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PREFACE

TaE study of Mechanics as presented in this volume is founded
upon a course in mathematics extending through the Calculus.
It is assumed, moreover, that the student has already become
familiar with the fundamental ideas of force, energy, and work
through such preliminary courses as are included in textbooks
on General Physics. In short, this volume presents the subject
of Mechanics in that relation to other mathematical subjects which
has become established in the curricula of the technical schools
of this country. It should be emphasized, however, that the
volume includes, for purposes of review, a discussion of the
fundamental notions and many simple exercises involving these
notions.

Attention may be called to the arrangement in the text. This
arrangement is founded upon experience in teaching the subject
for many years in the Sheffield Scientific School of Yale Univer-
sity. In 1903 Professor E. R. Hedrick prepared a mimeographed
text which followed the conventional arrangement of treating
statics first. This text was used for one year. It then developed
that an obvious disadvantage existed in not taking up directly
upon the conclusion of the study of the Integral Calculus the
calculation of the integrals of Mechanics involving centers of
gravity and moments of inertia. The point was that this formal
integration out of the way, the continuous study of Mechanics
proper need not afterwards be interrupted. Acting upon this
conviction, the present text was prepared essentially as here
published in 1907, and has since that time been used in mimeo-
graphed form. The general plan of the arrangement is that
a single problem may at any one time be under discussion. Thus,
when the question of energy of rotation is solved, the appearance
of the moment of inertia integral presents no complication. This
has been disposed of already. Similarly, the equations of motion
presenting themselves as solutions of the force equations have

v



vi THEORETICAL MECHANICS

been previously discussed. Another feature is the departure
from convention by arranging types of motion under the corre-
sponding fields of force. In this way it is made clear that the
emphasis is to be laid upon the force and velocity of projection.

In the case of a book which, like the present volume, has been
long in the making, it is difficult to record definite acknowledg-
ments of aid and indebtedness. There are included in the text
many problems suggested by past and present members of the
mathematical department of the Sheffield Scientific School.
Further, the text has been the subject of discussion at frequent
departmental conferences, and for all suggestions received on
these occasions the authors gratefully here record their thanks.
The diagrams were skillfully prepared by Mr. S. J. Berard of
the department of mechanical engineering.

New HaveNn, CONNECTICUT
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THEORETICAL MECHANICS

CHAPTER 1

MOMENTS OF MASS AND INERTIA

1. Center of gravity. It is shown in a subsequent chapter
(Art. 108) that the influence of the weight of a solid in all
questions in mechanics is precisely that of a force equal to the
weight applied at a point called the center of gravity * of the solid.
It is assumed that the student is familiar with simple facts con-
cerning the center of gravity. For example, the center of gravity
of a straight line (or thin straight rod) is its middle point.
Again, the center of gravity of a triangle is the point of inter-
section of the medians.

This statement may be proved as follows. Divide the
triangle into thin strips by lines parallel to one side. Draw
the median AD. The center of gravity of each strip lies on
AD. Hence the center of gravity of the triangle lies on AD.

Similarly, the center of gravity lies on the median BE. This
establishes the statement.

The formulas for the center of gravity in-
troduced in the following sections involve mag-
nitudes called the moments of area or moments of mass. The
student is asked to accept these formulas as definitions. Later,
in discussing weight the formulas appear as giving the center of
gravity.

2. Moment of area. Consider an element of any plane area

7 AA = AzAy,
I—7
s !@” at the point (z, y). Then the products
I I zAA, yAA
0 X

are called the moments of AA with respect to the axes OY and
0X, respectively.
- * Called also center of mass.

1



2 THEORETICAL MECHANICS

This definition is extended to any finite area
A in the usual way by summation and taking
limits. Hence if M, and M, denote the mo-
ments of area for the area A with respect to the

r7) : x axes OX and O, respectively, then
If limit
M, = ffydA :ffydwdy: , Ax =0, EZyAwAy ,
® =0

imit

1
MyszwdA =5‘fwdwdy= {2{0:0, ZzwAwAy
Ay =0,

The Center of @ravity of any given area A is the point (, )
given by the quotients

an oy _Jfwaa a, _Jfvaa,

area area area = area

In these formulas # and y are the codrdinates of any point within
the area.

The common denominator (the area of the given figure) must
be found, if not otherwise known, by integration; that is,

Area = f f dzdy.

In working out examples using (II) calculate the moments

f f zdA and f f ydA, first, and then divide by the area itself.

Dimensions. Whenever it is desirable to express numerically
the magnitude of a physical quantity, we do so by choosing a
unit of that quantity. It is convenient, when possible, to choose
the units of different kinds of quantities so that some of them
depend upon others. The units which are chosen arbitrarily are
called fundamental. The derived units are those which are so
defined as to depend upon the fundamental units. In mechanics
it is customary to choose as fundamental the units of length, mass,
and time, and all other units are made to depend upon these.
For example, if the unit of length is the foot, the unit of area
is defined as the area of a square whose sides are one foot in
length. The relation between the derived unit of area and the
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fundamental unit of length is then expressed by the dimensional
equation, Area = length?

Similarly, the dimensional relation between the derived unit of
volume and the fundamental unit of length is

Volume = length3,

The dimensional equation is a concise way of expressing the
relation between the units of different quantities, and is not to
be interpreted as an ordinary algebraic equation.

Moment of area has been defined as the product of area by
distance, and hence the unit of moment of area is of the third
degree in the unit of length.

Moment of area = area x length = lengths.

The fact that every term of an equation involving physical
quantities must be of the same degree in the fundamental units
furnishes a useful check in the problems of mechanics. For
example, in (II) z is of the first degree in the unit of length, and
hence the second member of the first equation must also be of the
first degree. This is easily verified, since the dimensional relation

gives M, _length®

th.
area length? leng

3. Symmetry. The center of gravity will lie upon any axis of
symmetry which the figure may possess. For ex-
ample, if OY is such an axis, we may divide the
figure into the equal elements AzAy and sum up,
taking two symmetrical pairs at a time. Then the
sum of the moments with respect to OY for two
such pairs, that is, z;AzAy + 2,AzAy, will vanish,

since #; = — z,. Hence the mo-
7 ment with respect to 0, that is,

d M, = f zd A, also vanishes, and 7=0.

ILLusTRATIVE ExamerLE. Find the center of gravity
X of the area bounded by y2 = 2 px and = h.

Solution. Evidently y = 0.

Calculate the moment of area with respect to OY
F—— N «  Thisis, by (I), .

ffxdxdy ff‘/_ dyde =2 2pf Yar =435

=}

Pa

ya
ya

F_

[ &
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Next find the area. This is
+\/2pz

f f dyde =4 V3p hi-
" Z=3h by (II).
PROBLEMS
Note. If the equation of the curve is given in polar codrdinates (p, 6), place
¥ in (I) and (II) dA = pdpdb, = = p cos 6, y =p sin 6.

' ) 1. Find the center of gravity of the triangle bounded

PN by the lines y = mz, y =0, x = a. 4 . - _ma
Tpcoso ns. x_§a,y~—3—.
_ b losing 2. Find the center of gravity of the triangle bounded
0 by the lines y =ma, y=—mx, y=b. Ans, £=0, j=2b.

0 X P

3. Find the center of gravity (1) of a quarter of a
circle in the first quadrant; (2) of one sixth of a circle, supposing the xz-axis to be

an axis of symmetry. Ans. (1) F=7= 4_a; () 5= 2&4—/ —o.

4. Find the center of gravity of a quadrant of the elhpse = .|. b2 =1.
a

7. Find the center of grav1ty of the -area bounded by the semicubical parabola
2 — 28 —_
a2 =% and x = a. Ans. E=Fa.
8. Find the center of gravity of the area bounded by y = asin® and the
’ a

z-axis between x = 0 and 2 = a=. _ _
Ans. x=}%ar, y=*}an.

9. Find the center of gravity of the area bounded by the hyperbola zy = c2,

z2=a,x=>b,and y =0. b—a yy= c2(b—a)

Ans. = .
ns. @ logb—loga 2 ab (logd — loga)

10. Find the center of gravity of the area bounded by the parabola y2 = 4 ax

and the straight line y = mzx. Sa

= =_2a
Ans. x=
ns. = 5

2 YT
11. Find the center of gravity of the area included by the curves y2 = ax
and «? = by. Ans. T = 5 a¥b%, § = g5 a¥ob.

12. Find the center of gravity of the area bounded by the cardioid
p=a(1+cosb). Ans. x=%a.
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13. Find the center of gravity of the area included by a loop of the curve

=@ cos 26. _ 0}
° Ans. 5 128aV2
106 =
14. Find the <'3enter of gravity of the area included by a loop of the curve
p=acos 30. _ 8lavVv3
Ans. €= .
80 7

15. The lengths of the parallel sides of a trapezium are ¢ and b. Show that
the center of gravity of the area divides the line joining the middle points of the
parallel sides in the ratio (@ +2b)/(2a + b).

