edge coincides with C while the end moves
along the produced line BD. When the mark on the ruler
coincides with the semi-circle put there a point E, then the
arc EF is one-third of the arc BC and the angle EAF is
one-third of the given angle BAC. The reader can easily
supply the demonstration by considering the dots that have
been placed on the figure.

Fig. 13

70
THE VALUE OF =

Archimedes deduced, about 220 B.C., a rule for the
quadrature of the circle, proving that its area is equal to
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the square of its radius multiplied by a number which lies
between 3 10/71 and 3 10/70. Or, area = 7%, where 7 is
the radius and = is the number whose approximate value is
31/7. This number = is also the ratio of the circumference
of the circle to its diameter and it turns up in connection
with many problems not at all related to the circle.

¢
The value of 7 to four decimal places is 3.1416. ‘“Yes, I
have a number,” is a sentence in which the number of letters
in each word corresponds to the integers in this value of =.
The following, which appeared in the Scientific American
of March 21, 1914, will enable its value to be remembered
to 12 decimals:

See I have a rhyme assisting
My feeble brain its tasks sometimes resisting.

72

An early statement regarding the ratio of the circumfer-
ence of a circle to its diameter is found in the Bible in con-
nection with the description of Solomon’s temple. The
architect of this magnificent building was Hiram, a widow’s
son, whose father was a man of Tyre. In I Kings, vii, 23,
and also in IT Chronicles, iv, 2, we find the dimensions of a
circular tank or pond which was designed by Hiram. “He
made a molten sea, ten cubits from one brim to the other;
it was round all about and its height was five cubits; and a
line of thirty cubits did compass it about.” It should not
be inferred from this description, however, that the value
m =3 was used in computations by this distinguished
architect. The date of the construction of Solomon’s
temple was about 1007 B. C.
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73

The early Romans are said to have used 3 1/8 for the
value of = but Frontinus, in 97 A.D., used 3 1/7, as is seen
from the list of circumferences and diameters of water
pipes which is mentioned in No. 3. He also used this value
in'computing areas, as appears from his statement: “The
square digit is greater than the round digit by three-
fourteenths of itself; the round digit is smaller than the
square digit by three-elevenths.”

The value of = was computed by William Shanks in 1873
to 707 decimal places, surely a great waste of labor, for the
most refined computation requires only seven or eight
decimals, and in all usual work 3.1416 is close enough. It
has been proved that the number = is incommensurable,
that is, the number of its decimals is infinite.

THE PYRAMIDS OF EGYPT
4

It has been claimed that the great pyramid at Gizeh in
Egypt was intended to be so built that the length of the four
sides of the base should be the circumference of a circle
whose radius was the vertical height. Petrie’s measure-
ments of 1882 give go68.8 inches for the length of one side
of the base and 5776.0 inches for the height of the pyramid
when its sides met at an apex. Now ¢o068.8/5776.0 =
1.5703, whereas % 7 is 1.5708. Probably they used 3 1/7 for
the value of 7; in this case the ratio of one of the sides of
the base to the height would have been 11/7 or 1.5714.
Petrie’s measures of the angle made by the sides of the
pyramid with the horizontal gave the mean value 51° 52’;
this corresponds to 1.5735 for the above ratio.
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The pyramid of Cephren at Gizeh has its sides inclined
to the horizontal at an angle of 53° 10’. This corresponds
very closely to a slope of 4 on 3, so that the right-angled tri-
angle having sides of 3, 4, 5 seems to have been used in its
construction. Here the ratio of one side of the base to the
height is 6/4 = 1.5 instead of 1.57 as in the other pyramids
at Gizeh. Undoubtedly mathematics and astrology con-
trolled the design of these pyramids, altho their final pur-
pose was for tombs for the kings. So mighty is the great
pyramid at Gizeh and so solidly is it constructed that it will
undoubtedly remain standing long after all other buildings
now on the earth have disappeared.

76

Herodotus said that the area of an inclined face of the
pyramid was equal to a square described upon its altitude.
What value does this condition give for the angle which the
plane of a face makes with the base?

76

The King’s Chamber in the great pyramid is 1o cubits
wide, 20 cubits long, and 11.18 cubits high. These figures
result from Petrie’s measurements made in English inches,
20.612 inches being taken for the length of the old Egyptian
cubit. The height was hence made one-half of the floor
diagonal, so that the three dimensions of the room are 10,
20, £ V500 cubits, and the solid diagonal is 25 cubits in
length. These numbers are proportional to 1, 2, V73,
2.5 It can hardly be supposed that these dimensions
were accidental; they were probably introduced into the
design in accordance with some astrological superstition of
a mathematical nature.



GEOMETRY 53

|

A magnitude or quantity is anything that can be meas-
ured. Can a solid angle, like that at the apex of a pyramid,
be measured? No one ever spoke of a solid angle as being
twice as large as another one. The only measure of a solid
angle that has been proposed is the surface of a sphere
described from its apex and included between its sides.
The radius of the sphere being taken as unity, 3 = would be
the measure of the solid angle at one corner of a cube.
What is the measure of the solid angle at the apex of a right
cone whose altitude is equal to the radius of its base?

78
THE PRISMOIDAL FORMULA

A general method of finding the volume of any of the
solids of common geometry is the Prismoidal Formula.
Let A and B be the areas of the two parallel bases and C
the are aof a parallel section halfway between them; let %
be the altitude between the bases 4 and B. Then the
volume of the solidis V = 1/6 4 (4 + 4 C + B).

To apply this to a cone which has a base of radius » and
the altitude %, the upper base 4 is o, since it is at the apex
of the cone, the lower base B is #7%, and C, the area of a
section halfway between the two bases is ;#7%. Then the
volume is V = 1/6 k (o + #r* + 7r*) = 1/3 7r*h = 1/3Bh.

To find the volume of a sphere draw two parallel planes
tangent to it, giving the two bases 4 = o and B = o; the
area of a section halfway between them is #7%, where  is the
radius of the sphere; also the altitude % is 27. Then
volume = 1/6 (27) (0 + 47?2 + 0) = 4/3 7.

To find the volume of a masonry pier 16 feet high, the
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top B being a rectangle 8 X 24 feet, and the lower base
being a rectangle 12 X 30 feet inside. The areas of the
bases are 192 and 360 square feet. The dimensions of a
section C halfway between the bases are 3 (8 + 12) or 10
feet and 3 (24 + 30) or 27 feet, so that the area of C is 270
square feet. Then

Volume = 1/6 X 16 (360 + 1080 + 192) = 4352 cu. ft.

This is a problem which is difficult to solve by the methods
of common geometry, for the sides of the pier when pro-
duced do not meet at a point, and hence the rule for a
truncated pyramid does not apply. A
The prismoidal formula gives volumes of the ellipsoid,
paraboloid, and other solids generated by the revolution of
curves of the second and third degree about an axis. It
also applies to warped surfaces like the hyperbolic parab-
oloid when the areas 4, B, C are known or can be found.
- Let the student apply the prismoidal formula to find the
volume of a segment of a sphere whose altitude is % and the
radius of whose base is a. Here a little analytic geometry
is perhaps necessary to find C in terms of ¢ and the radius »
of the sphere.

79
GEOMETRIC FALLACIES

To prove, geometrically, that 24 equals 25; draw a square
on cardboard, 5 inches on a side, having an area of 25 square
inches, as shown in Fig. 14; then cut the cardboard into
four pieces as indicated by the three broken lines; these
four pieces can then be arranged in the rectangular form
shown in Fig. 15, where there are three inches on one side
and eight on the other, giving twenty-four square inches in
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all. Hence it has been proved geometrically that 24 equals
25. Where is the fallacy?

5 inches
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80

To prove that a straight line can be divided into four
parts so that the first point is to the third as the third is to
the fifth. Let AE be the given straight line which is so
divided that AB : BC :: CD : DE; then AB/BC = CD/DE;
now cancelling B out of the first member of this equation
and D out of the second, there results 4/C = C/E, or
A :C ::C : E, which proves the proposition enunciated.

81

The semicircumference of a circle is equal to its diameter.
Let the diameter be divided into four equal parts and on
each part let a semicircle be described. These four smaller
semicircles are equal to the given semicircumference; for
let d be the given diameter, then 1 #d is the corresponding
semicircumference; each of the equal parts of the diameter
is 1 d and the corresponding semicircumference is 1/8 =d;
hence the sum of these four small semicircumferences is
4 (1/8wd) or & wd. Now divide each of the parts of the
diameter into four equal parts and describe semicircles on
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them and it is clear that the sum of the sixteen semicircum-
ferences is equal to the large semicircumference originally
given. Thus continue, and when the number of points of
division is infinite the sum of all the infinitely small cir-
cumferences is equal to the large original one. But when
this occurs all the small semicircumferences coincide with
the diameter of the circle and their sum is hence equal to it.
Accordingly, it has been proved that the semicircumference
of any circle is equal to its diameter. Where lies the fallacy?

82

To prove that any obtuse angle is equal to a right angle.
Let ABC be an obtuse angle and DCB a right angle; it is
required to prove that these angles are equal. Make CD
equal to B4, join 4D, bisect it in E and draw EG perpen-
dicular to AD. Also bisect BC in F and draw FG perpen-
dicular to BC. The two perpendiculars meet in G. Draw
o G4, GD, GB, and GC; then

GA equals GD, and GB equals

GC. Since also CD = BA,

the sides of the triangle GBA

are equal, each to each, to
the sides of the triangle GCD.

Hence these triangles are in

every way equal; and the angle
opposite the side G4 is equal to the angle opposite the side
GD. Accordingly the angle ABG equals the angle DCG;
subtracting from these the equal angles CBG and BCG, the
result is that the angle ABC is equal to the angle DCB.
Therefore, it has been proved that the obtuse angle ABC is
equal to the right angle DCB. The fallacy in this demon-
stration is not easy to detect, but nevertheless it is there.
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83
The circumference of a small circle is equal to the cir-
cumference of a larger circle. Let a wheel roll along a
horizontal plane until it has made one revolution; then the
line AB is equal to its circumference. The small circle in

Fig. V7

the figure has also in the same time made one revolution,
since it is drawn on the side of the wheel concentric with the
larger circle. Hence the circumference of the small circle
rolls out the line CD which is equal to AB. Therefore, the
two circumferences are equal. Where is the fallacy?

84

Every triangle is isosceles, or two angles of any triangle
are equal to each other. Let abc be any triangle. Bisect
the angle a; from the middle of
bc draw a normal to bc; the bi-
sector and the normal meet at a
point. From this point draw
lines to b and ¢ and normals to
the sides ab and ac. The tri- Fig. 18
angles C and D are then equal;
also the triangles 4 and B are equal, whence ad = ae.
Accordingly, the third pair of triangles E and F must be
equal, whence cd = be. Hence ad + cd = ae 4 eb, or ab = ac.
Thus it has been proved that any triangle is isosceles.
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86

The three following propositions are certainly interesting.
Are they true or false? (1) Let AB be a straight line and C
any point on it. On AC and BC as bases construct the
isosceles triangles 46C and BaC so that the equal sides
make angles of 30° with the bases. Also on AB construct
the isosceles triangle AcB so that the equal sides make
angles of 30° with 4B. Draw ab, bc, ca as shown by the

Fig. 19 Fig. 20

broken lines. Then each of the angles of the triangle abc
is 60°. (2) Let ABC be any triangle. On the sides as
bases construct the isosceles triangles AcB, BcA, CbA, so
that the equal sides of each make angles of 30° with its base.
Draw ab, bc, ca, as shown by the broken lines. Then each
of the angles of the triangle abc is 60°.  (3) Describe a square
on each of the sides of a right-angled triangle. At the
centers of these squares put the points a, b, ¢, and join these
points so as to form the triangle abc. Then each of the
angles of this triangle is 60°.

86

The following remarkable fallacy appeared in the Forum
of . April, 1914: “A cube will readily present to the eye
three dimensions. length, height, and breadth. Four
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diagonal lines imagined from the corners of the cube will
each be at right angles to the other three; hence we have
four dimensions. We should find it difficult to construct
anything along the lines of these four dimensions for the
simple reason that the work would have to begin at the
point where the lines intersect and progress outward
through within the four lines. We might call these four
lines expansion boundaries for if you would cause a cube
to expand and maintain its symmetry or proportions, it
would expand along these four lines. Any solid can there-
fore be considered a cross section of its greater self. The
foregoing is the only practical demonstration that can be
given of four dimensions.”

87
ON THE AREA OF A CLOSED TANGLE

From Clifford’s Common Sense of the Exact Sciences, Fifth Edition
(London, 1907), pages 135-137.

Hitherto we have supposed the areas we have talked
about to be bounded by a single loop. It is easy, however,

Ty

Fig. 21 ﬂg ce

to determine the area of a combination of loops. Thus,
consider the figure of eight in Fig. 21 which has two loops;
if we go around it continuously in the direction indicated
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by the arrowheads, one of these loops will have a positive,
the other a negative area, and therefore the total area will
be their difference, or zero if they be equal. When a closed
curve, like a figure of eight, cuts itself it is termed a fangle,
and the points where it cuts itself are called knots. Thus
a figure of eight is a tangle of one knot. In tracing out the
area of a closed curve by means of a line drawn from a fixed
point to a point moving around the curve, the area may vary
according to the direction and the route by which we sup-
pose the curve to be described. If, however, we suppose
the curve to be sketched out by the moving point, then its
area will be perfectly definite for that particular description
of its perimeter.

We shall now show how the most complex tangle may be
split up into simple loops and its whole area determined
from the areas of its simple loops. We shall suppose arrow-
heads to denote the direction in which the perimeter is to be
taken. Consider either of the accompanying figures (Fig.
21). The moving line OP will trace out exactly the same
area if we suppose it not to cross the knot at 4 but first
trace out the loop AC and then to trace out the loop AB
in both these cases going around these two loops in the
direction indicated by the arrowheads. We are thus able
in all cases to convert one line cutting itself in a knot into
two lines, each bounding a separate loop, which just touch
at the point indicated by the former knot. This dissolu-
tion of knots may be suggested to the reader by leaving a
vacant space where the boundaries of the loops really meet.
The two knots in Fig. 22 are shown dissolved in this fashion.

The reader will now have no difficulty in separating the
most complex tangle into simple loops. The positive or
negative character of the areas of these loops will be suffi-
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ciently indicated by the arrowheads on their perimeters.
We append an example (Fig. 23).

In this case the tangle reduces to a negative loop ¢ and to
a large positive loop &, within which are two other positive
loops ¢ and d, the former of which contains a fifth small
positive loop e. The area of the entire tangle then equals
b4+ c¢+d-+e— a Thespace marked s in the first figure
will be seen from the second to be no part of the area of the
tangle at all.

88
MAP COLORING

It has long been known that only four different colors are
necessary in order to color the most complicated map of a
country so that contiguous sides of districts shall not have
the same color. About 1850 this fact was brought to the
attention of mathematicians but, altho much discussion of
it has been made, a rigorous proof that only four colors are
necessary has not yet been made.

Fig. 24 shows a map of nine districts in which the four
colors 4, B, C, D are used for eight of the areas and there
may seem no way to use one of these colors for the other
district unless it adjoins upon the same color. However,
by the very slight change shown in Fig. 25 the problem is
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readily solved. Thus in all cases a way can be found to
color the map by using only four different colors.

Als I c I D iA B | c I B
clola' lcm , clolaloch
Fig._24 Fig. 25‘

The reason that five colors are not required seems to be
that it is impossible to draw five areas so that a boundary
of each shall be contiguous to the other four. Fig. 26
shows four areas each of which has its boundary contiguous

_‘A———_l <]

B D

A

F‘!g.ZS Fig. 27

with a boundary of the other three areas, but no way can
be found to add a fifth area so that it may be contiguous to
the other four. Four colors are sufficient for any map be-
cause no map has yet been drawn in which five areas are
contiguous to four others. But no proof has yet been dis-
covered that it is impossible to draw five such areas.

The word “contiguous” means that the areas border
along a line, not at a point. Districts sometimes occur so
that four or more of them meet at a point; for example, in
Fig. 27 the two areas colored C meet at a point. Here more
than four colors are needed if it is desired to have the areas
on opposite sides of the point of junction different in shade.
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S\ HE SOLUTION of triangles was the original ob-
7 ject of Trigonometry,but it has been extended in
é modern times to include a vast realm of facts
DN regarding functions of angles. The beginner
in trigonometry is first introduced to the sine and cosine
which are defined by a right-angled triangle in a manner
essentially like the following: Let @ be the hypothenuse and
b and ¢ the legs, and A4, B, C the angles opposite to them,
then the ratio b/a is called the sine of the angle B, and the
ratio ¢/a is called the sine of C. Or as sometimes stated,
the sine of an acute angle in a right-angled triangle is the
ratio of the side opposite the angle to the hypothenuse.
Thus sin B = b/a and sin C = ¢/a.

Now it has been questioned by H. E. Licks whether this
is the best way to define the sine for the beginner. The
beginner is young and immature, to him the word “ratio”
is more or less of an abstraction, and the fact that this ratio
is called the sine does not appear to him significant. Why
not state the definition something like this: The sine of an
acute angle in a right-angled triangle is a number which
multiplied by the hypothenuse gives the side opposite to the
angle. This definition puts the matter in quite a different
light for it gives the idea that the primary use of the sine is

to solve a right-angled triangle, and it states the rule by
63
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which one of the sides may be found when the sine of the
opposite angle and the hypothenuse are known. How the
sines are tabulated and used is a matter to be explained
later.