16. If the sides of a triangle be 3, 4, and b feet, find the distance of the center
of gravity from each side. Ans. %, 1, 4 foot.

17. Find the center of gravity of the area bounded by the cissoid
y2(2a—x) =
and its asymptote z = 2 a. Aans. t=%a.

18. Find the center of gravity of the area bounded by the witch
22 =4a2QRa—y)
and the axis of X. Ans. y=1}a.

19. Find the center of gra,vity of the area bounded by the curves y% = ax
and y2 = 2 ax — 2, which is above the axis of X.
. 167 —44 — a

Ans. x=a ;Y=
16 m# — 40 3r—8

20. Find the distance from the center of the circle to the center of gravity of

the area of a circular sector of angle 26. Ans. 37 su; o

21. Find the distance from the center of the circle to the center of gravity of

the area of a circular segment, the chord subtending an angle 2 6.
Ans, 270 §ms o,
36 — sinfcos 0

4. Theorem on the center of gravity. The center of gravity
of an area is a fived point relative to that area. That is, the posi-
tion of the center of gravity does not de-
pend upon the axes of codrdinates, but
upon the area itself only. The proof of
this familiar truth is as follows.

Let L be any line, and assume its equa-
tion in the normal form (55 (¢), Chap. XIV)

zcosw+ ysinw —p=0.

o 7 X

Consider the element of area AA= AzAy at (z, ), and let the
distance from L to (z, y) equal ». Then the product rAzAy is
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called the moment of A4 with respect to the line L. Extending
to a finite area as before, the double integral

) M, = f f rdA

is called the moment * of area with respect to L.

This integral may be expressed in terms of the moments M,
and M, with respect to OX and OY as follows. By Analytic
Geometry,t or formula 56, Chapter XIV,

r=xco8o -+ ysinw — p.

.'.ffrdA=ff(mcos o+ysinw—p)dd4
—coscoffdi+smmffydA pffdA

=cos o M, + sin oM, —
Using formulas (IT), putting 4 = Area of t-he ﬁgure, then

M, = Az, M, =43, f dA=A. Hence

M,= (zcosw+ysinw —p)A =74,

if 7 = distance from L to the center of gravity (z, y).
Hence this

THEOREM. The moment of area of a plane figure with respect
to any line equals the product of the area and the distance from that
line to the center of gravity. Hence the moment of area with respect

to any line through the center of gravity
A i3 zero.

Now suppose we have worked out
the codrdinates of the center of gravity
C for a plane figure with respect to a
given- set of axes OX and OY. Let
0'X', 0'Y' be any other set of axes.
Let the new coordinates of any point in the area be (2', y').
Also let the new coordinates of C'be (2/, ). Then, by Art. 2,

[7)

* Also called the first moment, because of the appearance of the first power of the
distance 7 in the integral.

+ Smith and Gale, Elements of Analytic Geometry (Ginn and Company), p. 106.
Future references are to this volume.
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formulas (IT), the coérdinates of the center of gravity found by
using the new axes are

f 2 dA f fy'dA
area area
By the theorem just given we have, however,

f f #'d A = moment of area with respect to 0¥’ = A%/,

y'dA = moment of area with respect to 0X' = Ay'.

fffx'dA ffy’dA]
Hence l T Y ] = (7, y'); that is, the same cen-

ter of gravity is found by using the new axes. This investiga-
tion, therefore, verifies a well-known property of the center of
gravity, namely, that it is a fixed point relative to the area.

SOLIDS OF REVOLUTION

5. Moment of mass. The volume of a thin flat plate or lamina
equals the product of its surface by the thickness. If of uniform
density, its mass is the product of the volume and the density.
For the present, the density will be assumed constant and will be
denoted by 7. The lamina being thin, its center of gravity is
sensibly the same point as the center of gravity of its surface or
area. The moment of mass of a lamina with respect to a plane
parallel to its surface equals the product of its mass and the dis-
tance from the plane to its surface. The plane being parallel to
the surface of the lamina, every point of the lamina is at the same

Z| Z

; . LT gl
I Jp

distance from the plane. Passing now to a homogeneous (of
uniform density = 7) solid of revolution, we may slice up such a
solid by a series of equidistant parallel planes perpendicular to
the axis of revolution (fig. @). Assume OX as this axis, and Az
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as the common thickness of the slices. Now consider each slice
“trimmed up ” into a circular lamina, one face of the slice remain-
ing unchanged, so that the solid is now replaced by a new solid
obtained by revolution of the set of rectangles in fig. 4. The
mass Am of any one of the circular lamin is (fig. ¢)

Am = 7Av = 7 - Ty?Az,

for y(=#) is the radius of the base and Az the thickness. Since
the lamina is parallel to YZ, its moment of mass with respect to
YZ is zAm or 7- wy?Az times z. The total moment of mass of
all the circular lamine may then be represented by ZzAm or also
Srry2xAz. The moment of mass of the solid itself is then
defined as the limiting value of this sum when Az approaches zero.
Using for this the symbol M,,, we have

limit
a1 my.= f xdm =Tw f wy2dw(= A;m:l o ETwwyMoc).

The method explained here of slicing the solid of revolution
into circular laming is very important and should be mastered by
the student.

The center of gravity of a solid of revolution whose axis is
along OX is defined as the point (2, ¥, ), where

o xdm T / zy?dz
av z=—"" = =t » y=0,z2=0.

mass mass mass

It is clear that y =2 =0, since the centers of gravity of all the
lamine are on the axis of revolution, and hence the center of
gravity of the solid is on the axis of revolution.

In the calculation of z, we need to find two integrals,

M, =rr ./I zy’dz and Mass = f dm = 77 | y?de,
in which y és to be found in terms of = from the equation of the
generating curve.

Dimensions. The quantity moment of mass has been defined as
the product of mass by distance. Hence in terms of the funda-
mental units of mass and of length the dimensional relation is

Moment of mass = mass x length.
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PROBLEMS
HOMOGENEOUS SOLIDS OF REVOLUTION

1. Find the center of gravity of the cone formed by revolving the line hy = az
around the z-axis between & = 0 and x ="h. Ans. x=4%h.

2. Find the center of gravity of a hemisphere.
Ans. Distance from base = § radius.

8. Find the center of gravity of the paraboloid of revolution formed by revolv-
ing about the z-axis the parabola y? = 4 ax from x =0 to x = b.
Ans. € =2%b.

4. The area bounded by the lines y =0, x = @ and the curve y2 =4 az is
revolved about the y-axis. Find the center of gravity of the solid formed.
Ans. y=1%a.
. 2 2
b. The area of the ellipse % + % =1, in the first quadrant, is revolved about

the z-axis. Find the center of gravity of the solid formed. Ans. x=23%a.
6. Thé area bounded by the lines y = 0, # = 2 ¢ and the hyperbola %:—i—z =1
is revolved about the z-axis. Find the center of gravity of the solid formed.
7. The area bounded by the lines x =0, x =@, y =0, and the hyperbola

2 g2
%2 - %2 +1 =0 is revolved about the z-axis. Find the center of gravity of the solid

formed.

8. The area bounded by the linesy =0, ¢ = %, and the curve y = sin x is re-
volved about the z-axis. Find the center of gravity of the solid formed.

9. The area bounded by the linesz =0, x = @, y = 0, and the curve y = ¢z is
revolved about the z-axis. Find the center of gravity of the solid formed.

10. Find the center of gravity of the solid generated by a semiparabola
bounded by the latus rectum, revolving round the latus rectum.
Ans. Distance from focus = % of latus rectum. -

PARTICULAR SOLIDS

6. Moment of mass. Certain solids may be divided by a series
of parallel planes into lamins whose sur-
faces depend in a simple manner only upon
their distances from a parallel fixed plane.
Taking this plane as YZ and considering a
lamina at the distance z, then if A4 is its
-surface, by hypothesis, A= f(x),—a known
function. Hence Am = 1f(2) Az (if the
thickness of the lamina is Az). The moment of mass of the
solid with respect to ¥Z will then be defined as equal to
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Q) M,= [|zdm= sz f(z)dx(: k::(t) Erzf (x) Az).

The distance z of the center of gravity from the ¥YZ-plane is of

course equal to

@ z

M 'rfx S(@)dx
Mass . '/' f(x)de ’

since Mass equals | dm = j S (z)dz.

In (2), the uniform density = cancels out. The function
J (@), it is to be remembered, is the area of a cross section parallel
to YZ at the distance .

ILLusTRATIVE EXAMPLE.

Find the center of gravity of any cone, pyramid,
or cylinder of uniform density.

Solution. The definition of a cone or pyramid
must be clearly understood. This is the following.
Given any plane area B and a point V" without it.
Draw the line VP through V and any point P on the
boundary of the area B. Now let the point P move
around the boundary of B, carrying in its motion the
line VP. The surface thus generated by the line VP,
called a generator, and the area B bounds a solid.
If B is bounded by straight lines, the solid is a
pyramid, otherwise a cone. The area B is called the
base and V the vertex.