90

Fifty years ago a very different method of defining the
trigonometric functions was in use. Let AOP in Fig. 28 be
an angle less than go® which is measured from the line 40
around in a contrary direction to that of the hands of a
watch. Let P be any point on the quadrant 4B described
with the radius O4 or OP; let BB’ be a diameter normal to
AA’. From the point P let perpendiculars PS and PC be

R OA ’*@ :

-3 B’
Pirst Angle Second Angle Third Angle Fourth Angle
Fig. 28 Fig. 29 Fig. 30 -, Fig, 3t

n

drawn to the diameters A4’ and BB'. Then, if the radius
OA or OP be of units length, PS is the sine of the angle
AOP and PC is its cosine. Also at A4 let a perpendicular be
drawn to OA4 until it meets OP produced, then AT is the
tangent of the angle AOP and OT is its secant; at B let a
perpendicular to the diameter BB’ be drawn until it meets
OP produced, then BT’ is the cotangent of the angle AOP
and OT" is its cosecant.

Fig. 29 shows a similar representation for an angle AOP
when P falls in the second quadrant, or for go° 4 6. Fig.
30 shows the functions for 180° + 6, and Fig. 31 for 270° + 6,
the value of 6 being in each case less than go°. In each
figure PS and PC are the sine and cosine of AOP, while AT
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and BT’ are its tangent and cotangent and OT and OT" are
its secant and cosecant.

Let the distances measured upward from A4’ be taken as
positive and those measured downward be negative. Let
distances to the right of BB’ be positive and to the left
negative. Then the diagrams determine at once the signs
of the trigonometric functions for the angles AOP in the
different quadrants. Thus when P is in the first quadrant
the angle AOP or 6 is less than go°, and its sine, cosine, and
tangent are positive (Fig. 28). When P is in the second
quadrant it lies between 9o° and 180°, here the sine of AOP
is positive, while its cosine and tangent are negative (Fig.
29). For the third quadrant AOP is between 180° and
270°, its sine and cosine are negative but its tangent is
positive (Fig. 30). For the fourth quadrant AOP is be-
tween 270° and 360°, its cosine is positive and its sine and
tangent are negative (Fig. 31). The cotangent is seen to
be positive for the first and third quadrants and negative
for the second and fourth. The secant and cosecant are
taken as positive when measured from O toward Pj; hence
they are both positive in the first and fourth quadrants, and
both negative in the second and third.

The diagrams clearly show how each of the functions
varies as an angle increases from o° to 360°. Take
for example the tangent. When 6 = o, tang =o; as 8
increases so does tan 6, when 6 = go°, tan§ = + oo
then just as 6 passes through go° tan @ becomes —o;
as AOP increases towards 180° its tangent, though always
negative, decreases numerically and becomes o when
AOP = 180°. In a similar manner the diagrams show that
cosf is 1 when 6 = 0°, decreases to o when 6 = go°, then
becomes negative but increases numerically until its value
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is —1 when AOP is 180°. Thus the variation of each of
the functions can be clearly traced.

These diagrams can be readily carried in the mind of a
student after they have been intelligently constructed by
him. They show instantly such relations as sin (go° + 6)
=sinf, cos (go°+ 6) = —cosf, tan (180° + ) = tané,
sin (270° + 6) = —sin 6, etc., 8 being considered for this
purpose as less than go°. They also show that cos (go® — 6)
= sin @, cot (go° — 6) = tan 6, etc. Even in these modern
days they may be useful to some of the beginners in trig-
onometry who have been brought up in a severer logic.
At any rate the reason why the word tangent is used for one
of the functions will be clear to him.

91

There are few paradoxes or fallacies in trigonometry, but
here is one which is worth preserving. To prove that the
angles of a triangle are equal to each

N

1E
D[\\ /1 other. Let 4, B, C be the angles of the
i ™\ ,,'4’ i triangle ABC, and a, b, ¢ the sides op-
X i posite to them. Produce CA and make
! ': AD equal to ¢, then the angles ADB and
: i ABD are each equal to 3 4. Produce

¢ BA and make AE equal to b, then

the angles AEC and ACE are each
equal to 2 A. Now from the triangle BCD, there can be
written

Fig. 52

CD _b+c_sin(B+34)

BC a sint 4
and also from the triangle CBE,

BE _b+c_sin(C+34)

BC a sing 4




" TRIGONOMETRY 67

Equating these values of (b + ¢)/a there results sin
(B+1A4) =sin (C+21A4). Therefore, B = C, and in like
manner it may be shown that 4 = B. Hence the three
angles of a triangle are equal to each other. Where lies
the fallacy?

92

The computations of trigonometry are generally made
by the help of logarithmic tables, but it is not wise that
beginners should use logarithms at the start. Natural func-
tions to three places are all that are needed in the black-
board work of a school and with such tables the angles of
a triangle can be computed to the nearest quarter-degree
from given sides. For example, when the two sides ¢ and
b, and their included angle C are given, the best formulas
to use for finding the angles B and A4 are

_a/b _ _b/a
cot B =5nC cotC, cotd = C

For example, let a = 225 feet, b = 350 feet, C = 48° 15’.
Here a/b = 0.643, b/a = 1.556, sinC = 0.746, cotC =
0.893; then cot B = —o0.031, cot 4 = 1.193, whence B =
01° 45" and 4 = 40°0’. This is certainly close enough for
blackboard work.

— cotC.

93
There are interesting relations between the sides of a
triangle when the angles are related in value. Thus when
angle 4 is double the angle B we have ¢ = 8% + bc. When
angle A is thrce times the angle B, then we have b¢? =
(@ +b) (@ — b)%
94
In the American Mathematical Monthly for March, 1914,
Artemas Martin finds many triangles with integral sides,
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one angle being 60°. Thus the sides 8, 3, 7 give a triangle
in which the angle opposite 7 is 60°; so also the sides 8, 5, 7
give such a triangle. Only two other triangles can here be
mentioned: 15, 8, 13, and 15, 7, 13.

95
ANALYTIC TRIGONOMETRY

The deductions of the formulas expressing relations be-
tween the functions of angles is often called analytic
trigonometry. For instance (2 cos6)® — 5 (2cos6)® + 5
(2 cos0) = 2 cos 50 is a formula for the quintisection of an
angle. Also (2cosf)® — 3(2cos) = 2cos36 is the for-
mula for the trisection of an angle. When 56 or 30 is
given cos 6 can be algebraically expressed, but such expres-
sions cannot be handled numerically since they contain the
square root of a negative quantity. Among the many
interesting formulas of higher trigonometry the following
deserve special consideration:

3 g5 g7

sino=o~;¥,+;;,—7%+,etc. (1)
62 o 6

coso=1—-;-!+4—!—--6—i+,etc. (2)

2 3
f=1+40-+ ‘—9—'+—0-'+£i+,etc.
21 "3l 4!

In these formulas the values of 6 are to be taken in radians;
thus, for an angle of 30° the value of 6 is 1/6 , and for an
angle of 6° the value of 6 is #6°/180. In the last for-
mula e denotes the number 2.71828 . . . or the base of the
Naperian system of logarithms. The symbol (!) denotes
the product of the natural numbers; thus: 4! =1 X 2 X

3 X 4 = 24.
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Let 7 denote the imaginary V' —1, and in the last formula
change 6 to 46; then it becomes

2 703 4
e"’=1+i0—g-—§g—+2-+,etc.
2! 3! 4l
This may be written in the form
; 62 6 6 . e 6 ¢ )
0 — — e — —_— —— —
¢ _<I 1T 61+)+$(3 sttt
or _
€¥ = cos 0 + ¢siné. (3)

Similarly, replacing 6 by —i6 there is found
€™ = cosf — isiné. (2)

Adding these two equations and also subtracting the second
from the first, there results

cosf =1 (¢ + e~%) ising =% (% —e), (5)
which are remarkable expressions for the sine and cosine in
terms of the imaginary V' —1. These wonderful formulas
are due to the great mathematician Euler. What do these
formulas mean?

96
COMPLEX QUANTITIES

Equation (3) forms a basis for the extensive branches of
vector analysis and quaternions, for cos 6 + ¢ sin 6 is what
is called a complex number, the general expression for which
is @ +4b. To define and understand a 4+ 7b it is first
necessary to understand 7. By the rules of simple algebra
it is found that:

2o (VIap = -1, #=(VIIP = -V = —i,

#t=(V=1) = +1, i5=(\/—1)5= + V=1 = 4i.

Now the following graphic representation agrees with these
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results. In Fig. 33 let a line be drawn from O toward the
right; to represent 41 and one of equal length be drawn to
the left to represent —1. Also let a line be drawn upward
from O to represent +i and one downward to represent —3.
Now let multiplication by 7 indicate turning a line of unit
length through go degrees about the axis O. Then 41 X
i = i, or the line +1 has been turned into the position
shown by -+ in the figure. Also 4+7 X 7 = —1 or the line
+i has been turned to the position —1; also —1 X7 =
—4, and —¢ X ¢ = +1. Thus with this graphic repre-

sentation we see at once that 2 = —1, # = —¢, ¢ = 41
and ¢ = 4.
8
8

As A, o A S,

l/l\l )

8, B,

Fig. 33 Fig. 34

Now to explain ¢ + b, let OA4 in Fig. 34 be laid off to the
right to represent ¢, and then at 4 lay off AB at right
angles to OA4 to represent +¢b. Then OA4 + AB repre-
sents ¢ + b, or in other words a + b locates the point B.
But the shortest way to go from O to B is by the hypothe-
nuse OB, or by the vector addition O4 + AB = OB. Here
OB may be called a vector and be indicated in general by
R, so that R = a + 4b is the vector which locates a point B,
this point being located either by going directly to it by the
shortest distance R, or by stepping off ¢ units from O
toward the right and then & units upward. When ¢ is
negative and b positive a point B, in the second quadrant
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is located; when both a and b are negative a point Bs in the
third quadrant is located; when a is positive and & negative
a point By in the fourth quadrant is located.
The complex quantity e + 4b is frequently more con-
veniently expressed by
R =7 (cos8 +zsin¥),

in which 7 is the length of the vector R, while » cos # and
7 sin @ represent ¢ and b. If this R is squared it becomes

R? =7*(cos 260 +isin29),
and if it be raised to the nth power it becomes

R = r*(cosn + isinn o),
which is known as the theorem of De Moivre. Whenr = 1
all the vectors are of unit length, and from
the above formula (3) it is seen that

R=¢% or €% =cosf+zsiné.

Hence ¢ may be regarded as any radius in a
circle of radius unit, this radius making an
angle 6 with the positive axis O4. The line OB in Fig. 35
represents such a vector: if this be squared OB revolves to
the left through another angle 8 and takes the position OB;.

From the last equation several remarkable algebraic
expressions may be derived:

Fig. 35

For6 =%, e = 4.
Foro = m, € = —1.
For6 =3/2m, ar = — 4,
For 9 = 2, e = 4 1.

These are wonderful expressions, for e is the number
2.71828; algebraically or numerically they seem incompre-
hensible, but by the above graphic method of representa-
tion they are clearly understood.
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97
SPHERICAL TRIGONOMETRY

The Greek astronomers developed and used spherical
trigonometry long before plane trigonometry was known.
These scientists were led to study the spherical triangle
because it was necessary in the solution of problems in-
volving the altitudes, azimuths, and hour angles of the stars
and planets. The first tables were those of the chords of
the angles. Later the Hindoos introduced the sine instead
of the chord. Then the Arabs further developed the theory
of both plane and spherical triangles.

The sum of the angles of a spherical triangle is always
greater than 180 degrees, and the excess over 180 degrees
depends on the area of the triangle. A rough rule for the
spherical triangles measured in geodetic surveys is that there
is one second of spherical excess for each 76 square miles of
area. The same rule applies to spherical polygons. Thus,
a triangle or polygon of the size of the state of Connecticut
has a spherical excess of about 64 seconds. A trirectangu-
lar triangle which covers one-eighth of the surface of the
earth has a spherical excess of go degrees, for the sum of its
angles is 270 degrees.

When two plane triangles are equal one can always be
made to coincide with the other, either by motion along the
plane or by turning it over on one of the sides as an axis.
But there can be two spherical triangles which have their
sides and angles equal each to each, and yet it is impossible
by any kind of motions to bring them into coincidence.
They must, however, be called equal, since every part of
one is equal to a corresponding part in the other and their
areas are the same. Here is a case where equal things
cannot coincide or be imagined to coincide.
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98
HYPERBOLIC TRIGONOMETRY
Since 1875 there has been developed the interesting
subject called Hyperbolic Trigonometry. This has nothing
whatever to do with triangles, but it is intimately connected
with a rectangular hyperbola. In the circle of Fig. 36 let
P be any point on the circle and from it let the perpendicu-
lar PS be dropped upon the radius O4; also at A4 let the
perpendicular AT be drawn until it meets the radius OP
produced. Let AOP be the angle 6, then if the radius 04
is unity, OS is cos 6, SP is sin 8, AT is tan 0, and OT is sec 6.
In the right-hand diagram of Fig. 36 let O4 be the semi-
major axis of an equilateral hyperbola, and P any point on

ef.
(A T
o/l 1A 0%
Fig. 36, \

the curve. From P drop PS upon OA produced, and from
A draw AT perpendicular to 40 until it meets OP. Then
if A0 is unity, OS is called the hyperbolic cosine, SP the
hyperbolic sine, AT the hyperbolic tangent, and OT the
hyperbolic secant. Let ¢ be double the area of the hyper-
bolic sector OA P, then

OS =cosh ¢, SP =sinh¢, AT =tanh¢, OT =secho,
where cosh means hyperbolic cosine, tanh means hyperbolic
tangent, and so on. In academic slang these are often
pronounced cosh, shin, than, shec.

In the circle 07’2 equals OTS’2 + §I_’2, or cos?d + sin?f = 1.
In the equilateral hyperbola OP® equals OS minus SP° or
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cosh? ¢ — sinh? ¢ = 1. The letter 6 denotes an angle or a
multiple or submultiple of 7. The letter ¢ denotes a
number which may have any value.

The formulas (1) to (5) in No. g5 are true whether 9 be
real or imaginary. Changing 6 to 70 in formula (5) and then
replacing cos 0 by cosh 6 and —¢sin 46 by sinh 6, they be-
come

coshd =3 (¢ +e7%, sinhg =13 (2 — e, (6)
which are the values of the hyperbolic cosine and sine in
exponential form. Here as always, the letter e denotes the
number 2.71728, the base of the hyperbolic system of
logarithms. Let these expressions be squared and the
second subtracted from the first, then cosh? § — sinh?8 = 1,
which agrees with the equation established in the preced-
ing paragraph, 6 being here the double of a hyperbolic
sector.

The computation of the cosine and sine of an angle cannot
be made by the formulas (5) since there is no way of obtain-
ing the imaginary power ¢”. But the computation of the
hyperbolic cosine and sine is easily made from (6); for
instance let § = 2, then ¢® = 7.389057 and €% = 0.135335,
hence cosh 2 = 3.626861.

As the quantity 6 varies from o to o, cosh 6 varies from
1 to 0 and sinh 6 from o to o, while tanh 6 varies from o to
1. There is no periodic repetition of the real values of the
hyperbolic functions as is the case with the circular func-
tions, but yet they have imaginary periods.

Enough has now been stated to give the young reader a
glimpse of the fundamental ideas at the foundation of
hyperbolic functions. But, he may ask, of what use or
importance are they? The reply to this is, that such func-
tions constantly turn up in the solution of practical prob-



TRIGONOMETRY 75

lems. For example, take the catenary, which is the curve
assumed by a cord or cable suspended from two points and
hanging freely under its own weight. Let y be the ordinate
or height of any point of the curve above a certain hori-
zontal plane, x the distance of the point to the right or left
of the lowest point of the curve and ¢ a certain constant,
then the equation of the curve is

y = 1¢(e*° + /) = ¢ cosh x/c.

This equation in terms of e was deduced a hundred years or
more before hyperbolic cosines were ever thought of, but
the second form in terms of cosh has many practical ad-
vantages over it.

Hyperbolic functions also turn up in the theory of arches,
in the formula for a beam subject to both flexure and ten-
sion, in the construction of charts to represent large portions
of the earth’s surface, and especially in the electrical dis-
cussion of alternating currents. The length and areas of
many curves which were formerly stated in terms of
Naperian logarithms are now more conveniently expressed
by hyperbolic functions.
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ESCARTES, a French philosopher, who lived in
the first half of the seventeenth century, de-
vised the method of codrdinates by which curves
can be graphically represented and their proper-

ties be studied through their equations. In this method, as

applied to plane curves, two lines called axes are drawn at
right angles. Their intersection

Yo O is called the origin of coordi-

8. nates. Values of x are laid off

-x +x. parallel to the X-axis, and values
IS of y parallel to the Y-axis. Posi-

o 0., tive values of x are laid off to the

Fo 57 right of the V-axis and negative

ones to its left. Positive values
of y are laid off upward from the X-axis and negative ones
downward. Thus if a point has the codrdinates x = 3,
y = 2, it is located at 4; if it has the codrdinates x = —1,
y =1, it is located at B; ifithasx = —2,y = —1, it is
at'C; and if it,has « = 4,y = —3, it is at D.

100

The equation of a curve is an equation which gives the
relation between the codrdinates of any point on the curve.

Thus /4 + y/3 = 1 gives the relation between x and y for
76



ANALYTIC GEOMETRY 77

every point; if y = 3 then x = o, if y = 6 then x = —4,
if y = —3 then x =8. Plotting these three points by
laying off their codrdinates from the X- and ¥V-axes, it is seen
that they are on one straight line. When y = o the line
crosses the X-axis at ¥ = 4; when « = o the line crosses
the V-axis at y = 3; and its inclination to the X-axis is the
slope of 3 to 4. Thus any equation of the first degree
between two variables is the equation of a straight line.
This line is of infinite length for no matter how great y is
taken the corresponding value of x can be found from the
equation.

The equation of a circle is #* + 32 = #? and that of an
equilateral hyperbola is 4 — y* = 2. Equations of many
other curves are known to the student who reads these
pages. By discussion of these curves we learn their shape,
we draw tangents to them at given points, we find where
two curves intersect, and later by the help of the calculus
we can find their lengths and also determine the areas
included between them and the axes.

101

Cobrdinates are used also for the graphic representation
of statistics and natural phenomena. For example, let the
following be the means of the mean monthly temperatures
at a certain place for a series of years:

Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.

o o o o

20° 28° 28° 34° 47° 60° 48 77 66° 47° 38° 25
If the reader will place twelve points at equal distances
apart on the X-axis, and then lay off upward the tempera-
tures given, 20 for Jan. at the first point, 28 for Feb. at the
second point, and so on, and then connect these points with
a curve, he will have a graphic representation of the mean
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monthly temperatures throughout the year at the given
place. This curve resembles the curve of sines, that is the
curve whose equation is y = sinx. In plotting the points
through which the curve is to be drawn, it is best to use
paper that is ruled into squares.

A point to be plotted is sometimes indicated by the
notation (5, 3) where the first number is the codrdinate x
and the second the codrdinate y. Let the reader plot the
following ten points, numbering them 1, 2, 3, etc., and then
join the points by a curve in the order of the numbers:
(1.2, 2.0), (2.0, 1.1), (3.0, 1.0), (4.0, 1.7), (4.1, 2.6), (3.0,
3.1), (20, 3.5), (2.1, 4.6), (3.0, 5.0), (3.8, 4.6).
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Let it be required to find the intersection of the circle
x* + y* = 16 with the straight line 34 + 5y = 15. By
roughly plotting the circle and the line there will be found
the two points (3.9, 0.6) and (—1.4, 3.8). But closer
values can be found by finding the values of x and y by
combining the two equations; this gives 3.95 and —1.31 for
the two values of «, and 0.63 and 3.79 for the corresponding
values of y.

Now let it be required to find the intersection of the circle
a2 + 9% = 16 with the straight line x 4+ y = 8. Plotting
the circle and the line it is seen that they do not intersect.
But combining the two equations there are found for x the
two values 4 + v—=8and 4 — V=8 8, and for y the corre-
sponding values 4 — vV/—8 and 4 + V' —8. These im-
aginary values show, of course, that the straight line does
not intersect the circle. But have they no other meaning?
Yes, they have a definite geometric meaning which will be
explained later.
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Let it be required to plot the curve whose equation is
— o\
:I:x=%y—a\/1—(y - ) .

Assume values of y and find the corresponding values of x;
thus, when vy is negative then x is imaginary, when y = o
then « is o, when y is very small then # = 4a, when y =
2a then x = 24, when y = ¢ then x = +% a, when
y =3/2a then x = %4, as y approaches 2 a then x
approaches o, when ¥ = 2 ¢ then x = =aq, when y is greater

than 2 ¢ then x is imaginary. Accordingly, -

Fig. 38 represents the real curve. The f

key-note to the formation of this equation

lies in the quantity (y — a¢)/a which is - 2%
-Y

raised to the 8oth or any other large even
power. When this quantity is numerically Fig. 38

less than unity its 8oth power is very small;

for example, let y = a/10, then the fraction is —o.g and its
8oth power is o.00021. This subtracted from 1 gives
0.99979 the square root of which is almost 1. Thus on any
practicable scale of plotting, Fig. 38 is a proper representa-
tion of the equation.
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TRANSCENDENTAL CURVES

Curves involving circular functions are often called
transcendental. Like the sine curve, y = sin %, they have
a period 2 7 and hence repeat themselves in both directions
to infinity. For example, the curve whose equation is
sin? y = sin x sin § ¥ consists of the series of points, ovals,
and lemniscates shown in Fig. 39. Here both x and y are
taken in radians. When # =7 or 2 7 then sin’y = o,
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siny =o,0ry =o,m, 2w, etc., and this gives the vertical
column of points. When y = = or 2 = then either sinx = o
or sin} x = o, whence x = 3, 3, etc,,or 2 w, 6 m, etc.
When sin % sin § # is negative then y is imaginary. Thus
with much labor the curves in Fig. 39 are constructed.

ol el e oMo O
ol e Ne oo I O
o OO O OO

Fig. 39 Fig. 40

When the equation is sin? y = sin x sin 1/5 & some parts
of the diagram undergo great changes and Fig. 40 results.
Many beautiful diagrams of such curves, constructed by
Newton and Phillips, may be seen in the Transactions of the
Connecticut Academy for 1875.

The curve tan?x + tan?y = 100 gives a series of squares
spaced like the plan of a rectangular city. When x and y

are taken in degrees, each

| | I | side of a square is 168°

36’ and the width of

| | the streets between the
| | squares is 11° 24’.

The equation y = sin®
x gives a diagram like
the upper one in Fig. 41 while the equation y = sin® x gives
the lower one. Both of these extend right and left to
infinity.

The equation sin? Va® 4 4% = o is satisfied only when
Va? + 32 = o°, 180°, 360°, 540°, etc. When Via? + 42 =
180° then x = 180° and y = 144° or & = 144° and y = 108°.

Fig. &
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When Va2 4 9% = 360° then x = 216° and y = 288° or
x = 288° and y = 216°. Hence the equation represents a
series of points radiating from the origin, each point enjoy-
ing the property that its x, y, and 7 form the sides of a right-
angled triangle which are in the ratio 3:4: 5, or in the
ratio4:3 : 5.

The equation §? = sin x represents a series of circles in a
horizontal row.

The equation y? = x? represents two intersecting straight
lines which are inclined at angles of 45 to the rectangular
axes. But the equation y? = x? sin « represents a series of
ovals included between such lines as the envelope. Also the
equation y* = ax represents the common parabola, but the
equation y? = ax sin « represents a series of ovals included
within the parabola as an envelope.

104
POLAR COORDINATES

When a point is located by its distance from an origin O
and the angle 6 which that distance, or radius vector, makes
with the horizontal X-axis, the case is one of polar codrdi-
nates. Any equation in rectangular codrdinates may be
transformed into one in polar codrdinates by replacing x by
R cos 6 and y by R sin 6, where R is the radius vector. Thus
the parabola y? = ax is expressed in polar codrdinates by
R = a/tan 6 sin 6.

105

The equation R = 10 + 10 cos 6 gives an interesting
curve called the cardioid. When 6 = o° then R = 20,
when § = 60° then R = 15, when 8 = go° then R = 10,
when 6 = 120° then R = 5, when 0 = 180° then R =o.
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This gives the upper half of the curve and the lower half is
similar toit. This curve is entirely appropriate for a young
man to send to a young woman in the month of February as
a mathematical valentine, provided she understands polar
codrdinates.

The equation R = 10 4 20cos 6 is called the trisectrix,
because, after the curve is drawn it may be used for the tri-
section of an angle. For explanation see the Encyclopedia
Britannica.

The equation R = 5 == V/sin 20 0 represents twenty small
circles arranged around a central point. When 0 = o°
then R = 5, when 6 = 4.5° then R = 5.7 or 4.3, when 8 =
o° then R = 5, when 6 is between ¢° and 18° then R is
imaginary; when 6 = 18° then R = 5 and another small
circle begins.

The equation R = 10 = sin 0 represents another curious
curve, the discussion of which will be left to the ingenuity
of the reader.

106
REMARKS

Paradoxes and fallacies decrease as we ascend the mathe-
matical ladder. Under Arithmetic we had a dozen or two,
under Algebra nearly as many, under Geometry a few,
under Trigonometry only one. In Analytic Geometry H.
E. Licks tried hard to find a fallacy, but without success.

The curves formed by the intersection of a plane with a
right cone are called conic sections. If twenty persons,
not mathematicians, are asked what curve is formed when
the plane is parallel to the base of the cone, they will reply
thatitis a circle. If they are asked what is the curve when
the plane is slightly inclined to the base, they will reply that
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it is an oval with the larger end nearest the base; this
answer is also generally given by those who have studied
Analytic Geometry and have rarely thought of the subject
since their college days. Yet this curve is an ellipse which
is no blunter at the lower end than at the upper, and Ana-
lytic Geometry furnishes a rigorous proof of it. The curveis
always a true ellipse until the plane has the same inclination
as the side of the cone, then it is a parabola. For greater
inclinations the curve is a hyperbola. Hence, the circle,
ellipse, parabola, and hyperbola are called the conic sections.

Analytic Geometry does not furnish an array of interest-
ing facts. To draw a tangent to a curve at a given point is
not an interesting exercise, nor is the determination of the
angle included between two lines. The important things
in Analytic Geometry seem to be, (1) the plotting of curves
from given codrdinates, (2) the plotting of curves from their
equations, and (3) the construction of an equation to repre-
sent a series of plotted points. None of these receive proper
attention in the text-books; indeed, the last is rarely or
never alluded to.

Formal rules for solving certain problems are liked by
teachers, but in reality they introduce a repression of
reasoning which is harmful to the student. For example,
in the American Mathematical Monthly for April, 1914,
there is given the following as the ‘“usual rule” for drawing
a line through a given point parallel to a given line. ‘‘Step
1: Change the constant term in the given equation to k.
Step 2: Substitute the codrdinates of the given point in the
equation of step 1 and solve for k. Step 3: Substitute this
value of %k in the equation of step 1, and the result is the
desired equation.” Now what real knowledge of Analytic
Geometry has the student gained by this procedure? He
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has gained discipline in obeying orders but no development
in his reasoning powers has resulted. If this is the way the
subject is taught, it is indeed a case of the blind leading the
blind.

On each blackboard of a school where this subject is
taught there should be in one corner a permanent ruling of
about a hundred squares each one inch in size. When the
problem is given to draw a line through a point parallel to
a given line, the student should put rectangular axes on this
network of squares, then plot the given point, next draw the
given line by finding the points where it intersects the axes,
then draw freehand a parallel line through the given point.
He will then see that the two lines have the same slope, and
it should be left to his own ingenuity to find an equation to
represent the second line. Two exercises like this do more
to develop the reasoning powers of the student than a
hundred exercises solved by formal rules with “steps.”

107
GRAPHIC SOLUTION OF EQUATIONS

Let it be required to solve the cubic equation * + ax + b
= o. This equation can be supposed to result from the
elimination of y from the two simultaneous equations
y=2a*and y = —ax —b. The curve whose equation is
9y = «® can be plotted on squared paper by the help of a
table of cubes, then if the straight line whose equation is
y = —ax — b is drawn on this plot the abscissas of its
points of intersection with the curve are the roots of the
equation #* 4+ ax + b = o. When the line intersects the
curve in only one point, the equation has one real root and
two imaginary roots; when it intersects the curve in three
points there are three real roots. Thus let 43 — 20x +
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30 = o0 be the given equation. In Fig. 42 the full line
represents the equation y = #® and the broken line the
equation y = 20x — 30, the horizontal scale being twenty
times the vertical scale. Here there are three real roots
% = +1.8, % = +3.3, %3 = —5.1.

+Y VA
7/
7/
/d
v,
2+ X oy
8
=X o ) D +X
\L/\CK
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Fig. 42 Fig. 43

The cubic equation 3* 4+ Ay? + Bx + C = o can be re-
duced to the form #° + a? + bx + ¢ by putting y = A¥x
and then dividing by A. Here the curve whose equation is
y = &* + x? can be plotted by the help of tables of cubes
and squares, then the points where the straight line y =
—ax — b intersects the curve give the roots of the cubic
equation.

Let it be required to find the points where the straight
line x = 5 intersects the circle 2> 4 9 = 16. The algebraic
solution gives y = =3 V' —1 and these values may be
represented graphically in the following manner. Let the
hyperbola x> — y? = 16 be drawn, with its vertex at 4,in a
plane at right angles to that of the axes XX and VV. Let
OD = x = 5, then DB and DC are each equal to 3 with
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respect to the hyperbola but each is equal to 3 V' —1 with
respect to the circle. Many interesting illustrations of
this method of representing the imaginary and complex
roots of equations may be seen in Graphic Algebra by
Phillips and Beebe.



CHAPTER VI
CALCULUS
108

IR ISAAC NEWTON'’S method of obtaining
N the differentials of quantities is given in Sec-
 tion II, Book II, Lemma II of his great
Principia. Itis remarkable that in this dis-
cussion there is no reference to infinitesimal quantities, or
to the vanishing of their powers and products, or to the
doctrine of limits. The discussion is clear and simple, and
well adapted to the comprehension of a beginner in cal-
culus. Hence space may well be taken here to explain
his method. The reader may, perhaps, most conveniently
refer to the American edition of Newton’s Principia, or
Principles of Natural Philosophy, published at New York
in 1848, where the discussion begins on page 262.

Newton supposes the sides 4 and B of a rectangle to vary
from smaller to larger values. When the sides had the
values A — 1 a and B — } D, its area was AB — 1 4B —
1 b4 + 1 ab. When the sides are increased to A+ 1 ¢ and
B +1b, the area becomes AB +%aB + 104 + 1 ab.
‘From this latter rectangle subtract the former and there
remains aB + bA. “Therefore,” says Newton, “with the
increments @ and b of the sides, the increment aB + b4 of
the rectangle is generated.” In the modern notation x and
vy are taken as the variable sides of the rectangle and dx and

dy as their increments or differentials, then in the above dis-
87
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cussion replacing 4 by x and B by ¥, also ¢ by dx and b by
dy, there is found x -dy + y - dx as the differential or incre-
ment of the area xy. Thusdxy = x-dy + y - dx is deduced
without considering dx and dy to be infinitely small. In the
following derivation of differentials modern notation will be
used instead of that employed by Newton.

Numerous algebraic functions can be differentiated by
use of the formula dxy = 2 -dy + y,-dx. To find the dif-
ferential of x> make y = x and dy = dx; then dx? = 2 x dx.
To find the differential of 4*, make y = 4? and dy = 2 x dx
in the formula; then dx® = 3 #?dx. To find the differential
of x*, make y = 4 and dy = 3 2 dx in the formula; then
dx* = 4 2*dx. From these, by induction, it is concluded
that dx” = nx"'dx, and, as in the case of the binomial
formula, we infer correctly that this applies whether # be a
whole number or a fraction, whether it be positive or nega-
tive. Thusdx™ = —x72dx, and dx™™ = (n/m)x*™" dx.

Also in the formula d xy = x -dy + y -dx, the letters x
and y may indicate any variable quantities. Thus to find
the differential of the fraction /v let x = 1/v,dx = —dv/??,
v =u, dy = du in the formula, then du/v = (1/v) du —
(/%) dv. This may be written in the form (vdu — u dv)/+?,
that is, the differential of a fraction equals its denominator
into the differential of its numerator minus its numerator
into the differential of its denominator, divided by the
square of the denominator.

MAXIMA AND MINIMA
109
The differential calculus enables easy the solution of

many problems involving maxima and minima For ex-
ample, a tin cylindrical box of diameter ¢ and height % is to
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be made to contain Q cubic inches of material. If the
thickness of the tin is £ what must be the ratio of the height
to diameter in order that the least amount of tin may be
used? Here the quantity of tin is (wak + % wa®) ¢, this
including the cover of the box; alsoQ = } ma%. Taking the
value of % from the second equation and substituting it in
the first gives (Q/a + 3 ma?) ¢ as the expression for the
quantity to be made a minimum. Placing the derivative
of this equal to zero and solving, there results a® = 4 Q/x or
Q = } ma® and equating this to the above value of Q, there is
found # = a. Hence, for minimum material the height of
the box must be equal to its diameter.

110

As a second example, let it be required to find the length
of the longest straight stick 4B which can be put up a cir-

cular shaft in the ceiling of a room, a

the height of the room being % and ,; 15
the diameter of the shaft a. Here 7 x
it is convenient to let 8 be the angle /{9/ f"
which the stick makes with the floor; —— !
then AB = h/sin 6 + a/cos 6. Plac- Fig. 44

ing the derivative equal to zero,

there results tan § = (%/a)}. Then expressing sin 6 and cos
in terms of (k/a)? there is found for the length of the stick
AB = (K% + a®!.  This is a simple way to solve a problem
which has proved a stumbling block to many.

111

Hundreds of problems similar to the above may be found
in books and mathematical journals, hence H. E. Licks
gives one not found in books, namely, to determine the path
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of a ray of light from a source S to the eye at E, when a
transparent glass plate is interposed between them. Let
s Fig. 45 show the path by the
; heavy broken line, the light mov-
B ing in straight lines both within
and without the plate, as is
known by experiment. Let aq,

i b, c, d be the distances between
T —— 4 S and E measured normal and
parallel to the plate. Let 6 be
the angle which the ray makes
with the normal to the plate before it enters and after it
leaves, and ¢ the angle which it makes with that normal
within the plate. Let », be the velocity of the light with-
out the plate and v the velocity within it. Then the time
required to travel from S to E is

t = asec/v + bsec ¢/v + csecd/u.

Also the quantities are connected by the geometric relation
atand + btan ¢ + ctand = d. Now the path must be
such as to make the time ¢ a minimum. Hence, if N is a
constant to be determined, the quantity
t=(a+4c)sec8/vi +b sec ¢/v2+N [(a+c¢) tan 6+ tan ¢ —d]
is to be made a minimum. Differentiating there is found

]
By

Fig. 45

Z—g = (a +c)secOtan6/v; + N (a + ¢)/cos*6 = o,

dt
do
From the first of these N + sin /3, = o and from the second
N + sin ¢/v, = o, whence by elimination of N, there is
found sin 6/sin ¢ = ,/v;. Hence the ratio of the sines of
the angles made by the ray with the normal of the plate is

= bsec ¢ tan ¢/v2 + Nb/cos’¢ = o.
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equal to the ratio of the velocities of light without and with-
in the plate. Thus the path is completely determined in
terms of the velocities v, and v .