The following theorem is now assumed for any cone or pyramid. Take a section
A parallel to the base B. Then the areas of A and B are in the same ratio as the
squares of their distances from the vertex V.

To apply formula (2), let the area B lie in the YZ-plane. Let the section 4 be
at the distance x from the base. Draw the line VH perpendicular to the base B,

and let VH = h = altitude.

Then

distance of the area A4 from vertex = h — x,
distance of the area B from vertex = h.

.. by the theorem, %: (=2 ra= f—;;-(h —x)2
L

2

Hence in (2), f(z) = %(h —x)

h

o My=r &) lﬁx (h — %)%z = 5 T B2,
n

M=r

Hence

'B
o 72
T=1h

(h — 2)2d% = } 7 Bh.
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Now it is clear that the centers of gravity of all sections of the cone or pyramid
which are parallel to the base B will lie on a line joining V" to the center of gravity
of the base. This line is called the axis. Hence the

TuaeoreM. The center of gravity of any homogeneous cone or pyramid is the
point on the axis which is one fourth of the distance from the
base to the vertex.

A cylinder is the solid obtained thus. Let a generating
line AA’ move always parallel to itself, while the point A
follows a plane curve inclosing an area B. The solid
bounded by this surface, by the area B, and by the section B’
parallel to B, is called a cylinder. The line joining the cen-
ters of gravity of Band B’ is called the axis. This line is parallel to the generator
AA'. Clearly, the center of gravity of the cylinder is the middle point of the
axis.

PROBLEMS
1. Find the center of gravity of a frustum of a pyramid with a square base.
2. Find the center of gravity of an elliptic cone. The equation of an elliptic

cone is y_:’ + %; =22. Take the plane x = 1 for the base of the cone.
a

3. Find the center of gravity of the solid bounded by the elliptic paraboloid

2 g2
(%_1.%:2, and the plane z = 1.

4.* Find the center of gravity of a right conoid with circular base, the radius of
the base being r and altitude a.

5. A rectangle moves from a fixed point, one side varying as the distance from
this point, and the other as the square of this distance. Find the center of gravity
of the solid generated while the rectangle moves a distance of 2 feet.

2 2
6. On the double ordinates of the ellipse % + % =1, isosceles triangles of verti-
a

cal angle 90° are described in planes perpendicular to that of the ellipse. Find the
center of gravity of the solid generated by supposing such a variable triangle moving
from one extremity to the other of the major axis of the ellipse.

7. Given a right circular cylinder of altitude @ and radius of base ». Through a
diameter of the upper base pass two planes, which touch the lower base on opposite
sides. Find the center of gravity of the solid included between the planes.

8. Two cylinders of equal altitude @ have a circle of radius # for their common
upper base. Their lower bases are tangent to each other. Find the center of
gravity of the solid common to the two cylinders.

9. An anchor ring is cut in two equal parts by a plane through its center, which
passes through its axis., Find the center of gravity of one half.

. *For the volumes of the solids of examples 4-8, see Granville, Differential and
Integral Calculus (Ginn and Company), p. 422. Future references are to this volume.
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7. Moment of mass. Any solid. Consider any solid and an
interior point (z, y,2). The density of this solid may be variable.
In this case, we assume the density T at any interior point (z,y, 2)

. to be some function of the co-
B

ordinates, say
' (1) density at (=, 9,2)

The moment of mass for this element with respect to the coordi-

nate planes we define thus:

y T =7(2,¥,2).

i i Taking an element of vol-
B A

\
\
Wi
i ume
Wf : Av=AzAyAz,
z we have as the element of
mass at (z, ¥, ?),

Am=r (z,y,2) Av.

with respect to YZ==z- Am,
113 13 13 ZX=yAm,
« “  « XY=z -Am.

The moments of mass of the solid with respect to the codrdinate
planes are derived from these by summation and passing to the
limit as Az, Ay, and Az approach zero. That is, we define for
any solid, ‘

QD) M;,,:fffwdm, M,,:fffydm, Mxy:fffzdm,

the limits being so chosen that the entire solid is included. For-
mulas (V) are included in the single formula

e ff e

where r is the distance from one of the codrdinate planes to any
interior point of the solid. In these formulas z, y, and z are the
coordinates of any point within the solid. The center of gravity
of the solid is then the point whose codrdinates z, ¥, z are given
by

(VD =M M= o M.,
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In formulas (V) and (VI) we set

dm =7 (z, y, 2) dedydz, mass = f f f dm.

In determining the center of gravity of a solid, four integrals,
namely, the moments with respect to the three codrdinate planes
and the mass, must be calculated.

Homogeneous solids. In this case the density = is constant.
For such solids, a theorem corresponding to that of Art. 3 holds,
namely,

The center of mass of @ homogeneous solid lies in any plane of
symmetry of the solid. The proof is left to the reader. To derive
formula (IIT) (Art. 5) from (V), proceed thus. We have

M=t f f f xd:volydz:rr‘f[: f dydz]xdx.

®= constant

But [ f dydz]: area of cross section in the plane z = constant,

@ = constant

and hence equals 7wy2 under the conditions of Art. 5.

oM, = f wywdz,

which is (IIT). )

THEOREM ON THE CENTER OF MAss. Results analogous to
those of Art. 4 are readily derived for solids; namely,

The moment of mass of a solid with respect to any plane equals
the product of the mass by the distance from the plane to the center
of gravity.  The center of gravity is a fived point relative to the solid.
This proof is left to the reader.

PROBLEMS
1. Find the center of gravity of the first octant of the homogeneous ellipsoid
2
g2+ =L Ans. T=}a, j=3b, z=}e.

2. Find the center of gravity of the homogeneous solid bounded by the surface

2 _ — — — _ _ _ —
22 = zy, and the planes x =@, y = b, 2=0. Ans. E=8a,7=1b, % = 45 Vab.
3. Find the center of gravity of the paraboloid of revolution formed by revolv-

ing about the z-axis the pa,rabpla, y2 =4 ax from x =0 to x = b, supposing the den-
sity to vary as «2. Ans. x=4D.
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4. Find the center of gravity of a hemisphere whose density varies as a2, as-

suming the base in the YZ-plane and the origin at the center of the base.
Ans. z=%a.

5. Find the center of gravity of the cone formed by revolving the line hy = az
around the z-axis between =0 and & = A, assuming the density varies as z".
n+3
n+4 he

6. Find the center of gravity of the homogeneous solid bounded by the surfaces
22 +y2=4z, 22+y2=3xand z=0.

Ans. T =

7. The axes’of two cylinders each of radius @ intersect perpendicularly. Find
the center of gravity of the solid included by the two cylinders and a plane through
their axes. Ans. § a from the plane.

8. A thin plate whose density varies as (h%2 — x’)"i is bounded by the lines
y=ax,y =0, and x = h. TFind its center of gravity. Ans. x=3}wh; y =} rah.

9. Find the center of gravity of the first quadrant of a circular plate whose
density varies as xy. Ans. T=y=a.

10. Find the center of gravity of a circular sector (angle = 2, radius = a) if
the density varies as the distance from the center. Ans. 1= 3a sing

T4 6 °

11. Find the center of gravity of a circular sector in which the density varies
as the nth power of the distance from the center.

n+2 ac

Ans. n__—-l—{—- 3 where ¢ is the radius of the circle, I the length of the are, and

¢ the length of the chord of the sector.

12. Find the center of gravity of a circle in which the density at any point
varies as the nth power of ‘the distance from a given point on the circumference.
Ans. It is on the diameter passing through the given point at a distance from
2 (n+2)
n+4
13. Find the center of gravity of a quadrant of an ellipse in which the density
at any point varies as the distance of the point from the major axis.

— 3 —
Ans. x="a,y=
7 8 Y

this point equal to - a, a being the radius.

3w
—E—b.

8. Principle of combination. Since the moment of area or of
mass is a definite integral, if an area or solid

Y is divided into two parts, the moment of the
AEETh whole equals the sum of the moments of
2N R A the separate parts. Thus consider the ac-
TE, 1?)  companying figure, in which (zy» ¥y) is the
Wy g center of gravity of the area A;, and (z,, ¥,)

5 1 % the center of gravity of the area 4,. Tak-

ing moments with respect to
0X: total moment= Ay = A4, y, + 4, 753
0Y : total moment = Az = A, z; + A, Z,.
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Hence the center of gravity of the combined areas is

— A151+A252 —_A1?71+A2é72
(VII) @ Ay + A4, y= A1+ Ao ’

These formulas agree with those for the point of division in

formula 50, Chapter XIV, if A =%- Hence this
1
THEOREM. The center of gravity of a plane figure composed of
two parts divides the line joining the centers of gravity of the parts
tn the tnverse ratio of the areas of the parts.

A similar theorem holds for solids.

The discussion holds for an area (or solid) resulting when a
portion of the area (or solid) is removed, if its area or mass be
taken negatively. The proof, which is left to the reader, comes
from (VII) by transposition. In working problems under this
head, the line joining the centers of the parts may conveniently
be taken for one axis of coordinates.