The ratio of sin 6/sin ¢ is, in optics, called the index of
refraction and its values have been accurately determined
by measurements for different materials. Thus when light
passes from air into water this index is 1.33, that is, the
velocity of light in water is about three-fourths of its
velocity in air.

112
THE CELL OF THE HONEY BEE

The cell made by the bee in which to store honey is shown
in Fig. 46. The end ABDE is the top of the cell which is
closed with a plane cap after the cell is filled with honey.
The cross-section of the cell is a regular hexagon formed with
thin sides of wax. The bottom of the cell abdefg is ter-
minated by three equal planes which meet at the apex ¢ and
which are rhomboidal in shape so as
to form a depressed cup, for the
points a, f, d are further away from
the top of the cell than are the points
b, e, g, and the apex c is still further
away. The angles of these rhom-
boids at b, e, g are equal to the angles at ¢. If a cross-
section of the cell be taken anywhere on its length, there
results a hexagon each of whose interior angles is 120°, but
the six angles in the bottom of the cell at b, ¢, g, ¢ are only
about 110° owing to the inclination of the three planes.

It is evident that there is a certain inclination of these
planes which will give less material for the cell than if the
lower end were made plane like the upper end. To deter-

Fig. 46
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mine this inclination is a problem in maxima and minima
which has received much attention because the conclusion
deduced agrees closely
~with the actual con-
struction of the cell.
Fig. 47 gives end and
side views of the cell.
Let % be the mean
Fig. 47 length of the cell, and
k — x the length of
the side Bb. Regarding abdefg as the cross-section let
each of its sides be called 7, then b¢ is also »; but by
virtue of the incli-

b
nation of the rhom- N
bus abdc the distance 7 N . A
a a

bc becomes increased N 2
as shown in Fig. 48. \\ //
Let this increased dis- e

'F:g 48
tance be called ¢. The

plane abdc in Fig. 47 then has an inclination such that the
distance ¢ is V72 + 4 22

Now considering the amount of wax in the cell to be pro-
portional to the sum of the areas of its sides and bottom, the
expression for the total area in terms of x is made a mini-
mum. The area of the two sides shown in the side view is
r (2 b — x), the area of the inclined rhombus abdc is % ¢ X
rV3 or 7 V3 V72 + 447 and hence the total area 4 to
be made a minimum is

A =3[r(2h—x)+%r\/3r2+12x2|.

Differentiating this value of A with respect to x, equating
the derivative to zero, and solving, gives x = ¥ V'1/8 for the
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value of x which renders the quantity 4 a minimum. For
this value of x the area 4 becomes 4; = 37 (2 k + 17 V2)
which is proportional to the amount of wax in the sides and
bottom of one cell.

If the cell had a plane bottom at right angles to the sides,
the area of the sides and bottom is found by making ¥ = oin
the above expression for 4, whence 4o = 37 (24 + 17 V3).

The ratio of 4, to 4, now is

_2h+irV3 _ahfr+V3
2h+3irVva —4k/r+\/5

and the following are values of this ratio for various values

of h/r:

S

For k/r = o, § = 1.225.
For h/r = 1, s = 1.072.
For h/r = 2, s = 1.034.
For h/r = 4, s = 1.018.
For h/r = 6, s = 1.013.

It hence appears that the saving in wax of the actual cell
over a cell with plane bottom is 7.2 per cent when % =7,
3.4 per cent when % + 27, and 1.8 per cent when 2 = 47.
The height of the cell is usually between 2 = 27 and % =
57, so that the saving in wax is on the average about 2
per cent.

Early writers on this problem paid great attention to the
angles abd and acd of the rhombus in Fig. 47. The tangent
of the angle 6 (Fig. 48) when x has the value 7 V'1/8 which
renders 4 a minimum, is 1 » V'3/4 ¢, and since ¢ = r V'3/2
this tangent is V2. Then by the help of a logarithmic
table it is easy to find 6, and its double 109° 28’ 16" is the
angle abd in the inclined rhombus, and this is also the value
of each of the angles at the apex ¢ of the pyramidal cup.
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Statements were made that this angle had been measured
and found to be 109° 28', from which it was concluded that
the cell of the bee agreed most closely with that which
theory demanded for the minimum quantity of wax. How-
ever, evidence regarding these measurements is wanting,
and indeed it would be a very difficult matter to measure
this angle to such a degree of exactness.

This problem first received discussion in the eighteenth
century, and writers on it generally extolled the wonderful
instinct of the bee in adopting a form of cell which led to
economy in wax. The production of wax is an exhausting

p7777177277) 17727777777 3

Fig. 49

operation for the bee, and moreover sixteen pounds of honey
are needed to produce one pound of wax. Economy is
hence promoted by any method which will limit the pro-
duction of wax to the least possible amount. According
to most writers the bee has solved this problem in a most
ingenious mathematical manner, and its instinct should be
regarded as one of the most remarkable in nature.

In order to judge how far these high enconiums are justi-
fied, it is necessary to examine the construction of the honey-
comb. An inspection of one shows that it is formed by two
tiers of horizontal cells with their bases resting on a vertical
midrib in which the pyramidal cups are formed. In Fig. 49
the heavy lines of the right-hand diagram give a front view
of the cells on one side of the midrib, and the broken lines
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show the cells on the other side. These two tiers of cells
alternate in a curious manner, the bottom of one cell
abutting against the bottoms of three cells of the other tier.
The cells themselves are either horizontal or inclined very
slightly upward, and the left-hand diagram in Fig. 49 shows
a vertical section before they are filled with honey. Both
tiers of the comb are supported by the central midrib which
is attached to the ceiling of the hive. In building the cells
the bees begin at the top and work downward, the base of
each cell being of course built before the cell itself.

The examination of such a honeycomb will also show that
the midrib forming the bases of the cells is thicker than the
walls of the cell itself, this probably being so because it is
required to carry all the weight of the cells and honey. In
fact it has been stated that the midrib is thicker near its
top than lower down. The observations of the writer lead
to the rough conclusion that the midrib is 11 or 2 times
thicker than the walls of the cells. This being the case, the
above theory falls to the ground as fallacious.

Let » be the ratio of the thickness of the midrib to that
of the walls of the cell. Then the above expression for the
area A4 becomes

A=3r(zh—x+in V3P +122)

The value of # which renders this a minimum is now found
to be x = $7/V3%? — 1. From this the following values
are found for the angle abd of the inclined rhombus and for
the angles at the apex c:

Forn = 1, abd = 109° 28 16”.
For n = 1}, abd = 116° 40’ o".
Forn = 2, abd = 117° 59’ 10”.

Forn = 4, abd = 119° 38’ 58",
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Here the last value is given in order to show that the bottom
of the cell becomes practically flat when the midrib is four
times as thick as the walls of the cell. For a perfectly flat
bottom this angle is of course exactly 120°.

While this variation in thickness of the midrib appears
to take the problem outside of the domain of pure mathe-
matics, yet such is not really the case. Exact observations
of the way in which the bees build the comb are needed, as
also measurements of the bases of the cells, and perhaps
these may be made in the laboratories of natural history.
At present the writer offers the following as conjectures:
(1) that the cell of the bee is built according to the rules
deduced above for minimum material when the midrib is
equal in thickness to the walls of the cell, (2) that this shape
of the cell is not due to an instinct for securing the minimum
quantity of wax, but is entirely due to a method of con-
struction which arises from a necessity that the bees in
adjoining cells should crowd together as closely as possible.

The first conjecture can only be established by measure-
ments made on the same midril at both upper and lower
parts of the comb, and on different midribs in different
kinds of cells. If the angles of the inclined faces of the apex
¢ of the pyramidal cup can be measured, the writer predicts
that these will approximate to the
08 '-'3'0'8“‘ value 109° 28’ 16”.

& ___8 Concerning the second conjecture

= &
= g

O

iZ:BfZ}BC.?OC$ it should be noted that the midrib
O O O O js built by bees which face each
other in the work as shown in the
left-hand diagram of Fig. 50. In
order that the midrib between the two tiers of cells may be

properly compacted it is necessary that the heads of the

Fig. S0
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bees in one tier should alternate with the heads of those in
the other tier. In the right-hand diagram the full-line
circles show the heads of the bees in one tier and the broken-
line circles the heads of those in the other tier. Here it is
seen that each bee occupies a triangular position between
three other bees, and with this arrangement it is indis-
pensably necessary that the bottom of each cell should be a
pyramidal cup having three sides.

In the theoretic cell deduced at the beginning of this
article the inclination of each of the three planes of the
bottom of the cell to a cross-section is such that the tangent
of the angle is 2 #/7 or V3. This corresponds to 35° 45’ 52"
The first conjecture of the author demands that this in-
clination should always be 35° 45’ 52" whatever be the
thickness of the midrib. Further investigation of these
three planes will show that the diedral angle between any
two is exactly 120°, and this in the conjecture of the writer
is always closely the case.

Let the reader take four spheres of equal size, lay three
of them on a table so that each is tangent to the other two,
and then put the fourth sphere upon these three. If these
points be located and three tangent planes be drawn, it is a
simple matter of computation to find that each plane makes
an angle of 35° 45’ 52" with the horizontal, and that the
diedral angle included between any two of the planes is
120°. Thus a series of alternating spheres gives the same
planes as are found in the cells of the bee; hence one cause
of the inclination of the latter is undoubtedly the alter-
nating heads of the bees in forming the midrib shown in
Fig. so.

The reason why the cells are hexagonal has often been
discussed. All writers are in agreement that this is due to
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the circumstance that each cell is surrounded by six others,
and that if any other form than the hexagonal were adopted
vacant spaces would be left, which could not be filled with
honey. Moreover it is thought by the writer that any cell
wall must be built by bees working upon both sides of it.
Now in the hexagonal cell the diedral angle between any two
adjacent side walls is 120°. At the base of this cell, as we
have seen, the diedral angle between any two of the planes
forming the pyramidal cup is 120° also each of these
planes in intersecting a side of the hexagonal cell makes
with it an angle of 120°. Hence in the bee cell every
diedral angle is 120°. The angles at the top of the cell,
where the cap is put on, are not here included; but as long
as the bee is in the cell she has only to deal with diedral
angles of 120°.

The conclusion of this discussion is that the cells of the
bee are not built from any instinct for reducing the pro-
duction of wax to a minimum, but rather from the necessity
that their heads must alternate in forming the midrib in
order to properly compact it. This necessity results in
planes inclined to each other at angles of 120°. Perhaps it
may be said that the bee has an instinct to build planes
inclined at this angle, but more properly, it seems to the
writer, it may be said that the work of the bees is more
easily done in this way than in any other. Economy in
labor rather than in material appears to lie at the foundation
of the symmetric form of the cell of the industrious honey bee.

An interesting critical article by Glaisher will be found in
the London Philosophical Magazine for August, 1873, where
the history of this famous problem is set forth in full detail.
At that date the belief appears to be undoubted that the
form of the cell is due to an instinct of the bees for saving as
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much wax as possible, and this is referred to as one of the
most remarkable instances of instinct in nature. Since the
discussion here given indicates otherwise, further investiga-
tions are in order to fully solve the problem, and these are
only possible after many observations and measurements
have been made in entomological laboratories.

113
INTEGRAL CALCULUS

Differentiation is a definite process and any given func-
tion of a single variable can be differentiated. But there is
no way to integrate except from a knowledge of what has
been done in differentiation. In this respect the two
branches of calculus are analogous to involution and evolu-
tion in arithmetic; any given number may be raised to a
stated power, but when the power is given there is no way
to find the root except by guess work and trial. There are
about twenty-five fundamental integrals which are known
to be correct because the differentiation of them furnishes
the given expression with which we start. All the rest of
integral calculus consists in reducing the quantity to be
integrated to one of the fundamental forms.

For instance, f 71 dx equals x*/n because the differen-

tial of the latter is x* 1dx and for no other reason. Simi-

larly ] sin « -dx equals —cos « because the differential of
cosx is —sinx-dx. In all cases the correctness of an
integral is to be determined by differentiating it.
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To the above statement that any function can be differen-
tiated there seems one exception. Weirstrass has devised
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a certain series, expressed in symbolic form, for which a
derivative cannot be obtained, because in any interval, no
matter how small, there are an infinite number of bends of
the curve, so that at any given point it is not possible to
draw a tangent to the curve. This expression, however, is
little more than a curiosity to a beginner.
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When y-dx is required, y being expressed in positive
integral powers of «, then the integral can be directly found
from the formula

2

x?
fy'dx =yx—D1——I—D2-*
2! 3!

in which Dy, D,, D;, are the first, second, and third deriva-
tives of y with respect to . For example, let y = ax? 4 43,
then D, = 2ax + 3%% Dy=2a+6x, D;s =6, Dy = o.
Then, substituting in the formula, there is found

f(ax2+x3)dx =1/3ax® + 1/4 2%

Unfortunately this formula does not seem to apply to
other functions which have no D equal to o but in each
given case we are forced to consult a catalog of integrals, or
to reduce the given function to one whose integral is known.

i16

John Phoenix, the first real humorist of America, was a
graduate of West Point and hence well versed in mathe-
matics. In his essay called ‘“Report of a Scientific Lec-
ture,” he alludes to the importance of adding a constant to
the result of an integration. He says:

By a beautiful application of the differential theory the singular fact is
demonstrated, that all integrals assume the forms of the atoms of which they

4
b D3§-+D4£5—,etc.,
4! 5!
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are composed, with, however, in every case the important addition of e
constant, which like the tail of a tadpole, may be dropped on certain occa-
sions when it becomes troublesome. Hence, it will evidently follow that
space is round, though, viewing it from various positions, the presence of
the cumbersome addendum may slightly modify the definity of the rotundity.
To ascertain and fix the conditions under which, in the definite considera-
tion of the indefinite immensity, the infinitesimal incertitudes, which, homo-
geneously aggregated, compose the idea of space, admit of the computible
retention of this constant, would form a beautiful and healthy recreation for
the inquiring mind; but, pertaining more properly to the metaphysician
than to the ethical student, it cannot enter into the present discussion.

117
LENGTHS OF CURVES

The lengths of nearly all curves are expressed in terms of
circular, hyperbolic, or logarithmic functions. Thus, the
length of an arc of a circle is always in terms of =, and the
length of an arc of a parabola is in terms of a hyperbolic
logarithm. The story is told that a German professor,
lecturing to his class two hundred years ago, said that the
length of no curve could be algebraically expressed, and that
the next day one of the students brought to him the deriva-
tion of the length of an arc of the semi-cubical parabola in
algebraic terms. This curve has the equation #»? y =af
The derivative dy/dx is 3/2 ™ *x% and the length of an arc
between the limits x = o and « = a is:

f \/9x+1— (9x+1)%=§n[<g‘—l+1>%—1].
27 4n

For example, let the equation of the curve be 4y = a?,

then # = 16, and the length of the arc between the limits

ofx =oand x = a = 41s 122/27 = 4.5189. Whether the

story is true or not, the length of this curve can certainly be

algebraically expressed and be computed by simple arith-
metic.
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Another curve whose length is expressed by simple
algebra is the cycloid. This curve is generated by a point
on the circumference of a wheel which rolls along the
straight line DE. Thus the point 4 in Fig. 51 reaches the

A horizontal line at E when the cir-

<3 cle has made half a revolution and

m Tp\/ in its progress the semi-cycloid

S & L APE is described. Let a be the

Fig. 51 radius C4 of the generating circle,

and P be any point on the cycloid

whose codrdinates are x and y, the latter being measured

downward. Then the length of the curve AP is V8ay

and the length of AE is 8 a, expressions of the greatest

simplicity. The area between the cycloid DAE and the

straight line DE is three times the area of the generating

circle or 3 ma®2. The cycloid has also interesting properties
which will be mentioned later under Mechanics.
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The lengths of some curves of pursuit are also alge-
braically expressible. The simplest case (Fig. 52) is where
the hare starts at O and runs
with uniform speed » on the
axis OV while the dog starts at
a point A on the X-axis and
runs always directly toward
the hare with the speed V. ,
When the dog is at P the hare
is at Q and the tangent to the
curve of pursuit is PQ. Let ¢ be the distance between the
initial positions O and 4, and let % be the ratio of the speeds
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o/V. Then the equation of the curve of pursuit, when # is
not equal to unity, is

arxtn yltn an
2(n— 1) 2a"(n+1) I —#n?

y=

For example, let the dog run twice as fast as the hare, or
n = %, then the equation of the curve is

3 11
3a’? 3
The length of an element of the curve being dx V1 + p?
where p = dy/dx, the length of the curve from A4 to P is
found to be algebraically expressed, thus:

g
f(x +dy) dx —j—;a—a‘x2 xl.

3a’
When # = o then y = 2/3 a, and the length of the curve is
4/3 a. Here the dog has run double the distance that the
hare has run, and it catches the hare at the point x = o,
y =2/3a.

When #» is equal to or greater than unity, the dog can
never catch the hare. When # is less than unity the dog
will catch the hare. The student in calculus may find it
profitable to solve the following problem: Let the dog run
10 feet per second and the hare 8 feet per second, and let
a = 720 feet; prove that the dog will catch the hare in 6
minutes and 40 seconds from the instant when the hare
starts at O and the dog starts at 4.