TIrvustraTIVE ExasmpreE. To find the center of gravity of the remainder of a
circle of radius 2 r after a circle of radius » has been removed as indicated in the
figure.

Solution. Let ¢ be the center of gravity sought, Y
and denote the area of the large circle by 4, and
that of the small circle by 4;. Then we have
A1 = —7r1'2, ¢ ¢ r
.A2 =4 7r2, X
Substituting in (VII),
i ——1rr2-'r+41rr?~0=_r

3 rre 3’

Evidently y is zero by symmetry. Hence the center of gravity ¢ lies on the x-axis
at a distance of 4 to the left of the origin. Also ¢ divides the line ¢;c; in the ratio
A= e =—4,
Az
PROBLEMS

1. A rod of uniform thickness is made up of equal lengths of three substances,
the densities of which taken in order are in the proportion of 1, 2, and 3; find the
position of the center of mass of the rod.

Ans. At % of the whole length from the end of the densest part.

2. If five ninths be cut away from a triangle by a line parallel to the base,
show that the center of gravity of the remaining area divides the median in the
ratio 4:5.
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3. One corner of a square plate of side ¢ is cut off by a line joining the middle
points of two adjacent sides. Find the center of gravity of the remainder.

Ans. \221'1 from the center.

4. An equilateral triangle is formed on one side of a square. Find the center

of gravity of the whole area. Ans. _8a¢ from base of triangle.
8+2V3

5. One corner of a square of side 2 @ is cut off by a line drawn from a corner
to the middle point of an opposite side. The opposite corner is also cut off by
removing a circle of radius p having its center at the corner. Find the center of

gravity of the remainder.
6. Find the centers of gravity of the shaded portions of the following figures.
a a 3

7. A cylinder is 12 in. long, and for 8 in. of its length has a diameter of 4 in.;

for the remaining 4 in. it has a diameter of 3 in: Find the center of gravity.
) Ans. 514 in. from thick end.
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8. A cone having the same base and vertex is cut from the paraboloid of revo-
lution whose generating curve is y? =4 ax between =0 and x = b. Find the
center of gravity of the remaining solid. b

Ans. ==,
2

9. From a sphere of radius R is removed a sphere of radius r, the distance
between their centers being c¢. Find the center of gravity of the remainder.

Ans. It is on the line joining their centers and at a distance Rscr” 5
—r

center.

from the

10. Find the center of gravity of a cubical box without a lid, the inside edge
being 20 in. and the thickness of the wood 1 in.

11. Find the center of gravity of the remainder of an equilateral triangle from
which has been cut an isosceles right triangle with hypotenuse coincident with a
side of the original triangle.

12. A right circular cone whose base is of radius r is divided into two equal
parts by a plane through the axis. Prove that the distance of the center of gravity

of either half from the axis is :—r .

13. Find the center of gravity of half of a regular hexagon.

14. From a hemisphere is cut a cone having the same base and altitude. Find

the center of gravity of the remainder. Ans. Distance from base = } altitude.

15. From a right circular cylinder is cut a cone having the same base and
altitnde. Find the center of gravity of the remainder.

Ans. Distance from base = § altitude.

16. From a right circular cone of altitude a is cut a similar cone of altitude b,

the bases of the two cones being in the same plane. Find the center of gravity of

the remainder. Ans. Distance from base = L % — b*

igd— b8

9. Center of gravity of an arc. The center of gravity for any
plane curve is given by formulas analogous to (II), Art. 2, ob-
tained by replacing the element of area or mass by the element of
arc of the curve, that is, for a plane curve, by 66, Chapter XIV,

p dy\2 dz\7
1d=d2d”=1<_~’/>d=1 (_> :
W do =+ @ =1+ () T ae=[1+ (E)Tar
The formulas are Y
VIII _ Jawas —_f yds e
( ) ax = arc y Y= arc 9 a'/

in which ds is found by (1). In these z and y
are the codrdinates of any point on the curve. ol

Formulas (VIII) are used to find the center of gravity of uni-
form thin wires. If o is the area of the cross section, and As the
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length of a piece whose projections on 0X and OY are Az and
Ay, respectively, then for the mass of this piece we write
Y Am = cAs times the density (= 71);
1) or Am=r7.0As.

For the moments of mass with respect to
0X and OY of this piece, we have the
products

|

8

N\
-_MN

Y N——

>

ol X

yAm and zAm,

respectively. Thus we obtain for a plane-curve wire as in
P Yy p

formulas (II),

M f roads f rads
miss f rods f s
- l'myds f Tyds
y=m"‘ss=fmds =f'rds ,

since the constant, o, divides out. If the wire is uniform, = is
also constant, divides out, and we have (VIII).

x

I

@

ILLustraTIiVE Exampre. Find the center of gravity of a quadrant of the

hypocyecloid x'§ + y% = ag.

Solution. Consider the part of the curve in the first
quadrant.
Then
‘ . . » M g
fxds:ﬁ) x\/1+<d_ac) de=a j; x da:_ga.
@ dr 2 3
Juao=f (&) +1as = 3o %

¢ —_—
"ds :j:) \/1 + (%?—/)2 die = ga. Hence, applying (VIII), x =y =Za-
x

[ 3] ]

10. Theorems of Pappus. Consider any area in the X ¥-plane.
The distance of the center of gravity from the z-axis is given
by the formula (II),

@ y =Lf—i@—dx,
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where A denotes the area. Let the area be revolved about the
z-axis. The volume generated is given by the definite integral

2 V=m f y2dz.

Consider the numerator in (1). Integrat-
ing with respect to y,

’ 1 (eg=1V
©)) ijdydx—2fg/dx—2w,

comparing with (2).
Substituting in the second member of (1), we get

@) y:%-g+A, 0r27r37=;11—f.

Now 27y = length of path described by the center of gravity.
Hence the

FirsT THEOREM. If any plane area be revolved about an ex-
terior azis in its plane, the length of the path described by its center
of gravity 8 equal to the volume generated, divided by the area
revolved.

This theorem has two uses: (1) if the area and its center of
gravity are known, we may find the vol-

ume of the solid of revolution; (2) if the
/‘ area and volume are known, we may find
2 x the center of gravity. For example, to
find the distance of the center of gravity

of a semicircle from the center, we have

X.’

9 i volume of sphere 4 a? h _ 4da
Y = — =4 whence yj = -—.
4 semicircle wa?’ Y=34

Next consider any curve in the XY-
plane. The distance of the center of
gravity from the z-axis is given by the

formula (VIII), x X
: yds
® y= :

8
where s denotes the length of the curve. Let the curve be re-
volved about the 2-axis. The surface generated is (68, Chap. XIV)

S=27rfg/ds.
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But the length of the path described by the center of arc is
(multiplying both members of (5) by 2) :

2m !g/ds
27y =

8

w |y

Hence the

SEcOND THEOREM. If any plane curve be revolved about an ex-
tertor axis in its plane, the length of the path described by its center
of gravity 18 equal to the surface of the solid generated, divided by the
length of the arc revolved.

This theorem has two uses: (1) if
the length of the arc and its center are
known, we may find the surface of the
solid of revolution; (2) if the length of
the arc and the surface of the solid are
known, we may find the center of gravity of the arc.

For example, to find the distance of the center of gravity of a
semicircle from the center, we have

X

— 4 7ra? - _ 2
2wy = surfa.ce of sphere _ 4 T4 whence 7=2a
* semicircumference Ta T
. PROBLEMS

1. Find the center of gravity of an arc of the circle p = a between — 6 and + 6,
and from this derive the results for quadrantal and semicircular arcs.

Ans. =%508  Por quadrantal arc 6= T, %=-29_
6 4 V2

For semicircular arc 6 = Z, % = 2a

™

2. Find the center of gravity of a thin straight wire of length ¢ whose density
varies as the nth power of the distance from one end. n+1 a
n+2

3. Find the center of gravity of the perimeter of the cardioid p = @ (1 + cos 8).
Ans. £ =4a,5=0.

Ans. =

4. Find the center of gravity of the cycloid = aarc vers g— Q2ay — yz)%

between two successive cusps. Hint. e =Y Ans. Z=arm, = 4?“.

W Vaay—y? ,
b. Find by the theorem of Pappus the center of gravity of one fourth of a circle
in the first quadrant. 4a

Ans. =9 =
ns. E=9 =
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6. Find by the theorems of Pappus the volume and surface of the torus gener-
ated by revolving the circle (x — b)2 + y2 = a2 (b > a) about the y-axis.
Ans. V= 2n%2b, S =4 n2ab.

7. The ellipse f;+z—z= 1 is revolved about the line x =2¢a. Find by the
o
theorem of Pappus the volume generated. Ans. 4 w2a2%.
8. An equilateral triangle revolves around its base, whose length is . Find
(1) the area of the surface and (2) the volume of the solid generated.
Ans. (1) 7a2 V3 ; (2) 2:‘_8.
9. A square of side ¢ is revolved around an axis in its plane, the perpendicular

distance of which from the center isc. Find (1) thearea of the surface and (2) the
volume of the solid generated.