CHAPTER VII
ASTRONOMY AND THE CALENDAR
120

§STRONOMY is probably the most ancient of
the physical sciences, the first facts being ob-
served by shepherds who watched their flocks
at night. The historian Josephus, in his An-
tiquities of the Jews, begins with the creation of the world
and follows closely the biblical narrative. Speaking . of
Phaleg, fourth in descent from Noah and of his son Tera,
who was the father of Abraham, he says: “God afforded
them a longer life on account of their virtue and the good
use they made of it in astronomical and geometrical dis-
coveries.” Speaking of the sojourn of Abraham among the
Egyptians, he says, ‘“He communicated to them arithmetic
and delivered to them the science of astronomy; . . . they
were unacquainted with those parts of learning, for that
science came from the Chaldeans into Egypt and from
thence to the Greeks.”

121
The order of the twelve constellations of the zodiac may

be remembered by the following ancient lines:

The Ram, the Bull, the Heavenly Twins,
Next the Crab, the Lion shines,
The Virgin, and the Scales,
The Scorpion, Archer, and the Goat,
The man who holds the watering Pot,
And Fish with glittering tails.

104
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In memorizing this it is well to note, that the word shines
should rhyme with Twins, and Pot with Goat.

The order here is from west toward east; when the Ram
is setting in the west the Scales are rising in the east, when
the Scales are setting in the west the Fish are rising in the
east. This is a rough statement only, for at certain seasons
of the year less than one-half of these constellations are
above the horizon, while at other seasons more than one-
half of them are visible at one time. Unfortunately the
artist who put several of the constellations of the zodiac on
the ceiling of the grand concourse in the Grand Central
Station in New York, reversed this order, for there we see
Aquarius in the east while the Crab is in the west. The
copy from which he worked evidently had been incorrectly
made; perhaps he took it from a celestial globe and then
turned it around so as to interchange east and west.

122

The greatest of all optical instruments was the reflecting
telescope of William Herschel, which was finished in 1789.
The tube was forty feet in length, five feet in diameter, and
weighed 60,000 pounds. With this telescope, magnifying
6450 times, he discovered two new moons circling around
the planet Saturn, and recorded hundreds of new double
stars and nebule. His sister, Caroline Herschel, was his
constant companion in all his astronomical labors.

William Herschel died in 1822. In 1839 his celebrated
son, John Herschel, took down the great telescope, which
had then become a victim to the ravages of time and could
no longer be used. The long tube was carefully laid upon
three stone pillars where it could be preserved as a relic of
the past. In the Christmas holidays of that year, John



100 RECREATIONS IN MATHEMATICS

Herschel, his wife, and their six children held a family feast
in the great tube, and there they sang a song written by him
in honor of the occasion:
In the old telescope’s tube we sit,
And the shades of the past around us flit,
His requiem we sing with shout and din
As the old year goes out and the new year comes in.

Merrily, Merrily, let us all sing,
And make the old telescope rattle and ring.

Full fifty years did he laugh at the storm,
And the blast could not shake his majestic form.
Now prone he lies where he once stood high
And searched the heavens with his broad bright eye.
Merrily, Merrily, etc.

Here watched our father the wintry night
And his gaze was fed by pre-adamite light;
His labors were lighted by sisterly love,
And united they strained their vision above,
Merrily, Merrily, etc.
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Galileo was the first man who looked at the heavenly
bodies through a telescope. It was in 1610 that he saw
four satellites moving around the planet Jupiter, and this
demolished the theory that the earth was the center around
which the planets revolved. These four satellites of Jupiter
were the only ones known until 1892, but since then four
smaller ones have been discovered. The earth has one
moon, Mars has two, Jupiter has eight, and Saturn has nine
or ten. The inner moon of Mars is near the planet and has
such a high velocity that it rises in the west and sets in the
east, while both new and full moon can be observed in a
single night. All other known satellites, like our own moon,
rise in the east and set in the west.
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124
BOTANY AND ASTRONOMY

If we examine the leafy stem of a plant we shall find the
leaves upon it arranged in a symmetrical order and in a way
uniform for each species. If a line be drawn around the
stem from the base of one leaf stalk to that of the next, and
so on, this line will wind around the stem as it rises, and on
any particular plant there will be the same number of leaves
for each turn around the stem. In the basswood, the
Indian corn, and all the grasses, we have the two-ranked
arrangement; the second leaf starting on exactly the oppo-
site side of the stem from the first, the third opposite the
second and hence directly over the first, so that all the
leaves are in two vertical ranks, one on one side of the stem
and one on the other. Next is the three-ranked arrange-
ment such as is seen in sedges; here the second leaf is one-
third of the way around the stem, the third one two-thirds,
and the fourth one directly over the first. Then in the
apple, cherry, and most of our common shrubs, the leaves
are arranged in five vertical ranks, and the spiral winds
twice around the stem before it reaches a leaf directly over
the first one; here the distance between any two ranks is
two-fifths of the circumference of the stem. Then in the
common plantain there are eight ranks, and three turns
around the stem, so that the distance between any two
ranks is three-eighths of the circumference.

Now if we express these arrangements by figures, we have
the fractions 1/2, 1/3, 2/5, 3/8, in which the denominator
expresses the number of ranks and the numerator the num-
ber of turns of the spiral line around the stem before it
reaches a leaf directly above the one from which it started.
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Thus 1/2 stands for the two-ranked arrangement where
there are two turns. But we notice that the numerator of
any fraction is equal to the sum of the numerators in the
two preceding fractions, and that the same is true for the
denominators. Then the next fraction after 3/8 will be
found by adding 2 and 3 for its numerator and 5 and 8 for
its denominator, which gives 5/13. Thus we have the
following series, 1/2, 1/3, 2/5, 3/8, 5/13, 8/21, 13/34, etc.,
and just such arrangements of leaves are found, and no
others. The fraction 5/13 gives the law for the common
house leek, the others are found in the pine family and in
many small plants.

The furthermost planet from the sun is Neptune, then
follow Uranus, Saturn, Jupiter, the Asteroids, and Mars,
then the Earth, Venus, and Mercury. Neptune makes its
revolution around the sun in about 60,000 days, Uranus in
30,000 days or 1/2 the time of Neptune; in like manner
Saturn’s period is nearly 1/3 of that of Uranus, Jupiter’s
period is 2/5 that of Saturn, and so on until we come to the
earth, following closely the same series as given above for
the leaves on a stem. Thus the mathematical expression
of the arrangement of the leaves of plants is approximately
the same as that of the periods of the exterior planets.
These arrangements of leaves ensure to plants a better dis-
tribution of the light and heat of the sun; the periods of the
planets render them stable under the laws of gravitation.
Perhaps the botanist, had he known that these figures apply
both to leaves and planets, might have foretold the dis-
covery of the asteroids or announced the existence of
Neptune.
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THE MOON HOAX

In 1833 Sir John Herschel sailed from England for the
Cape of Good Hope, carrying a large telescope with which
to view the southern stars. This was before the times of
steamboats and telegraphs so that more than two years
passed away before any definite account of the discoveries
of Sir John reached England or America. In 1835 the New
York Sun published a series of articles, entitled “Great
Astronomical Discoveries made by Sir John Herschel at the
Cape of Good Hope.” In the first article was given a cir-
cumstantial and highly plausible account as to how this
early and exclusive information had been obtained by the
paper. Then comes an interesting account of the inception
and construction of the great telescope which he carried to
the Cape. The idea of great magnifying power originated,
it was said, in a conversation with Sir David Brewster
regarding optics. ‘‘The conversation became directed to
that all-invincible enemy, the paucity of light in powerful
magnifiers. After a few minutes silent thought Sir John
diffidently inquired whether it would not be possible to
effect a transfusion of artificial light through the focal object
of vision. Sir David, somewhat startled at the originality
of the idea, paused awhile, and then hesitatingly referred to
the refrangibility of rays and the angle of incidence. Sir
John continued, ‘why cannot the illuminated microscope,
say the hydro-oxygen, be applied to render distinct, and if
necessary even to magnify the focal object?’ Sir David
sprang from his chair in an ecstasy of conviction, and leap-
ing halfway to the ceiling exclaimed, ‘Thou art the man!’”

The interest of the reader being thus aroused by this
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imaginary scientific conversation, the article goes on to
describe the great telescope which was shipped to the Cape
and there drawn by two relief teams of oxen to the place
where it was erected. This place was “a perfect paradise
in rich and magnificent mountain scenery, sheltered from
all winds and where the constellations shone with astonish-
ing brilliancy.” Here Sir John observed stars and nebule,
but above all he paid particular attention to the Moon.
The magnifying power of his telescope was 42,000 times, so
that objects on the Moon could be seen as if only six miles
away and an object only 18 inches in diameter could be
plainly recognized. Hence he clearly saw on the moon
“basaltic rock, forests, and water, beaches of brilliant white
sand girt with castellated marble rocks.” He beheld herds
of brown quadrupeds of the bison kind, each animal having
a hairy veil over its eyes, and he conjectured “that this was
a providential contrivance to protect the eyes from the
great extremes of light and darkness to which all beings on
the moon are periodically subjected.” He also saw a species
of beaver which was acquainted with the use of fire as was
evident from the smoke that occasionally rose from their
habitations.

Finally, of course, his search was rewarded by the sight
of human beings with wings and who walked erect and
dignified when they alighted on the plain. “They ap-
peared in our eyes scarcely less lovely than the representa-
tions of angels by our more imaginative schools of painters;
their works of art were numerous and displayed a proficiency
of skill quite incredible to all except actual observers.”

This hoax was immediately swallowed by the general
public and caused much discussion. The Sun issued in
pamphlet form an edition of 60,000 copies which were sold
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in less than a month, and translations of it were made in
Europe. In 1859 a second pamphlet edition was issued in
New York with illustrations of the moon and with added
notes.

The author of this most entertaining and successful hoax
was Richard Adams Locke, then editor of the Sun. He was
engaged in newspaper work for a large part of his life and
died in 1871 at his home on Staten Island. An obituary
notice describes him as “a warm-hearted man, well read,
enthusiastic, and sometimes very eloquent on paper. His
habits were rather convivial, but he was just and fearless,
full of the best intentions, and overflowing with original
inspirations.”
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The planet on which we live claims, of course, a large
share of our attention. In 1878 Americus Symmes pub-
lished his “Theory of Concentric Spheres,” demonstrating
that the earth is hollow, habitable within, and widely open
about the poles. It contains arguments drawn from the
statements of explorers in the polar regions, from the dip
and variation of the magnetic needle, from the migrations
of fish, from the spots on the sun and from the rings of
Saturn. According to this remarkable theory, there are
two openings at the poles into the hollow earth, the diam-
eter of the northern one being about 2000 miles while the
southern one is somewhat larger; the planes of these
openings are parallel to each other but they make an angle
of 12 degrees with the equator. Capt. Symmes imagined
that the crust of the earth is about a thousand miles in
thickness but he wisely refrained from giving any account
of what is found within the hollow sphere.
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Perhaps the earliest mention of a sun dial is that found
in IT Kings, xx, g-11:

0. And Isaiah said, This sign shalt thou have of the LORD, that the
LORD will do the thing that he hath spoken; shall the shadow go forward
ten degrees or back ten degrees?

10. And Hezekiah answered, It is a light thing for the shadow to go down
ten degrees: nay, but let the shadow return backward ten degrees.

11. And Isaiah the prophet cried unto the LORD: and he brought the
shadow ten degrees backward, by which it had gone down in the dial of
Ahaz.

On a properly constructed sun dial, such as is described
below, the shadow cannot go backward. But a dial having
a vertical style or gnomon when tilted from the horizontal
possesses the property that the shadow will travel backward
for a short time near sunrise and sunset. A dial with a
vertical gnomon is, however, quite useless in telling the time
of day.

128
THE SUN DIAL

Four or five hundred years ago the only way to tell the
hour of the day was by looking at a sun dial, for clocks and
watches had not then come into
use. Fig. 53 shows such a dial,
which indicates 2 P. M. by the
edge of the shadow cast upon the
graduated surface by an inclined
gnomon. Of course the sun dial is

Fig. 53 useless on a cloudy day, but when

the sun does shine it gives apparent

solar time with a probable error of about ten minutes, which
is sufficiently close for the purposes of agriculture. A sun
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dial is usually placed in a horizontal plane, but in olden
times they were often put on the walls of churches and
public buildings, and many such can be seen in Europe
even at this day.

The board on which the lines of the sun dial are drawn
may be of any shape, but in Fig. 54 it is indicated as rec-
tangular. This board is to be placed horizontally with its
central line NS coinciding with the meridian of the place
and is usually observed from N
its southern side. The [ [L onw
shadow of the gnomon 4B I
falls toward the western
side in the morning and
toward the eastern side in
the afternoon. The lines
which radiate from the cen-
ter 4 being properly drawn
the observer will see the
shadow coinciding with the line 8 at eight o’clock in the
morning, with the line 12 at noon, and with the line 3 at
three o’clock in the afternoon. When the shadow is one-
fourth of the distance from the line 3 to the line 4, the sun
time is 3.15 P. M.

The gnomon AB must be inclined to the plane of the
board at an angle equal to the latitude of the place. Some-
times this is a thin sheet of metal ABC fastened onto the
board, the edge 4 B being the true gnomon; sometimes it is
a small metal rod 4 B, the end B being supported by another
rod BC. It is essential that the inclination of 4B to a
horizontal dial plate must be equal to the latitude of the
place, or for a dial in any position 4B must point to the
celestial pole.




114 RECREATIONS IN MATHEMATICS

How to make a horizontal dial: On a smooth board draw
the lines V'S and EW. The northern end of the line NS is
to be numbered 12 for twelve o’clock noon, and the ends
EW are to be numbered 6 for 6 A. M. and 6 P. M. The
latitude of the place may be taken from a good map with
sufficient precision for the construction of a sun dial, or if
great precision is required it may be found by an astronomical
observation. This latitude A is to be used for constructing
the gnomon, and also for computing the angles which the
radiating lines of the dial make with the central line NS.

To find the angle @ which any radiating line makes with
the central line AN, let # be the number of hours before or
after noon when the shadow should fall on that line; then

tana = sin A tanz 15°.
Accordingly, the values of tan « are as follows:

For 1 and 11 o’clock, #» = 1 and tan @ = 0.268 sin .
For 2 and 10 o'clock, # = 2 and tan @ = o.577 sin A,
For 3 and ¢ o’clock, # = 3 and tan @ = 1.000 sin A.
For 4 and 8 o'clock, # = 4 and tana = 1.732 sin \.
For 5 and 7 o’clock, # = 5 and tana = 3.732 sin A,
For 6 and 6 o'clock, # = 6 and tana = 0.

For 7 and 5 0'clock, # = 7 and tan @ = —3.732sin A,

Now the values of « will be different for different latitudes.
The following table gives values of a for three latitudes
which have been computed from the above formulas with
the help of a trigonometric table.

A=30 A =40 A=50
For 1 and 11 o’clock a= 7°38 9° 46’ 11° 36’
For 2 and 10 o’clock a= 16 06 20 22 23 52
For 3 and ¢ o’clock a= 26 33 32 44 37 27
For 4 and 8 o’clock a= 40 54 48 o4 53 ©0
For 5 and 7 o’clock a= 61 49 67 23 70 43
For 6 and 6 o’clock @ = Qo 00 9o oo 90 00
For 7 and 5 o’clock a =118 1I 112 37 109 17
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When the radiating lines have been drawn, the gnomon
put in place, and the board neatly painted, the sun dial is
ready for erection. The board must be placed duly level
with its V.S line coinciding with the true meridian, and then,
when the sun shines, delighted spectators may compare
apparent solar time with their watches and wonder at the
scientific skill of the youth who constructed the sun dial.

The largest sun dial ever built is at the royal observatory
in Jaipur, India; it was erected about 1750 by the Maha-
raja Siwéi Jai Singh IT. Its gnomon is about 175 feet long
and this can be ascended by stairs. The shadow of the
gnomon falls on a large stone quadrant of 50 feet radius
along which it moves at the rate of 2} inches per minute.
Jaipur is in latitude 27 degrees north.
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Southworth, in his “Four Thousand Miles of African
Travel” (New York, 1875) gives a novel method of deter-
mining the true meridian: ‘“The Arab when he prays,
kneels toward Mecca. It is said that even the youngest
never fails to bend, almost accurately, in that direction.
Thus, in the form of living flesh, we had the Arab, by whom
to find the variation of the compass; and, with the corrected
bearing, we could find, when the sun bore due south or
otherwise, the true meridian, and consequently noon.”
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The civil day begins at sunset among the Mahomedans
and at midnight in Christian countries and is divided into
twenty-four hours. The sun dial has been used from a
remote antiquity to indicate apparent solar time. Clocks
with wheels were devised about 1250 but they did not come
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into general use until after 1600. It was found that these
clocks at some times of the year were slower and at other
times faster than apparent solar time. An accurate clock
or watch keeps mean solar time, this being the time which
would be indicated on a sun dial if the sun were perfectly
uniform in his apparent motion throughout the year. The
difference between apparent and mean solar time is called
the Equation of Time and its values are given in some
almanacs under the headings ““clock slow” or ““clock fast.”
The following table shows such values to the nearest
minute which are to be added to apparent time (or sub-
tracted when marked —) in order to give mean or clock
time.

1 Jan. 3 min. 1 May —3 min. 1 Sept. o min.
10 Jan. 8 min. 10 May —4 min. 10 Sept. 3 min.
20 Jan. 11 min. 20 May —3 min. 20 Sept. — 6 min.

1 Feb. 14 min. 1 June —2 min, 1 Oct. —10 min,
10 Feb. 14 min. 10 June —1 min. 10 Oct. —13 min.
20 Feb. 14 min. 20 June 1 min. 20 Oct. —15 min.

1 Mar. 12 min. 1 July 4 min. 1 Nov. —16 min.
10 Mar. 11 min. 10 July 5 min. 10 Nov. —16 min.
20 Mar. 8 min. 20 July 6 min. 20 Nov. —14 min.