10. A rectangle is revolved around an axis, which lies in its plane and is per-
pendicular to a diagonal at its extremity. Find the area of the surface and the
volume of the solid generated.

11. Moment of inertia. Plane areas. Consider an element of

area
AA = Az Ay,

at the point (2, y). The products,
PAA, PAA,

are called the moments of inertia or second
moments of AA° with respect to the axes OY and OX respec-
tively. The definition is extended to a finite area by summation
and passing to the limit. Using I, I, for the moments of inertia
with respect to OX and OY, respectively, then

1= j‘ j‘ y2dA = j f yrdacdy = ﬁ%r%i:(g EyZAwAy] ;

(€8.9)

I,= 5' f a2dA = f j‘ xrdxdy = ﬁ%r%ltg xlAxcAy

In these formulas # and y are the codrdinates of any point within
the area. Formulas (IX) are embraced in the single formula

o)) I= f f PdA,

where 7 is the distance from the axis in question to any point
within the area. This integral is called also the second moment
of area, from the second power of the distance ..
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Since each element y2AzAy or 2?AzAy is essentially posi-
tive, the moment of inertia* is never zero, but a positive
e number.

Its dimensions are area times square of a
length, and hence it is of the fourth degree

Mo in the fundamental unit of length.
0 ‘ X

IvvustraTIVE Exampre. Find I, for the portion
of y2 = 2 px cut off by x = h.
ke Solution. We have, by (IX),
B )
I= f j ctdedy = f [ f_ v dy]x%la:: 2v3p j' "e¥dr = 432 phi.

Vipz

Since 4 =4V ﬁh%, we get for I, the expression
I,= 34 h2.
7

PROBLEMS

Note. If the equation of the curve is given in polar codrdinates (p, 9), write
in (IX)
dA = pdpdb, x = pcos b, y =psiné.

1. Find I for a rectangle of sides 2@ and 2 b: (1) with respect to an axis through
the center of gravity parallel to the side 2 ¢ ; (2) with respect to the side 2 a.

Ans. (1) 43’1“:; @ %Aw.

2. Find I for a circle with respect to a diameter. Ans. } Aa?
3. Find I for an ellipse: (1) with respect to its major axis; (2) with respect
to its minor axis. Ans. (1) § 4b%; (2) § Ao
Find I for a right triangle with respect to one side.
Find I for a square with respect to a diagonal. . Ans. $5 Aa?.
Find I for an’equilateral triangle with respect to a median.
Find I, for the cardioid p = a(1 + cos 6).
Find I, and I, for one loop of the curve p = ¢ cos 2 4.
Find I, for the lemniscate p? = a2 cos 2 6. Ans. I, = Zis Br+8)at

® ® ook

12. Theorems on moments of inertia. The moment of inertia
of the element of area AA =AzAy with re- y
spect to any line or axis L equals

r2AA,
where r is the distance from the line I to

the point (2, y). The moment of inertia of
a finite area with respect to L is then

@)

* It appears later that moment of inertia determines the kinetic energy of revolution.
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X) L= (rraa = (raxay,

in which » is the perpendicular distance from the line L to any
point (z, y) within the area.

Let us apply (X) to the case of an axis parallel to 0X, whose
equation is y =a. Then » =y — a, and hence

IL=/'f(y—a)2dA=ff(y2_2ay+a2)dA
—‘/:/:/%ZA—‘)a fydA+a2 fdA

@ .. I,=1I,—-2aM,+a?4 (by (IX)
Art. 11, and (11) Art. 2).

This formula expresses the moment of in-
ertia I, in terms of the moment of inertia
with respect to any parallel axis 0X, the
moment of area with respect to the latter,
and the area itself.

But suppose the center of gravity lies on OX Then 7=0
and also M, =0. Hence

(XD I=I +a’A.

An axis passing through the center of gravity is called a grav-
ity axis.

This establishes the important

THEOREM. The moment of inertia of a plane area with respect
to any axis equals the moment of inertia with respect to the parallel
gravity azis, increased by the product of the area by the square of the
distance between the axes.

This statement shows that the moment of inertia with respect
to a gravity axis is less than the moment of inertia for any parallel
axis.

Radius of gyration. The quotient of the moment of inertia by
the area is the square of a length called the radius of gyration.
Thus, if 7, denote this,

21y

rL —’Z

in which 7, is the radius of gyration with respect to the axis L.
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PROBLEMS
1. Find the radius of gyration in the problems on page 22.
2. Find I and 7 for a circle with respect to a tangent. Ans. I =} 4a?, 72=§a?%

3. Find I'and 7 for an ellipse with respect to a tangent (1) at the end of the
major axis; (2) at the end of the minor axis. Adns. (1) I=§ 4a?; (2) I=§ Ab2%

4. Find I for a right triangle with respect to a line through one vertex parallel
to the opposite side.

5. Find I for a square with respect to a line through one vertex parallel to the
diagonal joining the other two vertices.

6. Find I for an equilateral triangle with respect to a line through one vertex
parallel to a median.

13. Further theorems. In the preceding section, the axis L
was drawn in the plane of the given area. It is necessary, however,
to consider moments of inertia with re-
spect to axes without, but parallel to this
plane. Let L be such an axis in the fig-
ure. Then if r is the perpendicular dis-
tance from the axis L to any point (z, )
within the area, we define in a manner
precisely analogous to the foregoing,

I,— f f A = f f r2dady.

Now project, the line L upon the plane of the area, and take this
projection as the axis OX. Let the distance between L and
0X equal @. Then evidently 72= a2 + y?% and hence ;

IL=ff(y2+aﬁ)dA=ffyﬂdA+a2ffdA.

(XIT) o I =L+ a2 A.

The moment of inertia of an area with respect to an awis
parallel to its plane equals the moment of inertia with respect to the
projection of the given axis on its plane increased by the product of
the area by the square of the distance from the axis to the plane.

14. Polar moment of inertia. The moment of inertia of an
area with respect to the origin is defined as equal to

(XIII) 1,= f f (a? + y?)dA = 5' f x?dA + j f yidA.
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It will be observed that (2? + y?) A4 is the product of A4 by
the square of the distance from (z, ) to an axis through O, per-
pendicular to the plane of the area. e

Such an axis is called a polar axis. :

Comparison with (IX), Art. 11, enables
us to write (XIII) in the form

(XIV) I,=1.+1,
Hence the 1) X

THEOREM. The moment of inertia of an area with respect to a
polar azts (called the polar moment) equals the sum of the moments
with respect to two mutually perpendicular axes
drawn through its foot.

A
—4 If polar  coordinates (p, @) are wused, the
> % origin O being the pole, I, the polar moment of

A

- inertia, is given directly by

(XV) To=({e-papao= | (papas.

Moments of inertia of a circle. On account of important appli-
cations in the next section, the moments of inertia of a circle are
now worked out.

Let @ = radius. Then, by (XV), the

polar moment of inertia with respect to
~ an axis through the center is

€)) %:fa[f2"d0]p3dp=r—gf=%a2,
o Leo

where 4 = area of the circle.
Also since I, = I, by symmetry, we have, by (XIV),

1 A
2 i e 2.
@ I, 210 1

In words: the polar moment of inertia of a circle with respect to
its center equals the product of one half the area and the square of
the radius ; with respect to any diameter — the product of one fourth
the area and the square of the radius.

15. Flat thin plates or laminz. Moments of inertia of
Jamine are obtained from the corresponding moments of inertia of
their surfaces by replacing the area by the mass of the lamina.
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For example, the polar moment of inertia of a cireular lamina with
respect to its center equals the product of one half the mass by the
square of its radius.

The moment of inertia of a circular lamina with respect to a
diameter equals the product of one fourth its mass by the square of
the radius. '

16. Solids of revolution. Moments of inertia of such solids
are obtained by slicing and trimming the solid into circular laminza
by a series of equidistant
planes perpendicular to the
axis of the surface, and con-
sidering the limit of the
} % sum of the moments of

/ 0 inertia of the laminase. If
the axis of revolution be
chosen as 0X, the common
thickness of the lamin® as Az, and the density as 7, the mass Am
of any lamina is
¢)) Am=rry?Awz.

Moment of inertia of a solid of revolution with respect to the axts
of revolution. The moment of inertia of any one lamina with
respect to the axis of revolution is the same
as the polar moment of a circular lamina

. -
Snee. ———
- danne

1
with respect to its center. By Art. 15, | li
this moment is equal to 0 z X
@ %”1 2=%y4Ax by (D).
The moment of inertia of the solid is accordingly
(XVD) I.= }fyﬂdm = f 12"—' yidx,

in which y is to be found in terms of z from the equation of the
generating curve.
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ILLustrATIVE ExampLe. Find the moment of inertia with respect to the axis
of revolution of a cone formed by revolving about the xz-axis the line y = max between
z=0and x=>d.

Solution. From (XVI),

b mibd
I, =17 f gt gy = TTID0
=)™ 10

Since the radius of the base @ = mb and the volume =
I, = {5 Ma?.

253
T we have

PROBLEMS

1. Find I for a rectangle of sides 2@ and 2 b with respect to a line perpendicular
to the plane and passing through the center. Ans. IT= M (@@ +?)
- I=3 .

2. Find I for a right triangle with respect to a line perpendicular to its plane
and passing through the vertex of the right angle. .
Ans. } Ac?, where c is the hypotenuse.

3. Find I for the area of an ellipse with respect to an axis perpendicular to
the area and passing through the center. Ans. I=1% A(a?+ b2).

4. Find I and 7 for a sphere with respect to a diameter. Ans. I=% Ma2

5. Find I and 7, for an ellipsoid of revolution about the x-axis.
Ans. I= % Mb2
6. Find I and 7 for a right cylinder with respect to its axis.
’ Ans. I= 4} Ma?.

7. Find I, for the solids of revolution about the x-axis whose generating

curves are’ (@) y*=4axr fromx=0 to x=b;
®) y =sinx ¢ =0 ¢ x=nm;
() y =mx+b* 2=0 “ x=c;
@ y =ex “oxe=0 “ x=aq.

Moment of inertia of a solid of revolution with respect to an axis
cutting the aztis of revolution at right angles. We wish to find the
moment of inertia with respect to OY. 5
To do this, we must first find the moment  |-—eoe—.
of inertia of one lamina with respect
to 0Y. Now OY is an axis parallel to
the surface of the lamina. Let DD' be
the projection of OY upon this surface.
Then, by (XII), Art. 13, for the lamina
we have

(3) Iy (for one lamina) — I, + 22 Am.

But 7, is the moment of inertia of the lamina with respect to
a diameter. Hence, by Art. 15,
Am

€)) I,= —4—,92-
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Substituting in (3) gives
A
(5) -I;/ (for one lamina) — "_4”—1/3/2 + 22Am.

Summation and passing to the limit leads to the result

2 2
(XVII) I gor the sotiay = f Gi— + a:2> dm=1 f (% + m“)vyzdm,

in which y must be expressed in terms of z from the equation of
the generating curve.
PROBLEMS

1. Find the moment of inertia of a right cylinder of radius ¢ and altitude &
with respect to a diameter of the base. Ans. I= % (a2 +4h2).

2. Find the moment of inertia of a right circular cone of altitude % and radius
of base a, with respect to an axis through its vertex and perpendicular to its geo-

metrical axis. Ans. I= & M(4h2%+ a?).
3. Find the moment of inertia of the cone of problem 2 with respect to a
gravity axis perpendicular to its geometrical axis. Ans. I=¢ M (k2 +4a?).

4. Find I, for the solids of problem 7, p. 27.

17. Moments of inertia of solids in general. Consider any
solid and an interior point (=, y, 2). If the density at this point
is T (%, y, 2) (compare Art. 7), the element of mass is

@ Am = tAzAyAz.

The moments of inertia of Am relative to the co6rdinate planes
" are defined as .

@ I,=2Am, I,,=y*Am, I, =2Am.
The square of the distance of (z, y, 2) from the axis of # being
y? + 2% (with similar expressions for the other axes), the moments
of inertia of Am with respect to the codérdinate axes are

3 L=@+HAm, L= (2 +HAm, L= (2+ yDHAm.

The moments of inertia for the entire solid may now be written
down, namely,

Allmlﬂ(?) 2

x

1,.= 2dm = aAm |,
(XVID | §§ Jaam a¥co

I.= fj‘fy%lm, I,= fffzﬁdm H
(XIX) I.= fff(yﬁ +28dm, I,= fff(z‘&’ + a?)dm,

I= f ff(wz +yHdm,
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where dm = (2, y, 2) dzdydz, and (2, y, 2) is any point within
the solid.
Formulas (XVIII) and (XIX) are included in the formula

2= [ f fram

where r is the perpendicular distance from the axis or plane in
question to any point within the solid.

Dimensions. The moment of inertia of a solid has been defined
as the product of mass by the square of thé distance. Hence the
derived unit of moment of inertia is expressed in terms of the
fundamental units of mass and of distance by the dimensional

equation
Moment of inertia = mass X length2

By the radius of gyration of a solid with respect to any axis is
understood a length 7, whose square is the quotient of the moment
of inertia with respect to the axis by the mass. Thus

(8a) r2= I , ete.

The relations
(4) It=1;x+Izy1 Iy=1;/z+Iz~w L=1;/z+1;m
obviously hold. In words,

The moment of inertia of a solid with respect to any axis equals
the sum of its moments relative to two mutually perpendicular planes
passing through the axis.

Homogeneous solids. For such solids the density = is every-
where constant. Formulas (XIX) applied in this case to a homo-
geneous solid of revolution about the z-axis work out as follows:

b)) L= fff{y2+zz)dxdydz ='r'f[f (y2+z2)dydz]d:v.

Z=constant

But f (y*+ 2*)dydz calculated for any plane section z=

constant is obviously the polar moment of a circle with respect to
its center. Since the radius of this circle is y, then (Art. 14)

2 4
® . f P+ dyde="L . yp = T2
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%5 L= flzﬁdx,

which is (XVI), Art. 16.
Similarly for the same solid,

®) 1, = f J (& + ) dadyde

— f [ f ] dydz]¢2dx+7 f [ f deydz]dx.

&= constant x = constant
But f f dydz calculated for any plane section when z= con-

stant, is the area of that section; that is,

© [ f f dydz]: -
= constant
Again, f f 22dydz for the section z = constant is the moment of

inertia of that section with respect to its diameter in the plane
XY. Hence (Art. 14),

10) [ffzzdydz:]= 'eryz -y

Substituting in (8) gives
4
an I, = varxzyzdx + T Zr%dz;
that is, (XVII).

18. Parallel axes. If F isany plane, the moment of inertia of
any solid with respect to E is defined as

o e ff [

where 7 is the perpendicular distance from
the plane to any point (z, y, 2) within the
solid.

Parallel planes. Let E and E' be
two parallel planes, » and #' the dis-
tance from them to any interior point
(2, ¥, 2) of a solid. Then if a is the |
common distance apart of F and F',

we have
r =7+ a, and hence

I

F
_
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IE=fffr2dm=ff ' + adm
=fffr’2dm+2a.fffr’dm+a2ff dm.
Butfffr'2dm=IEl, ff dm =M,

and f f f r'dm = M7, where 7 is the distance of the center of
gravity of the solid from Z'. Hence
Suppose E' passes through the center of mass. Then 7 =0, and
we have the important result
©)) ' Iy = Iy + a2M.
Any plane passing through the center of a mass is called a grav-
ity plame.

THEOREM. The moment of inertia with respect to any plane is
equal to the moment of inertia with respect to the parallel gravity
plane, increased by the product of the entire mass and the square of
the distance between the planes.

Since in any set of parallel planes one and only one passes
through the center of the mass, it follows at once from (2) that
of all moments of inertia with respect to parallel planes that with
respect to the gravity plane is the least.

Parallel axzes. Let L and L' be any two parallel lines. Let B’
be the plane passed through the two lines L and L/, and let & and
E' be planes through L and L/, respectively,
perpendicular to £''. Then, from (1),

I, =1y +2aM7 +a?M.
Adding I to both members, we have
(8) Ip+ Ip'=Ip + Ipn + 2a M7 + a*M.
But, by (4), Art. 17,
Ip+ Iy'=1, and Iy + Ipn= 1.

Also if L' (and consequently E') passes through the center of
mass, we have 7 =0, and (3) becomes

(4) IL=IL’+a2M
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Hence the theorem stated above holds when the word “plane ” is
replaced by “axis.”

PROBLEMS
1. Derive formulas for the moments of inertia of plane arcs (or wires).
Ans. I = j-‘ryﬁds s L= jrmﬂds ; ds= (da? + dy2);-'-
2. Find I for a solid cylinder with respect to an element. Ans. § Ma?
3. Find I for a solid sphere with respect to a tangent line. Ans. § Mo?

4. Find I for a solid ellipsoid of semiaxes a, b, ¢ with respect to the axis a;
with respect to a tangent line at the extremity of the axis b.

2 1 o2 2 1 o2

Ans. Mb +o ; M6—!’—+c—.

5 5

5. Find I for a uniform wire in the form of an equilateral triangle of side a,

(1) with respect to a line perpendicular to the plane of the triangle and equidistant

from the vertices ; (2) with respect to a line through a vertex perpendicular to the

plane. Ans. (1) Ma?

2

6. Find I for a solid cylinder with respect to a line perpendicular to its axis and
intersecting it at a distance ¢ from the end, the altitude of the cylinder being % and
the radius of the base c. Ans. LI Mc2+ 3 M (h?—3he+ 3¢?).

7. Find I for a straight rod of length @ with respect to an axis perpendiclﬂa.r
to the rod and at a distance d from its middle point. Ans. M( +d )

8. Find I for an arc of a circle whose radius is ¢ and which subtends an angle
2 o at the center, (1) with respect to an axis through its center perpendicular to its
plane ; (2) with respect to an axis through its middle point perpendicular to its plane;
(8) with respect to the diameter which bisects the arc.