1 Apr. 4 min. 1 Aug. 6 min. 1 Dec. —11 min.
10 Apr. 1 min. 10 Aug. 5 min. 10 Dec. — 7 min.
20 Apr. —1 min. 20 Aug. 3 min. 20 Dec. — 2 min.

This table will be useful when one compares his watch with
a sun dial. As all the affairs of life are now regulated by
clock time, it also explains why the time of sunset appears
to rapidly become earlier in October and to rapidly become
later in January.

The apparent and mean solar time above described is
different for places having different longitudes, and in
general may be designated as local time. In recent years,
owing to the requirements of railroad operation, most
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clocks and watches keep standard time or the local time on
a certain meridian. In the United States there are four
standard meridians, those of longitude 75°, 9o°, 105°, and
120° west of Greenwich. FEastern standard time is mean
solar time of the 75° meridian, central standard time is
mean solar time of the go° meridian, mountain standard
time is mean solar time of the 105° meridian, and Pacific
standard time is mean solar time of the 120° meridian. In
going from one of these meridians to the next one, our watch
must be set one hour backward or forward according as we
go west or east.

When a watch keeping standard time is read at a place
which is one degree of longitude west of the standard merid-
ian it is four minutes faster than mean local time of that
place; when the place is two degrees to the westward the
watch is eight minutes faster, for three degrees westward
twelve minutes faster and so on. When read at places to
the eastward it is four minutes slower for each degree of
longitude. Hence, this must be taken into account also
when comparing a watch with a sun dial.

131
DAYS, MONTHS, AND YEARS

Julius Ceaesar, with the help of the astronomer, Siosene-
ges, introduced the method of reckoning known as the Julian
calendar. The year being 365.2422 solar days, he took
365 such days for a common year and 366 days for a leap
year, so that the average length of a year was 365.25 days.
This Julian calendar is still in use in Russia and Greece,
but it was supplanted in most of Europe in 1582 by the
Gregorian calendar. In the Julian calendar all years divis-
ible by 4 were leap years; in the Gregorian calendar years
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divisible by 4 are leap years unless they are divisible by 100
and not by 400. Thus, in the Gregorian calendar the years
1600 and 2000 are leap years, but the years 1700, 1800, 1900
are common years. In 1582 the Julian calendar was ten
days slower than the Gregorian, after 1700 it became eleven
days slower, and since 1goo it has been thirteen days slower.
Hence, Jan. 1, 1917 of the Gregorian calendar corresponds
to Dec. 19, 1916 of the Julian.

1752 September hath XIX Days this Year.

First Quarter, the 15th day at 2 afternoon.
Full Moon,  the 23rd day at 1 afternoon.
Last Quarter, the 3oth day at 2 afternoon.

Saints’ Days Moon | Moon |Full Sea Aspects
Terms, &c. South | Sets |at Lond. and Weather

oR
o<

1| f Day br. 3.35 3A 278 A2g|s A 1 o 2 ¥
2| g London burn. 426911 |5 38 Lofty winds

According to an act of Parliament passed in the 24th year of his Majesty’s reign
and in the year of our Lord 1751, the Old Style ceases here and the New takes its
place; and consequently the next Day, which in the old account would have been
the 3d is now to be called the 14th; so that all the intermediate nominal days from
the 2d to the 14th are omitted or rather annihilated this Year; and the Month con-
tains no more than 19 days, as the title at the head expresses.

14 | e Clock slo. 5 m. 515|947 6 27| HoLy Roop D.
15 | f Day i2h.3om. |6 3 |10 31 7 18 and hasty
16| g 6 57 |11 23 8 16 showers
1714 15 S. AFT. TRIN. | 7 37 |12 19| 9 7

18| b 8 26 |Morn.| 10 22 More warm
19 | ¢ Nat. V. Mary 9 12| I 22| II 21 and dry
20| d EMBER WEEK 9 59 | 2 24 | Morn. weather
21 | e St. MATTHEW (10 43 [ 3 37 | o 17 4 ? ¥
22 | f Burchan 11 28 [Drise|l 1 6 o 2 Q
23| ¢g EquaL D. & N. [Morn.|6 A 13] 1 52 s ® &
24| A 16 S. AFT. TRIN. |0 16 | 6 37| 2 39 § O ¥
25 [ b 1 5(739]| 314

26 | ¢ Dayith.sz2m. | 157|839 348 Rain or hail
27 | d EMBER WEEK 256|818 423 4 & ¥
28 | e Lambert bp. 3479 3] 5 6 now abouts
29 | £ S1. MICHAEL 4441959| 555| kXK h @
30| g 543 |11 2| 658
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In Great Britain and its colonies the change of the Julian
to the Gregorian calendar was not made until 1752. In
September of that year eleven days were omitted from
the almanacs. The above is a copy of the calendar for
September, 1752, taken from the Almanac of Richard
Saunders, Gent., published in London. All English and
American almanacs gave similar statements for that month.
The Ladies’ Diary or Woman’s Almanac indulged in poetry,
appropriate to the occasion:

The third of September the fourteenth is nam’d,
For which British annals will ever be fam’d.

For by Wisdom and Art to the House made appear
The Sun was reduc’d to attend on the Year;

His Julian vagaries long time has he known,
But has now got a new bridal Year of his own

132

In both Julian and Gregorian calendars the months are
those established by Julius Cesar, namely:

Thirty days hath September,
April, June, and November,

All the rest have thirty-one,
Save in February which, in fine,

In common years, hath twenty-eight,
And in leap years twenty-nine.

The time when the year began has been different in
different countries. In Casar’s reign it appears that
March was the first month; thus September was the seventh
and December the tenth, as the names imply. The early
English almanacs, however, begin the year with January as
at present, but the legal year of the British government
began on March 235, although March was called the first
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month. In legal and church records prior to 1752, it is
common to find dates like Feb. 20, 1693, or Feb. 20, 1695/6,
these being intended for the historical or almanac year
1696.

133

A very convenient rule for determining the day of the
week corresponding to the day of the month in any year
was given by Prof. Comstock in Science, Nov. 18, 1898.
Let Y be any year of the Gregorian calendar and D the day
of the year. Divide ¥ — 1 by 4, by 100, and by 400,
neglecting the remainder in each case. Then find S from

S=Y+D+Y4—I_Y—-I +Y—1

100 400

and divide S by 7; the remainder gives the day of the week,
o indicating Saturday, 1 Sunday, 2 Monday, and so on.
For example, take July 4, 1916; here ¥ = 1916, D = 186,
(Y —1)/4 = 478, (¥ —1)/100 = 19, (¥ — 1)/400 = 4.
Then S = 2565, and this divided by 7 gives a remainder 3;
hence, July 4, 1916 comes on Tuesday. The reason for this
rule is clear, if it be remembered that all years exactly
divisible by 4 are leap years except when they are even
century years, as 1800, 19oo, 2000, etc., when they must be
divisible by 400; thus the subtractive term (¥ — 1)/100
prevents the addition of an extra day during such years as
1800, 1900, and 2100, while it also makes only one extra day
to be added during the year 2000. Of all the rules for
finding the day of the week from a given day of the month
and year, this is by far the simplest.

For the Julian calendar the following rule may be used to
find the day of the week corresponding to a given date.
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Let ¥ be the year and D the day of the year. Neglecting
the remainder in the fractional term, compute .S from

S=v+D+ L=t

-2

and divide S by 7; then the remainder gives the day of the
week, o indicating Saturday, and so on. For example,
Columbus discovered America on Oct. 12, 1492; here ¥V =
1492, D = 286, (¥ — 1)/4 = 372, then S = 2148 which
divided by 7 gives 6 for a remainder; hence America was
discovered on a Friday. Again George Washington was
born on Feb. 11, 1732; here ¥ = 1732, D = 42, (Y — 1)/4
= 432, and then S = 2204 which divided by 7 gives 6 for a
remainder; hence, Washington was born on a Friday.

The common opinion that Washington was born on
Feb. 22 is erroneous. This originated in the idea of irre-
sponsible persons that Gregorian time ought to be extended
backward into Julian time. This reprehensible idea is
founded on no sound principle, and in celebrating the birth-
day of Washington on Feb. 22, we all commit grievous error.

134

J. W. Nystrom of Philadelphia devised about fifty years
ago the “tonal system” of numeration in which 16 is the
base instead of 10 as in the decimal system. The numerals
1, 2, 3, 4, etc., were called An, De, Ti, Go, etc., and new
characters were devised for 10, 11, 12, 13, 14, 15. This
system embraced also a new division of the year into 16
months, these having the names Anuary, Debrian, Timan-
der, Gostus, Suvenary, Bylian, Ratamber, Mesidius, Nic-
torary, Kolumbian, Husander, Victorious, Lamboary,
FPolian, Fylander, Tonborious, the first two letters of each
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month being the names of the sixteen numerals. Nystrom
certainly did his work well.

136

Josh Billings in his almanac said that the name February
was derived from a Chinese word which meant kondem
cold. Josh was right regarding the temperature. At the
head of the calendar for July he gives this verse:

Young man, let hornets be

And don’t go nigh the pizen snake too much,
For in the month of July

They a’in’t healthy to the touch.

For another month he gives this excellent advice:

He who by farming would get rich,
Must plow, and hoe, and dig, and sich,
Work hard all day, and sleep hard all nite,
Save every cent and not get tite.

For the first of April he has the following: -

April Phool was born this day,
A simpleton, but clever,

And though 3000 years of age,
He’s just as big a phool as ever.

136

Comets in ancient times brought great mental distress
upon people, for they were supposed to presage war, famine,
or pestilence. Even to astronomers the phenomena of the
tail being repelled by the sun backward from the nucleus of
the comet has been a great mystery, for it seemed to contra-
dict the law of universal attraction. Now, however, we
understand that the small particles of the tail are driven
away from the head by the pressure exerted by the light of
the sun, so that the mystery appears to have been solved.
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Yet even at this day the appearance of a comet incites a
feeling of awe, and the words of the poet Holmes arise in
the memory:

The Comet! He is on his way,
And singing as he flies;

The whizzing planets shrink before
The spectre of the skies.

Ah! well may regal orbs burn blue,
And satellites turn pale,

Ten million cubic miles of head,
Ten billion leagues of taill



CHAPTER VIII
MECHANICS AND PHYSICS
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T IS a misfortune that physicists and engineers
teach to students two different systems of
units. A boy comes to a technical school,
understanding perfectly, from his experience,

what is meant by force and what is meant by a force of ten
pounds or ten kilograms. The teacher of physics tells him
that forces must be measured in poundals or dynes, not-
withstanding that no apparatus for measuring forces in
such units has ever been made or used. The result is great
mental confusion to the boy, from which he does not
recover until he joins the class in engineering where he finds
that forces are measured in those units to which he had
always been accustomed before he entered upon the in-
struction of the physicist. All this might be avoided if
mechanics were omitted entirely from courses in physics.
Surely the subjects of heat, light, sound, and electricity
furnish a sufficient field for the physicist, without encroach-
ing on the topic of mechanics, which properly belongs to
the engineer.

138

The unfortunate equation F = mf comes early in a course
in mechanics as taught by a physicist. Here the mass m is

measured in units of a standard lump of metal furnished by
124
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the government; acting for one second on this lump is a
force F, which produces the velocity f at the end of that
second. More generally f is called the acceleration, or
change in velocity in one second, and its unit is one unit of
length per second. Let L represent length in general and
T time, while M represents mass, then we have F = ML/T?,
or force dimensionally equals mass multiplied by length
divided by the square of time. The student tries hard to
comprehend this, but finds it impossible, for he knows that
force is not ML/T? and he knows that there is no way to
measure a force except by the number of units of force
which it contains.

The truth of the matter is that the equation F = mf is
not true. Experiments and experience teach that mf is
proportional to ¢F where ¢ is a constant, not that mf equals
F. When there are two different forces F and G which act
at different times on the same body they produce accelera-
tions f and g. Experience and experiments show that these
forces are proportional to the accelerations which they
produce, whence

F/G = f/s.
This is a fundamental equation which is entirely correct.

If the teacher starts with this, his students will have no
confusion of mind.

139

Into an apple cut two holes inclined like ab and ¢b in
Fig. 55. Into each hole put a small
quill so that when the string AC is < " <
inserted the friction may be small.
Then pull horizontally upon the string
by its ends 4 and C. As the pull increases, the apple will

Fig S5
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be seen to rise vertically by the upward pressure of the
string at b; as the pull slightly decreases, the apple will
fall. The spectators, who think that the string passes
straight through the apple, are filled with wonder at the
strange motion of the apple bobbing up and down.

140
CENTER OF GRAVITY

Many amusing mechanical tricks depend upon the
principle that the center of gravity of a system of bodies
always takes the lowest possible position; thus, a system
will be stable if its center of gravity, when slightly dis-
turbed, tends to fall to its original position.

To balance a cork upon the small end of a cane held
vertically with that end upward. Put the prongs of two
forks into opposite sides of the cork, letting the forks incline
downward at angles of about 30 degrees with the vertical.
Then the center of gravity of the cork and forks will be
below the bottom of the cork, and thus there will be no
danger of its falling off the end of the cane. The cane can
be carried around held in a vertical position with the cork
thus balanced on it.

A cork with two forks thus attached may be made to walk
along a horizontal bar. Put two pegs of equal lengths into
the bottom of the cork to act as legs, one being slightly in
advance of the other. Then place the cork with its forks
upon the horizontal bar, and set the forks into oscillation
like a pendulum, the oscillations being parallel to the plane
of the bar. The cork will then be alternately supported
upon one of the two legs, and hence will advance or walk
along the bar as long as the oscillations continue.
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When the vertical line through the center of gravity lies
without the base of support, the body will fall over, but
when it lies within the base it will not fall. A toy horse
standing with only his hind feet on the edge of a table will
not fall if a curved wire attached to his breast runs backward
and has a ball of sufficient weight at the free end. The
horse may be made to rock to and fro without danger of
falling, if the center of gravity of the horse and ball always
rises when disturbed and if the vertical line through that
center does not fall beyond the edge of the table.

142
INERTIA

Take several of the round wooden pieces which are used
in playing checkers and put them in a vertical pile on a
table. Then with a heavy knife blade strike the lowest
block very quickly in a direction exactly parallel to the
surface of the table. The lowest
block will then move out under the
impact of the blow but those above it
will not be disturbed except that the
whole pile will fall vertically to the
table. This is an illustration of the
doctrine of inertia, for there is no
reason why the pile should move laterally unless it receives
some impact from the blow; but this does not occur owing
to the slight friction between the wooden pieces and to the
suddenness with which the force is applied.

The principle of inertia is utilized by the Japanese in a
simple device (Fig. 57) for preventing the overthrow of

Fig. 56



128 RECREATIONS IN MATHEMATICS

their pagodas by earthquakes. From the roof A of the
pagoda there is suspended a heavy ball B by a wooden
pendulum rod. When the earthquake comes the founda-
tion of the pagoda is moved laterally to and fro and with it
N the lower part of the walls. The ball B,
/ however, does not move until the motion
can be communicated to it from the roof
through the suspending rod. As thisis a
slow process the top A of the pagoda
suffers only a slight lateral motion, and
hence the structure is prevented from
d ., being overturned by the earthquake.
@ The seismograph used for recording
vibrations due to earthquakes depends
Fig. 57 upon a similar principle. A heavy ball
is so arranged, usually at the end of a
horizontal pendulum, that it remains practically at rest while
the ground moves laterally from the earthquake shock.
Attached to the ball is a pointer touching lightly a sheet of
paper on the recording apparatus which rests on the ground
or floor. As this paper moves to and fro, the stationary
pencil traces a curve which shows the intensity and duration
of the earthquake shocks.

143

The cause of inertia may be imagined to be a change in
size or shape of the atoms of the body due to action of the
ether. Thus when a force puts a body in motion the atoms
assume new shapes or sizes and thus store up energy.
When the moving body meets resistance this energy is
expended in overcoming that resistance, and the velocity
of the body decreases. When a body comes to rest it
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cannot move again under the action of a force until the
atoms have assumed new forms and thus stored up the
energy imparted by the force.

GRAVITATION
144

Gravitation is the great unsolved puzzle in the mechanics
of the universe. The law of gravitation, namely, that any
two atoms of matter attract each other with a force pro-
portional to the product of their masses and inversely as the
square of the distance between them, states merely ob-
served facts and gives no clue as to the cause. The word
attraction is perhaps an unfortunate one, for it implies that
each body pulls upon the other. This might be true if each
atom were joined to all other atoms by stretched elastic
threads for the transmission of the force, but otherwise it is
difficult to account for the force of pull. In fact, instances
of pull are rare in mechanics; we say that the horse pulls
the wagon, but in reality the horse pushes by his shoulders
against the harness. The more rational explanation of
gravity is that two bodies are pushed together by pressure
exerted upon them from the space beyond their line of
junction. To account for this push, LeSage supposed that
multitudes of fine particles are moving in every direction
through space. If there was only one body in the universe,
these particles would impinge upon it from every direction
and hence no motion. of the body could occur. But for two
bodies, it is plain that each will intercept particles that
cannot fall upon the other, so that the bodies will be pushed
together. While this accounts for the law of gravitation,
it is of course no proof at all of the correctness of the theory,
and there is no evidence at all of the fine moving particles.
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Under the hypothesis of an ether which fills all space, the
facts of gravitation require that bodies must be pushed
together by the pressure of this ether. When two bodies
are separated to a distance by applied forces, energy be-
comes stored in the ether; when the forces are removed this
energy exerts pressures on each body which causes them to
move toward each other. This general statement is about
as far as we can go in explaining the cause of gravitation,
but this rests upon the hypothesis of a universal ether, the
existence of which has not been proved by any experimental
facts.

146

Many absurd speculations regarding the cause of gravity
have been made, and the following, from a pamphlet of
1893 called “Invisible and Visible,” is one of the worst.
““Gravitation is caused by the earth moving so fast that it
draws everything to it, like a train of cars (when you stand
close to the track) as it is passing.”

Magnetic or electric action can be prevented from being
propagated to a distance by screens of suitable material,
but nothing has ever been discovered by which the action
of gravitation can be screened off. The attraction of the
earth acts with the same power upon a body, whether or not
other bodies be interposed between it and the earth. Years
ago it was recognized that the problem of flying would be
solved if by any means a flying machine could be wholly or
partially relieved from the attraction of the earth.

In 1847 Orrin Lindsay published at New Orleans a
pamphlet entitled “Plan of Aerial Navigation, with a
Narrative of his Explorations in the higher Regions of the
Atmosphere and his wonderful Voyage around the Moon.”
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His “plan” consisted in annulling the force of gravity.
Well-prepared steel, after being superficially coated, amal-
gamated with quicksilver, and then strongly magnetized,
proved to be an impervious screen to gravitation. A hol-
low box made of these metal plates, rose from the earth;
to cause it to descend, a hole was opened in the bottom; to
cause it to move laterally, a hole was opened in the side.
It is unnecessary to explain here his voyage to the moon.

About 1goo there was published a novel by Simon New-
comb called “His Wisdom the Defender,” in which flights
by a huge machine were made by its property of annulling
the force of gravity. The inventor and owner made aerial
voyages over the earth, and compelled the nations to dis-
band their armies under the threat of dropping bombs
which would blow their cities into nothingness. Thus this
inventor, who was called “His Wisdom,” inaugurated upon
the earth a reign of universal peace.

146

One of the most interesting papers on the ether of space
is that of DeVolson Wood in the London Philosophical
Magazine of November, 1885. It is based on the known
facts: (1) that the ether transmits light at a velocity of
186 300 miles per second; (2) that the ether transmits 133
foot-pounds of energy per second from the sun to each
square foot of the earth’s surface. His discussion leads to
the conclusions (1) that the mass of a cubic foot of the ether
at the earth’s surface is 2 X 107 pounds, (2) that the ether
has an elasticity such that it exerts a pressure of 4 X 1078
pounds on each square foot of the earth’s surface, (3) that
the ether has the enormous specific heat of 4 600 coo coo ocoo,
so that to raise one pound of it 1° F. would require as much
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heat as it would to raise 2 300 0oo coo tons of water the
same amount. This medium, says Wood, will be every-
where practically non-resisting and sensibly uniform in
temperature, density, and elasticity. In one pound of it
there is 10 times the kinetic energy of a pound of gas.

147
THE DIAPHOTE HOAX

From a Pennsylvania daily newspaper of Feb. 10, 1880.

A special meeting of the Monacacy Scientific Club was
held on Saturday evening to listen to a paper by Dr. H. E.
Licks on the diaphote, an instrument invented by him after
nearly three years of study, and now so nearly perfected
that he feels warranted in bringing some few of the results
thus far attained to the notice of the public. There were
present, besides many scientists of Eastern Pennsylvania,
Prof. M. E. Kannick of the polytechnic school at Pittsburg,
and Col. A. D. A. Biatic of the Brazilian corps of engineers,
who is now in this country making extensive purchases of
iron and steel. The meeting was called to order by the
president, Prof. L. M. Niscate, who in introducing Dr. Licks
made a few remarks, saying that he had had an opportunity
to witness a few experiments with the diaphote, and he felt
convinced that it would ultimately rank with the telephone,
the phonograph, and the electric light as one of the most
remarkable triumphs of science in the nineteenth century.

Dr. Licks prefaced his paper by saying that the idea of
the invention was first suggested to his mind about three
years before by reading accounts of some of the early
experiments of Bell’s telephone, and that a little later when
Edison brought out the carbon instrument, his studies had
become so far advanced as to assure him of its theoretic



MECHANICS AND PHYSICS 133

possibility. By the telephone the sound of the human
voice may be heard hundreds of miles away. Why, then,
cannot light be transmitted in a similar manner, so that
by the use of a connecting wire one may distinctly see the
image of the object far removed? This, said Dr. Licks, was
the form in which the inquiry first suggested itself to him
nearly three years ago, and he felt gratified to be able to
exhibit to the club this evening an instrument called the
diaphote in which the practical realization of the idea had
been in a great measure satisfactorily obtained. The word
diaphote, from the Greek die signifying through, and
photos, signifying light, had been selected as its name,
implying that the light travelled through or in the wire.
Although popularly this might be imagined to be the case,
it was really no more so than with sound in the telephone.
There the sound waves strike a diaphragm that is set into
vibration, and generates induced electricity in the wire, this
causing corresponding vibrations in another distant dia-
phragm which reproduces similar sounds. In the diaphote,
likewise, the waves of light from an object strike a pecul-
iarly constructed mirror or speculum which is joined by a
wire with another similar speculum; the image of an object
in the first modifies the electric current in the wire and
passing quickly onward to the receiving instrument pro-
duces there a secondary image. The intermediate wire,
as in the telephone, may be hundreds of miles in length, yet
such is the delicacy of the diaphotic plates that the trans-
mitted image of a simple object is almost as distinct as the
original, and Dr. Licks feels confident that after the removal
of a few obstacles, of a mechanical nature only, the most
complex forms will be reproduced with the strictest fidelity
as to outline and color.
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The diaphote consists of four essential parts, the receiving
mirror, the transmitting wires, a common galvanic battery,
and the reproducing speculum. Dr. Licks gave a detailed
account of the experiments to determine the composition
of the mirror and speculum. For the former he had finally
selected an amalgam of selenium and iodide of silver, and
for the latter an amalgam of selenium and chromium. The
peculiar sensitiveness of iodide of silver and chromium to
light has long been known and their practical use in photog-
raphy suggested their application in the diaphote. It was
found, however, after many experiments, that their action
must be so modified that each ray of light should influence
the electric current proportionally to its position in the solar
spectrum, and the element selenium was selected as best
adapted to this purpose. At first a small mirror was
employed with only a single wire, but the images in the
speculum were confused and indistinct so that it became
necessary to make the mirror of pieces each about one-third
of a square inch in area and each having a wire attached.
In the diaphote exhibited by Dr. Licks to the club, the
mirror was six by four inches in size, and there were 72
wires which were gathered together into one about a foot
back of the frame, the whole being wrapped with insulating
covering; and in reaching the receiving speculum each little
wire was connected to a division similarly placed as in the
mirror.- From a galvanic battery wires ran to each dia-
photic plate and thus a circuit was formed which could be
opened or closed at pleasure. Dr. Licks explained how the
light caused momentary chemical changes in the mirror
which modify the electric current and cause similar changes
in the remote speculum, this causing a similar image which
may be readily seen or be thrown upon a screen by a second
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camera. He explained how the proportions of selenium
should be scientifically adjusted to the resistance of the
electric current so as to avoid any blending of the repro-
duced images. This, he said, had been the problem which
had caused him the most trouble and which at one time had
seemed almost insurmountable.

At the close of the paper an illustration of the powers of
the instrument was given. The mirror of the diaphote, in
charge of a committee of three, was taken to a room in the
lower part of the building, and the connecting wires were
laid through the halls and stairways to the speculum on the
lecturer’s platform. Before the mirror, the committee held
in succession various objects, illuminating each by the light
of a burning magnesium tape, since the rays from gas are
deficient in actinic power; simultaneously on the speculum
appeared the reproduced images, which for exhibition to the
audience were thrown on a screen considerably magnified.
An apple, a penknife, and a trade dollar were the first
objects shown; in the latter the outlines of the goddess of
liberty were recognized and the date 1878 was plainly
legible. A watch was held for five minutes before the
mirror and the audience could plainly perceive the motion
of the minute hand, but the motion of the second hand was
not satisfactorily seen, although Prof. Kannick by looking
into the speculum said it was there quite perceptible. An
ink bottle, a flower, and a part of a theater handbill were
also shown, and when the head of a little kitten appeared on
the screen the club expressed its satisfaction by hearty
applause.

After the close of the experiments the scientists con-
gratulated Dr. Licks on his invention, and the president
made a few remarks on the probable scientific and industrial
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applications of the diaphote in the future. With telephone
and diaphote it may yet be possible for friends far apart to
hear and see each other at the same time, to talk, as it were,
face to face. In connection with the interlocking switch
system it may be used to enable the central office to see
many miles of track at one time, thus lessening the liability
to accident. In connection with photolithography it could
be so employed that the great English papers could be
printed in New York a few hours after their appearance in
London. Our reporter also learned that Dr. Licks will
lecture on the diaphote next week before the American
Society of Arts, and that he will make definite arrangements
for the manufacture of the instrument as soon as the seven
patents for which he has applied are formally issued.
Within a week after the publication of the above article,
it was copied in whole or in part by numerous papers
throughout the United States, many commenting editorially
on the great possibilities of the marvellous diaphote. Some
papers said that sunlight would be transmitted by it from
the sunny side of the earth to light the side which was in
darkness. The New York Times said ‘‘the imagination
almost fails before the possibilities of what the diaphote may
yet accomplish.” The only paper which recognized the
article as a fake seems to have been the New York World,
which said, ‘“the hoax is a clever one and is interesting also
as depending for its success upon the opposite of the mistake
which was at the bottom of Locke’s famous ‘Moon Hoax’;
it is the misuse of the word mirror in connection with the
new ‘invention’ which has made the miracle of it so accept-
able to the public.” Within a month after the publication
of the diaphote hoax, items appeared in the papers announc-
ing the invention in Pittsburg of an instrument called the
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““telephole” by which two persons at a distance could see
each other as they talked over the telephone, and by which
any written or printed document could be transmitted in-
stantaneously to any distance. The inventors of this in-
strument, it was stated, had labored many years in making
experiments and now success had been attained. While
Dr. Licks used 72 wires, the Pittsburg inventors used but
one, and their applications for patents were soon to be
granted.

News of the diaphote soon spread to Europe, and in due
time there came back to us stories of wonderful inventions
there made. For instance in 1889, the news came that a
young German, named Korzel, exhibited an instrument by
which a person in one city could read a newspaper held
before a receiving plate in another distant city. The secret
of this marvellous instrument, it was said, lay in the sen-
sitiveness of selenium to the effects of light, its electric con-
ductivity changing with the color and intensity of the light
which impinged upon the plate. Very curiously all the
inventors of such instruments have used selenium since its
properties were first utilized in the diaphote by Dr. Licks.
Almost every year similar stories have appeared, the most
recent being one which was published in the New York
Times of May 29, 1914, in the form of a cable dispatch from
London. - This article states that on the previous day, Dr.
A. M. Low, a well-known scientific investigator, lectured
before the Institute of Automobile Engineers on ‘Seeing by
Wire.” For five years his experiments had been carried on
and now he had attained such success that pictures were
reproduced at a distance of four miles. His instrument
“has a receiving screen consisting of a large number of cells
of selenium, over which a ruler is moved rapidly by a small
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motor worked with a current of high frequency and about
soooo volts pressure. The receiver at the other end is
made up of a series of telephone slabs of steel, through which
the light passes.” Perhaps Dr. Low is on the right track,
and if his apparatus becomes a verity, then he should give
proper credit to Dr. H. E. Licks by calling it the diaphote.

148
THE ONE-HOSS SHAY

The secret of successful engineering construction is to
make each part of a structure just as strong as the other
parts, so that there can be no weak spot where failure may
occur. Oliver Wendell Holmes wrote many years ago a
delightful poem on this principle. It begins:

Have you heard of the wonderful one-hoss shay
That was built in such a logical way
It ran a hundred years to a day?

The “shay” was supposed to have been built by a Deacon in
Massachusetts who was resolved that it should be properly
constructed.

But the Deacon swore (as deacons do)

It should be so built that it couldn’t break down,
“Fur,” said the Deacon, “ ’tis mighty plain

That the weakest spot must stan’ the strain,
And the way to fix it, as I maintain, is only jest

To make that place as strong as the rest.”

The wheels were just as strong as the thills,
And the floor was just as strong as the sills,

And the panels just as strong as the floor,
And the whipple-tree neither less or more.

And the back cross bar as strong as the fore
And spring and axle and hub encore.
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The chaise was designed to run exactly a hundred years, and
so it did. When that time arrived a parson was riding in it
and the catastrophe came.

All at once the horse stood still,
Close by the meetin’-house on the hill,
First a shiver, and then a thrill,
Then something decidedly like a spill,
And the parson was sitting on a rock,
At half-past nine by the meetin’-house clock.

You see of course, if you're not a dunce
How it went to pieces all at once,
All at once and nothing first,
Just like bubbles when they burst.

End of the wonderful one-hoss shay,
Logic is logic! That’s all I say.
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NCE upon a time a man, after much labor,
raised a number of two digits to the 31st power
this containing 35 digits. Stating this fact to
a lightning calculator, he was about to give

the long number, when the calculator said that this was
unnecessary and that the root was 13. How did he know
this? Simply from having committed to memory a table of
two-place logarithms and by making a rapid computation
from them. Since the given power has 35 digits its log-
arithm lies between 34.00 and 35.00. Dividing these by
31 gives 1.09 and 1.13 as the logarithms of numbers between
which the root must lie. Then, remembering that the
logarithms of 12, 13, and 14 are 1.08, 1.11, and 1.15 the com-
puter instantly saw that the required number must be 13.
Hence, the man who computed that 34 059 943 367 449 284-
484 947 168 626 829 637 was the 31st power of 13 had his
labor for his pains, for there was no opportunity to give a
single figure of it to the lightning calculator. In fact 13 is
the only number of two digits whose 3ist power has 35
digits.
150
MERSENNE’S NUMBERS

In 1644 Pere Mersenne made certain statements regard-

ing numbers of the form 2P — 1 where p is a prime. These

statements seem to be that the only values of p, not greater
140



APPENDIX 141

than 257, which make 2? — 1 a prime, are 1, 2, 3, 5, 7, 13, 17,
31, 61, 127, 257 and that it is composite for all other values
of p. Thus, 2" — 1 = 2047 =23 X 89, and 28 — 1 =
2388 607 = 47 X 178 481. How he arrived at these con-
clusions is a mystery, but it is supposed to have been through
correspondence with the great mathematician Fermat.
There are 56 primes not greater than 257. Mersenne’s
statement has been verified for 38 of these, namely, for 10 of
the twelve values of 22 — 1 which he stated to be prime, and
for 28 of the 44 values which he stated to be composite. Al-
though much acute thought has been spent upon them by
great mathematicians like Euler and Gauss, yet 18 values of
2P — 1 are yet unverified, namely, for p = 89, 101, 103, 107,

109, 127, 137, 139, 149, 157, 167, 173, 193, 199, 227, 220,
241, 257.

Fermat, in 1679, gave a rule for determining factors of
the number 2?2 — 1. He said, in effect, that if 2 or 8 or 32
be subtracted from a perfect square, the remainder #» will
generally divide 2» — 1 when # is a prime and » — 1 is a
multiple of p. Thus, from 25 take 2, the remainder 23
divides 2" — 1 since 23 is prime and 23 — 1 is a multiple of
11. From 49 take 2, the remainder 47 divides 2% — 1 since
47 is prime and 47 — 1 is a multiple of 23. From 225 take
2, the remainder 223 divides 2% — 1 since 223 is prime and
223 — 1 is a multiple of 37. These three illustrations of the
process are given by Fermat.

The reason for this rule is unknown to me, but following
the same line of procedure I take 2 from 169 and 167 is
known to be a factor of 28 — 1; also taking 2 from 361 the
remainder 359 is a factor of 2" — 1; also taking 2 from 441
the remainder 439 is a factor of 2 — 1. Further, taking
32 from 121 the remainder 89 is known to be a factor of
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2! — 1. But this method breaks down when 32 is taken
from 841; here the remainder is 809 and is prime and 808
is a multiple of 101, hence it might be expected that 8og is
a factor of 2% — 1, but on trial this is found not to be the
case, the division yielding a remainder of 491. Fermat’s
method gives a factor for some values of 22 — 1 but it fails
in others.

The factorization of large numbers is a very difficult
subject. Some values of 2? — 1 have large factors; see
Bulletin of American Mathematical Society for December,
1903, where Cole shows that 193 707 721 and 761 838 257 287
are the factors of 2 — 1. For a very interesting his-
tory of the work done on Mersenne’s numbers see Ball’s
Mathematical Recreations and Essays.

151

In 1850 the Rev. T. P. Kirkman proposed the following
problem in the Lady and Gentlemen’s Diary, an annual
published in England: A schoolmistress takes her fifteen
girls out for a walk every day in the week; they are arranged
in five rows, each row containing three girls; how can they
be arranged for a full week so that no girl will walk with
any of her schoolmates more than once?

This is generally known as Kirkman’s School Girls Prob-
lem, and it has been discussed by many mathematicians.
The following is Kirkman'’s solution:

Sunday Monday Tuesday |Wednesday | Thursday I Friday Saturday
Q10203 abicy adie a1badz aiC262 a1bses aicsds
b1babs azbacy axdser azbsds QaC3e3 azbie; ax1dy

C€1C2C3 asdses a3bacs asci1ey ashidy asCads ashaes
didads bsdies dsbice bicser C1bsdy bacsdy ¢abser
e1e2€3 cadzer esbacy dicees e1bads esc1ds dsbies
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He also showed that there are four other solutions, so that
the schoolmistress might take out her fifteen young ladies
every day for five weeks without any girl walking with any
of her mates more than once in a triplet. Ball’s Mathe-
matical Recreations and Essays devotes 31 pages to this
problem but gives no clear solution of it. In 1862, Sylvester
claimed that the girls could walk every day for thirteen
weeks under the final condition of the problem.