Ans. (1) Ma?; (2) 2M( —S‘%"f)az; ) M(1—S‘L2”£>‘f.

2a )2
9. Find I for the arc of the cycloid x =a (8 —sin6),y = a (1 — cos8) with
respect to the base. Ans. $% Mo?.

19. Relation between moment of inertia of a beam and polar
moment of a right section. Consider any homogeneous straight

beam (density = 7) whose elements are par-
allel to 0Z. Then, by (XIX),

A L= f [' f (2 + ) dedyds
- Tf[ff(xu 7 dxdy:ldz.

z=constant

But f f (2% + y?) dzdy, worked out for any section z = constant,
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is the polar moment of that section for the axis 0Z (Art. 14).
Hence (1) becomes .

(2) I; (for the beam)=-Z;)(for a right section) X height of cylinder (= ’lc) XT.

Let 7, and r, be the radii of gyration of beam and right sec-
tion, respectively. Then
o L

mass

IL=Mp2 I,=r2A.
Substituting in (2) gives

1,
ry: = —2—, or also
area

@3 Mr? = Arlhr.
But M = Ahr, and hence
(4) Ts = Ty

THEEOREM. The radius of gyration of any homogeneous beam with
respect to an axis parallel to its elements equals the radius of gyration
of a right section with respect to the same axis.

From (4) we may write

L=Mr? I,=Ar?
and hence the change from I to I, is accomplished by replacing

the area by the mass of the cylinder. In this form the result is
useful and gives this

RuLE. To find the moment of inertia of a straight beam or
column with respect to an axis parallel to its elements (or edges),
work out the corresponding polar moment for any right section
and replace in this result the area by the mass of the beam or
column.

20. Combined solids and areas. Since the moment of inertia.is
a definite integral, it follows that if a solid or area is composed of
two or more parts, the moment of inertia of the whole with respect
to any plane or axis is equal to the sum of the moments of inertia
of its parts with respect to that plane or axis. Also, if a portion
be removed from a solid or area, the moment of inertia of the
remainder equals the moment of inertia of the whole minus the
moment of inertia of the part removed.

As an example, consider the polar moment of inertia with
respect to its center of the circular ring formed by removing from
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a circle ¢ of radius R, a concentric circle ¢’ of radius . Denoting
the area of ¢ by 4, and that of ¢’ by A/, the polar moment of inertia
of ¢ by I, and that of ¢’ by 7/, we have
AR? Alr?
== ="~
Hence the polar moment of inertia of the re-

(4 . e . .
4 \/ malining ring 1s

I=} (AR — A =T (B~

= ;_’(132 + 12) (R? — 12).

The area of the ring 4 is
A=mR?—amrk
Hence ~
I= % (R%+ r%).

That is, the polar moment of inertia with respect to its center
of a circular ring lying between two concentric circles of radii B
and r is equal to one half the product of its area by the sum of
the squares of the radii.

By the principle of Art. 19, we may at once extend this result
to apply to a hollow circular column of outer radius R and inner
radius 7. Denoting by I the moment of inertia of the column
with respect to its axis, we have

I=%(R2 +72).

THEOREM. The moment of inertia of a homogeneous hollow cir-
cular column with respect to its azis is equal to one half the product
of its mass by the sum of the squares of the inner and outer radis.

21. Routh’s rules. The following moments of inertia occur
frequently and should be committed to memory:

The moment of inertia of

(1) a rectangle whose sides are 2 and 2% with l .
respect to an axis through its center in its plane | =ML ;
perpendicular to the side 2a ] 3

with respect to an axis through its center per- | Ma2+62-

pendicular to its plane 3 "’
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(2) an ellipse of semiaxes a and b with respect | wl.

to the major axis (@) Ty
2

with respect to the minor axis (4) =M aZ;

(a circle is an ellipse with semiaxes each equal to a)

(8) an ellipsoid of semiaxes a, b, ¢, with respect .
to the axis (a) 5
(a sphere is an ellipsoid with a = b = ¢)

(4) a parallelopiped whose edges are 24,25, 2¢,
with respect to an axis through its center perpen- { =M

dicular to the plane containing the sides b and ¢ 3
(5) acircular cone the radius of whose base isa | 3 a2
with respect to its axis ~ 107

As an aid to the memory, the first four rules may be combined
into one known as Routh’s rule:

Moment of inertia <Sum of squares of per-)

. endicular semiaxes
with respect to an ; = Mass X P .

. 3,4, or 5
axis of symmetry :

The denominator is to be 3, 4, or 5, according as the body is
rectangular, elliptical, or ellipsoidal.

As an example of the application of Routh’s rule, suppose it is
required to find the moment of inertia of a circle of radius & with
respect to a diameter. We notice that the perpendicular semi-
axis in its plane is @ and the semiaxis perpendicular to its plane

2
is zero. Hence the moment of inertia is M az . Again, let it be

required to find the moment of inertia with respect to a line
through the center of the circle and perpendicular to its plane.
The perpendicular semiaxes are each equal to @ and the moment
of inertia is

2 3 g2 2

MEFE &,
4 2
PROBLEMS

1. Find the moment of inertia of the hollow column of Art. 20 with respect to
a line perpendicular to the XY-plane, (1) through the outer circumference;
(2) through the inner circumnference. Ans. (1) 1&7[ (B R +12); %I (R? + 31%).
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2. Find the moment of inertia of the circular ring, Art. 20, relative to OX.
Ans. % (R2 +12),

8. Find the moment of inertia of the ring with respect to the tangents to the
circles ¢ and ¢'.

4. Find the moment of inertia of a circular area having a smaller circular area

cut from it as in the figure, (1) with respect to a line through O perpendicular to

| the plane of the circle; (2) with respect to a diameter of the larger circle perpen-

dicular to 00'; (3) with respect to a line through O' perpendicular to the plane of
the circle ; (4) with respect to the diameter 0O'.

Ans. (1)} ME2;  (2) ¥ MR (3) §3 ME?;

\ 1) 3 ME~

\

J\i 5. A square is removed from a circle, the diag-
\ I onals of the square intersecting at the center of the
0 0’ ~circle.  Find I with respect to (1) an axis passing

through the center of the circle perpendicular to its
plane; (2) an axis perpendicular to the plane and
passing through one corner of the square; (3) a diam-
eter which is also a diagonal of the square.

6. Find the moment of inertia with respect to the gravity axis parallel to an
edge of the beams whose cross sections are shown in the following figures.

2a’
2b a
2a
%/ 2a | W?a
20 2a 2b'F42b 3aj 2a
/ a
3a
w 2] 3
20 3a .
g @ 2a
3q) e 4af/)2a
i 2a
a
“) 5)

22. System of material particles. By a material particle, or
simply particle, is meant a portion of matter of so small a volume
that the volume is regarded as reduced to a point. In other
words, it is a weighted point or point mass. The moment of mass
of a particle of mass m at the point P with respect to any line or

plane equals the product of m by the perpendicular distance to P
from the line or plane.
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The center of mass of any system of particles of mass m, at
Py(@y, yyy 21)s mg at Py(zy, Y, 25), €te., is defined by the equations

r

My + MpZy + - _ Zmz

z= R
my + my + - 3m
= MYy + MYy + - Zmy
€)) ) y my 4+ my + oo sm’

.
M2y + MoZy + «+- _ },mz.
my 4+ my + - =m

wl
Il

L

Similarly, the moment of inertia of a particle of mass m at P
with respect to any axis equals the product of m by the square of
the perpendicular distance from P to the axis.

Thus for a system of particles lying in one plane whose masses
are m; at P (zy, y1), my at Py(2y ¥y), etc., we have

I, = myy? + moy,® + - = Zmy?,
I, =mz? 4+ myx? 4 -« = Zma?
1 =L+ 1,= Zm(2" + y*) = Zmp®.

PROBLEMS

1. Three edges of a unit cubical frame without weight are taken as the coordi-
nate axes, and particles are placed at all the corners except at the origin. Find T
with respect to each face, edge, and vertex of the cube, (1) when the particles are
of equal mass; (2) when the masses vary as the squares of their distances from the
origin.

2. A straight rod of negligible mass and length ¢ has five particles of equal mass
situated on it at equal intervals of }a. Find Iand r¢?, (1) with respect to one end;
(2) with respect to the middle point ; (8) find I when the masses increase in arith-
metical progression from the end.

3. Given three particles of equal mass, situated at the vertices of an equilateral
triangle. Find (1) I and »,? with respect to one side; (2) with respect to a line
parallel to one side passing through the opposite vertex.