152
DETERMINANTS

A determinant is an abridged notation for certain alge-
braic operations to be performed. The theory arose from
the formulas required for solving simultaneous equations of
the first degree. Thus, when there are two equations con-
taining two unknown quantities,

ax + by = a, @x + by = o,

the solution gives for the values of x and y,

_ bety — bico _ Wl — a0
B ab, — 0251, Yy dlbzg— szb1’
which may be written in abridged notation as follows:
_Clbl;dlbl _alcl_albl.
_Czbz.azbz e o az by
The quantities enclosed within the parallel lines are the
a

means that the

simplest possible determinants.
C2

quantities in the diagonal inclined downward to the right
are to be multiplied together giving a;c., and that from this
is to be subtracted the product of the quantities in the
other diagonal or azc1; thus, aice — azc; is the value of this
determinant.
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Again let there be three equations having three unknown
quantities, namely,
ax + by + az = dy,
@x + b2y + €2z = dy,
azx + bsy + ¢33 = dj.

Here the value of x in the determinant notation is
b1 c1 dl

by ¢ do
b3 C3 d3

| b1 %]
- | bz Co
as b3 Cc3

X =

in which the first determinant has the value

— b |? - +bs

cs ds

C1 d]_

2 dy
and this becomes by expanding each minor determinant,
b1 (Cads — csda) — b2 (1ds — c3dy) + bs (cide — ady).
Similarly, the second determinant in the value of x is
ay (bacs — bacz) — ag (bics — bscr) + az (bicy — bocy).

Here the signs of the second, fourth, etc., minor determi-
nants must be minus, while the others are plus.

Determinants have many interesting properties, only one
of which can here be mentioned. If any two adjacent rows
or adjacent columns be interchanged, the sign of the deter-
minant changes. Thus the three determinants:

Co d2

bl C3 d3

+3 —1 o -1 43 o +3 +1 o
+4 +2 +6| |42 +4 +6| |41 —3 +2
+1 =3 +2] {—3 +1 +2 +4 +2 +6

have the values +68, —68, and —68. When one or more
of the quantities in a column is o, it is convenient to inter-
change so as to make this the first column, and no change of
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sign will result if an even number of columns is passed over,
thus:

o +3 —1
+6 +4 +2|=0—-6(-9+1) +2(6+4) = +68.
+2 41 —3

1563

The notation “@ = b mod ¢” means that ¢ — b is exactly
divisible by ¢. Thus, 2*! = 1 mod # is a true statement
whenever # is a prime number greater than 2; for example,
let w = 7, then 2® — 1 = 63 which is exactly divisible by 7.
The expression ¢ = b mod ¢ is called a congruence and the
abbreviation “mod” means modulus, it being said that @
and b are congruent for the modulus ¢. This notation is
mentioned here because many students who see it in math-
ematical literature know not its meaning.

While it is true that 2! = 1 mod # when # is an odd
prime, it is not true that » must be a prime to satisfy the
congruence. In fact 2*0 = 1 mod 341, although 341 is not
a prime number. These facts and numerous other interest-
ing ones are proved in that branch of Higher Algebra known
as the theory of numbers.

154

To find the date of Easter Sunday for any year in the
twentieth century: Divide the given year by 19 and call
the remainder @, divide it by 4 and call the remainder b,
divide it by 7 and call the remainder ¢; divide 19a + 24
by 30 and call the remainder d; divide 20 +4¢+ 6d + 5
by 7 and call the remainder e. Then Easter is March
(22 +d +¢€) or April (d +¢ —9). In 1954 and 1981,
however, Easter comes one week later than the date given
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by this rule. Example: To find Easter for 1916: here
a =106, b =0, c =5, d =28, ¢ =4; then the date of
Easter Sunday is April 23. The earliest date on which
Easter can fall is March 22 and the latest date is April 25.

156
HOW TO DRAW A STRAIGHT LINE
The pantograph used for copying maps on an enlarged
or reduced scale is the simplest apparatus in which one
point always moves parallel to
another. Fig. 58 shows its sim-
plest form, ABCD being a paral-
£ . lelogram with joints at the corners
" and fastened to the paper at 4.
7/ The straight rod EFP is fixed to
AD at E and can slide longitudi-
nally along a peg F which is fixed
to BC at F. When the point p is
moved along a line of the map a pencil at the point P
traces a line everywhere parallel to » but on an enlarged
scale. When the line followed
by p is straight the point P
traces a straight parallel line.’
Fig. 59 shows the principle
of an apparatus by which a
point E can be made to move A¥%---- ;
in a straight line to 4. The fe
bar ED slides at D in the fixed Fig. 59
groove DB along a straight
line which always passes through the fixed point 4, and the
length AC equals EC or CD. As the point C is made to
rotate about 4 _in a circle Cc the end D slides along the

P

Fig. S8

€,




APPENDIX 149

groove and thus the point E moves in the straight line
EA.

Euclid’s postulate that a straight line can be drawn gives
no information as to how this may be done. It is usually
supposed to be drawn by means of a ruler, but then the
question arises as to how the ruler has been made straight.
In 1864 this problem was
solved by Peancellier by
means of a linkwork in
which a point C moves in
a circle Cc about a fixed
point B while another point
E traces a straight line ee.
Here the parallelogram
CDEF is jointed at the
corners, and the radius arm BC is one-half of the distance
CA, and 4 is also a fixed point which is connected with the
parallelogram by the rods AD and AF. Thus the circular
motion of C causes the right-line motion of E. Since there
can be no doubt about the circle, this apparatus solves the
problem as to how a straight line can be drawn.

Fig.60

156
MISCELLANEOUS FALLACIES

Plot the following points on the rectangular codrdinate
system and join the successive points by a curve; the first
number in each parenthesis being the value of x and the
second the value of y: (7.0, 4.5), (6.0, 4.7), (4.0, 4.5), (2.0,
3.0), (1.0, 2.9), (0.6, 2.7), (0.3, 2.0), (0.6, 1.0), (1.0, 0.7),
(2.0, 0.6), (3.0, 08), (3.5, 1.8), (4.0, 0.7), (4.5, 0.6), (5.0,
0'6)7 (48) 1'6)7 (5'07 1'8)7 (5'2: 2'0); (557 2'5); (7'07 2'6)7
(7.5, 2.6), (7.7, 2.9), (7.3, 2.9), (7.0, 3.5), (7.0, 4.5). When
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the reader has drawn this interesting curve, let it receive
careful study.

167

The camber of a bridge is a slight upward curve given to
the floor so that the structure may have the appearance of
strength and stiffness. In the days of early American
engineering an excessive camber was given to a certain
railroad bridge; it is said that the superintendent received
reports that the piers were sinking so as to leave the middle
of the structure higher up. Whether this story be true or
not, it is certain that the following was clipped from a news-
paper printed in 1879 in the Pennsylvania German region
along the Delaware River:

“It’s warm, Louis, ain’t it,” said Tod Hartzell to Louis Rapp, as they
met on the Delaware bridge yesterday. “Oh, vell, it is,” said Louis, “how
much you vay now Tod?” “Only 288 pounds,” said Tod. “I can beat
that,” said Louis, “for I vay 294 pounds.” The bystanders, by mental
arithmetic, added the weights of the men, and then hurried from the bridge
which cracked and groaned under the enormous load, while Louis and Tod

gracefully moved from the center of the arch which then sprung back to its
original position.

158

The following fallacy is taken from an old newspaper
where it is dignified by the title “A Scientific Lecture on
Glass.”

A neat, simple, and quick way of punching a hole through a glass plate is,
I venture to say, ladies and gentlemen, unknown to mostjof you. Nothing
can be easier than to punch such a hole and at the same time to cause the
utter destruction of the glass, but it is not of this that I am to speak, but
rather of a simple scientific operation by which anyone may punch or drill
a small hole through a plate of window glass, without injuring it or cracking
it in the slightest degree. The tools necessary for this purpose are two sets
of punches, an old file, and a heavy hammer, which every mechanic possesses.
Armed with these, each of you may become skilled in this most interesting
and useful accomplishment.
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The thicker the pane of glass on which you are to operate, the easier is
the process. Having selected it, you choose a place not too near the edge,
and with the end of the old file scratch two marks upon it crossing each
other like the letter x. Then turn the plate over and precisely opposite
scratch a similar cross. Next select two set punches of the same size and
fasten one of them securely in a vise. Let an assistant hold the plate in a
horizontal position with the lower cross resting exactly on the fastened
vertical punch, while you with the left hand hold the other punch on the
upper cross, and with your right hand grasp the heavy hammer. You then
elevate the hammer, but when you strike be careful to give only a moderate
blow, for a violent one might cause the destruction of the glass. The effect
of the blow, if it be scientifically directed, will be to cause a very slight
indentation in the glass. Then let your assistant turn the plate over and
again balance it upon the fastened punch, while you with the hammer repeat
the careful blow. The indentation will now be more marked than before,
and by repeating the process half a dozen times a hole will be made entirely
through the glass plate which will be as finely cut as if produced by a swiftly
moving rifle ball, while no crack will appear.

When I was captured by the Waldamites this accomplishment proved of
the greatest benefit to me, and in fact enabled me ultimately to escape. These
singular people, although excellent glass workers, knew no way of cutting it,
and when they saw how readily I punched such holes, they not only made
obeisance before me, but what was better, they gave me boiled rice and
roc’s eggs to eat, which were very acceptable, as for six weeks I had eaten
only roots with now and then an herb.

QUOTATIONS
159
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Eucim, Elements, Book I, 300 B. C.
160
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ARrcHIMEDES, Measurement of the Circle, 220 B. C.
Translation by Haurer, 1798: Jeder Kreis ist einem
rechtwinklichen Dreyek gleich, dessen eine Seite um den
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rechten Winkle dem Halbmesser und die andere dem
Umfang des Kreises gleich ist.

161

Sic incertum, ut, stellarum numerus par an imparsit . . . .
CicEro, Academia, about 50 B. C.

162
This is the third time; I hope, good luck lies in odd
numbers. . . . They say, there is divinity in odd num-

bers, either in nativity, chance, or death.
SHAKESPEARE, Merry Wives of Windsor, 1599.

163

And now we might add something concerning a certain
most subtile Spirit which pervades and lies hid in all gross
bodies, by the force and action of which Spirit the particles
of bodies mutually attract one another at near distances and
cohere, if contiguous; and electric bodies operate to greater
distances, as well expelling as attracting the neighboring
corpuscles; and light is emitted, reflected, refracted, in-
flected, and heats bodies; and all sensation is excited, and
the members of animal bodies move at the command of the
will, namely, by the vibrations of this Spirit, mutually
propagated along the solid filaments of the nerves, from the
outward organs of sense to the brain, and from the brain to
the muscles. But these are things that cannot be explained
in a few words, nor are we furnished with that sufficiency of
experiments which is required to an accurate determination
and demonstration of the laws by which this electric and
elastic Spirit operates.

NEwTON, Principia, Book III, 1687; American edition,
1848.



APPENDIX I51

164

Vedete hora quanto mirabilmenti si accordano cdl sistema
Copernicano queste tre prime corde, che da principio
parevan si dissonanti. Di qui potra instanto . . . vedere
con quanto probabilita si porsa concludere, che non la terra,
ma il Sole sia nel centra delle conversioni de i pianetti. E
poiché la terra vien collocata tra i corpi mondani, che
indubitatamente si muovono intorno al Sole, cioé sopra
Mercurio, e Venere, e sotto a Saturno, Giove, e Marti,
comme parimente non sara probabilissimo, e forse neces-
sario concedera, che essa ancora gli vadia interno?

GavLiLel, Third Dialogue, 1630.

1656

In philosophia experimentali, propositiones ex phaenon-
enis per inductionem collectae, non obstantibus contrariis
hypothesibus, pro veris aut accurate aut quamproxime
haberi debent, donec alia occurrerint phaenomena per quas
aut accuratiores reddantur aut exceptionibus obnoxiae.

NewToN, Principia, Book III, 1687.

166

It is said that the Egyptians, Persians, and Lacedemo-
nians seldom elected any new kings but such as had some
knowledge in the mathematics; imagining those who had
not, to be men of imperfect judgements, and unfit to rule
and govern.

Though Plato’s censure that those who did not under-
stand the 117th proposition of the 13th book of Euclid’s
Elements ought not to be ranked among rational creatures,
was unreasonable and unjust, yet to give a man character
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of universal learning, who is destitute of a competent
knowledge in the mathematics, is no less so.
'FrANKLIN, Usefulness of Mathematics, 1735.

167

Dieu parle, et le chaos se dissipe 4 sa voix:

Vers un centre commun tout gavite i la fois.

Ce ressort si puissant, 'ame de la nature,

Etait enseveli dans une nuit obscure:

Le compas de Newton, mesurant 'univers,

Leve enfin ce grand voile, et les cieux sout ouverts.
VoLrTAIRE, Letter to Madame Chatelet, 1735.

168

On s’imagine que toutes ces etoiles, prises ensemble, ne
constituent qu’une tres-petite partie se 'univers tout entirer
a l'egard duque ces terribles distances ne sout par plus
grandes qu’un grain de sable par rapport a la terre. Toute
cette immensible est l'ouvrage du Tout-Puissant, qui
governe e’galement les plus grandes corps, comme les plus
petits, et qui dirige le succes des armes, auquel nous sommes
intéréssés.

EULER, Letters to a German Princess, 1760.

169

Geheimnissvoll am lichten Tag

Lisst sich Natur des Schleiers nicht berauben,

Und was sie deinem Geist nicht offenbaren mag,

Das zwingst du ihr nicht ab mit Hebeln und mit Schrauben.
GokrHE, Faust, Part I, 1790.

170
Der Gebrauch einer unendlichen Grisse als eine Vollen-
deten ist in der Mathematik niemals erlaubt. Das Unend-
liche ist nur eine Fagon de parler, indem man eigentlich von
Grenzen spricht, denen gewisse Verhiltnisse so nahe kom-
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men als man will, wihrend anderen ohne Einschrinkung zu
wachsen verstattet ist. A
Gauss, Letter to Schumacher, 1831.

171

Then Rory, the rogue, stole his arm round her neck,
So soft and so white, without freckle or speck;
And he look’d in her eyes, that were beaming with light,
And he kissed her sweet lips — don’t you think he was right?
“Now, Rory leave off, sir, you'll hug me no more,
That’s eight times today that you've kissed me before.”
“Then here goes another,” says he, “to make sure,
For there’s luck in odd numbers,” says Rory O’More.
Lover, Rory O’'More, 1839.

172

There are terms which cannot be defined, such as number
and quantity. Any attempt at a definition would only
throw a difficulty in the student’s way, which is already
done in geometry by the attempts at an explanation of the
terms point, straight line, and others, which are to be found
in treatises on that subject. A point is defined to be that
“which has no parts and which has no magnitude”; a
straight line is that which “lies evenly between its extreme
points.” . . . In this case the explanation is a great deal
harder than the term to be explained, which must always
happen whenever we are guilty of the absurdity of attempt-
ing to make the simplest ideas yet more simple.

DE MORGAN, On the Study of Mathematics, 1831.

173

All the mathematical sciences are founded on relations
between physical laws and laws of numbers, so that the aim
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of exact science is to reduce the problems of nature to the
determination of quantities by operations with numbers.
MaxweLL, Faraday’s Lines of Force, 1853.

174

Pour les astres en général at pour les grand Comeétes en
particulier, trois mille ans ne sont pas grand’chose: dans le
calendrier de 1'éternité c’est moins qu’ une seconde. Mais
pour ’homme vous savez comme moi, mathematicien
lecteurer, que trois mille ans c’est boucoup, beaucoup!

FramMMARION, Recits de l'infini, 1892.

175
There still remain three studies suitable for freemen.
Calculation in arithmetic is one of them; the measurement
of length, surface, and depth is the second; and the third
has to do with the revolutions of the stars in reference to
one another.
PraTO, Republic, 350 B. C., Jowett’s Translation, 1894.

176

The heavens themselves, the planets, and this centre,
Observe degree, priority, and place,
Insisture, course, proportion, season, form,
Office, and custom, in all line of order;
And therefore is the glorious planet, Sol,
In noble eminence enthron’d and spher’d
Amidst the others; whose med’cinable eye
Corrects the ill aspects of planets evil,
And posts, like the commandment of a king,
Sans check, to good and bad: but when the planets
In evil mixture to disorder wander,
What plagues and what portents? what mutiny?
What raging of the sea? frights, changes, horrors,
Divert and crack, rend and deracinate
The unity and married calm of states
Quite from their fixture.
SHAKESPEARE, Troilus and Cressida, Act I, Scene 3, 1602.
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Lassune’ ke’ nipune’ ani tis de machir mirive’ iche manir
se’ de évenir toné chi amiché ze forime’ to viche tarviné.
Frournoy, Des Indes a la planete Mars, 1goo.

178

The following is one of the many stories told of “old
Donald McFarlane,” the faithful assistant of Sir William
Thomson: The father of a new student when bringing
him to the university, after calling to see the Professor
(Thomson) drew his assistant to one side and besought
him to tell him what his son must do that he might stand
well with the Professor. “You want your son to stand
weel with the Profeesorr?” asked McFarlane. “Yes.”
“Weel, then he must just have a guid bellyful o’ mathe-
matics!”

S. P. TuompsoN, Life of Lord Kelvin, 1g10.

179

Todhunter was not a mere mathematical specialist. He
was an excellent linguist; besides being a sound Latin and
Greek scholar, he was familiar with French, German,
Spanish, Italian, and also Russian, Hebrew, and Sanskrit.

MACFARLANE, Ten British Mathematicians
of the Nineteenth Century, 1916.
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The Appendix is the Soul of a Book.
Old Proverb, n. d.
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