4. A regular hexagon has particles at middle points of five of its sides. The
masses of the particles taken in order are as 1,2, 3,4, 5. Find I and ry® with
respect to the unweighted side. Ans. IT=20.25 a%; ro? = 1.85a2

23. Ellipse of inertia. This section is concerned with the solu-
tion of the problem, '

To determine the moment of inertia of an area with respect to any
gravity axis. Let O be the center of mass of a given area; 0X,
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0Y any two mutually perpendicular axes through it, and 1
any other gravity axis making with OX the angle . Then, by
Art. 11, (1),

A L= f P2dA,
where 7 is the perpendicular distance

from [ to any interior point (z, y) of
the area. The equation of 7 may be

¥ written
@ —zsinf 4 ycos 6 = 0,
“and hence (56, Chapter XIV) we have
3 r= —2zsinb + ycos b,

when (z, y) is the interior point in question. Substituting in (1),

€)) 1}=ff(—xsin0 + y cos 6)2d A, or,

I = sinzﬁff 22d A — 2sin 6 cos foxydA + coszeffysz.

The second integral in the right-hand member has not thus far
been discussed. If we set this equal to P,, we may write

(©)) L=1I,cos?0 — 2 P, sin 0 cos 8 + I,sin?4,

where

(XX) Py = f f xydd,

and is called the product of inertia with respect to the axes 0X
and 0Y. It is easy to see that I, assumes a maximum and a
minimum value as the axis [ rotates about O. In fact, since

(6) Z—ﬁ = —21I cosfsind — 2P, (cos?0 —sin?0)+ 2.1, sinf cosb,

setting the right-hand member equal to zero gives -

) €, — L)sin20—2P,, cos26 = 0,
from which tan 26 =ij,1;;

The values of 8 determined by this equation will give axes , and
l, for which 7; is a maximum and a minimum respectively. More-
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over, since these values of 8 differ by %, I, and [, are perpendic-

ular. They are called the principal azes of inertia.
Obviously, if P,, = 0, the roots of (7) are § =0, 0 = g, and

hence OX and OY are already the principal axes. Let us now

assume this to be the case. Then (5) becomes
®) I, = I,cos?0 + I, sin2 0.
Introducing the radii of gyration by setting
I=Ar? L=Ar?2 I=Ar}
then (8) becomes
(XXD

This equation gives the radius of gyration with respect to any
axis in terms of the principal radii of gyration, r, and r,. For
convenience we now write

1
® Te= Py Ty =

r? = r;? cos? f + r,2 8in? §.

Sl R

Thus (XXTI) becomes

cos?f . sin2d

(10) TI2= a2 + -?2—.
Let us now draw the ellipse,

2 2
1=%.,Y.
(11) Lts

If (p, 0) are the polar codrdinates of the point P where the axis
I cuts this ellipse, then in (11)

z=pcosb, y=psinf, and we get

2 cos? 2 gin2
az 1=, 30 ol
1 _ cos?d | sin%d
,—,é =T + 2
Comparison with (10) gives the result
1
13) = &

The ellipse (11) is called the ellipse of inertia, and the result
indicated by (13) may be stated thus:
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If the ellipse of inertia i8 drawn for any plane area, the radius
of gyration for any gravity axis equals the reciprocal of the radius
vector of the point tn which the axis intersects the ellipse.

The principal axes of inertia are those for which the product
of inertia is zero; that is,

P, = fxydxdy =0.

It is easy to see that P,, = 0 if either OX or 0Y is an axis of
symmetry. For example, if 0X is such an axis, then in the sum
of the products

Y zyAzAy
&\ B the terms will occur in pairs with the same
\‘ i z and with y’s differing only in sign. The
) i % terms in each such pair will cancel, and
i hence the limit of the sum is also zero. This
b consideration gives the result :

Any axis of symmetry is mecessarily a
principal azis. :

The process, then, of determining the moment of inertia with
respect to any gravity axis is the following :

(1) If the figure has no axis of symmetry, choose any pair of
rectangular axes, calculate I, and I, by (IX), and P,, by (XX).
Then use equation (5), or solve equation (7) for § and determine
the principal axes and the principal radii of gyration. Choose
these axes for the new axes of codrdinates and draw the ellipse of
inertia (11). Then apply the theorem just stated to find 7, or
use (XXI).

(2) If the figure has an axis of symmetry, choose this for
OX or 0%, calculate r, and r, and draw
the ellipse of inertia (11) or use (XXI). ki

ILLUsTRATIVE ExamprLe. Find the moment of
inertia for any gravity axis of a rectangle.

2d L~
Solution. Taking OX and OY as in the figure, be ks \
then Aa? Ab?
L=5f L=t <%
2 2
and r.“:%—, 72 :%—,

and the equation of the ellipse of inertia is -
@) a2t + by =3, Y
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The radius of gyration for any gravity axis is then the reciprocal of the radius
vector of its point of intersection with the ellipse, or also, by (XXI),
= }(a?cos? 6 + b2sin? h).

PROBLEMS

1. Show that the ellipse of inertia for any regular polygon is a circle. What is
the conclusion regarding the moment of inertia with respect to any gravity axis ?

2. Find I for a rectangle whose sides are 2 and 2 b with respect to a diagonal.

2 a2b?
Ans. § M. m .

3. Find I for an isosceles triangle with respect to an axis through its center of
area and inclined at an angle & to its axis of symmetry, e being its altitude and 2 »
its base. Ans. 3 M(}a?sin® a + b2 cos? a).

4. Find Ifor an ellipse with respect to a diameter making an angle ¢ with the
major axis. .
=1 arp2cos? 2gin2 o) = L @0 =14
Ans. I—ZM(b cos? & + a?sin? &) = ZMT’ where r _E»dla.meten

7



CHAPTER II
KINEMATICS OF A POINT. RECTILINEAR MOTION

That portion of mechanics which is concerned with the study
of motion is called dynamics. The subject matter of dynamics is
divided into two parts, kinematics and kinetics. Kinematics treats
of pure motion, that is, motion without reference to the mass of
the body which is moving or the forces producing the motion. It
has to do solely with the relations of time and space. Kinetics
treats of motion, including consideration of the mass of the body
moved and the forces acting upon it. This chapter treats of the
kinematics of a point which moves on a straight line.

24. Motion on a straight line. In order to indicate the posi-
tion of a point upon a line, we select on that line a fixed point O,

L

0 z P X

called the origin. The position of any point P with respect to O
may then be determined by the length OP and its direction from
the origin. For the application of mathematical analysis to the
rectilinear motion of a point, it is necessary to regard the path as a
directed line;* that is, we must assume an origin, a unit of length,
and a direction. If the measure of the length OP be denoted by z,
then it is obvious that  is variable if P is a moving point. The
motion of P is said to be completely determined when the posi-
tion of P is known at every instant of time; that is, when the
variable z is a function{ of the time ¢, since the position is
determined by the value of 2. Hence for rectilinear motion we
have the relation :

65 =)

This equation is called the equation of motion. Its signiﬁcance.
is this, that from it we may find the position of the moving pomt
at any instant of time.

* Analytic Geometry, p. 23. t Caleulus, p. 12.
42
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In order to indicate instants of time it is necessary to select
some fixed instant from which the time may be reckoned, forward
and backward.

This fixed instant, called the origin of time, is denoted by
t =0, and time before is indicated by a minus sign, time after by a
plus sign.

“The position of the moving point when ¢=0 is called the
tnitial position. The corresponding value of z is called the nitial
value of z and is denoted by z,. From (I) we have,

2= $(0).

For example, if the equation of motion of a mov-

ing point is z =t — 2¢, we find the table of values of | ¢ z
t and z as given. We see, therefore, that the point
x=12-0 X3 z=8 0 0
"’2{:2 =3 =4 X ; _.(1)
moves from the initial position O to the left and, 31 38
after reaching the extreme position z=—1, there- | 4 | 8
after moves continuously to the right. ete. |ete.
As a second example, consider the motion defined '

by the equation #=acos 3 7t. Remembering from trigonometry
that the cosine of a variable, increasing angle varies
t | 2 | from 1to —1 inclusive, it is plain that with increas-
ing time, # varies from a to — @ inclusive; that is,

0 a
1 0 Tt —
2 |—a
3 0 | the moving point P oscillates between the points
4| a| A and A' of the figure. The initial position is A,

etc. |ete. | since zp=a, and the point is again at A after the
lapse of four seconds.

The vibratory motion just discussed is an example of simple
harmonic motion, and will appear frequently in these pages.

25. Velocity. By the velocity at any instant of a point in
rectilinear motion is meant the time-rate of change of its position
at that instant. When the equation of motion is z= ¢ (¢), the
velocity is the rate of change of z with respect to ¢; that is,* the

* Calculus, p. 148.
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derivative of # with respect to . Hence, denoting the velocity at
any instant by v, we have

. _‘@_ '
an v="4=9®.

The value of the velocity at the origin of time is called the snitial
velocity, and is denoted by »,. From (II), we have

v =¢' (0.

Dimensions. Velocity is defined as the limit of the quotient
of distance Az by time A¢{. The derived unit of velocity is
therefore expressed in terms of the fundamental units of length
and of time by the dimensional equation

length

Velocity = =
ime

If v =¢' (¢) is positive for the value t = ¢,, we know that at
the instant ¢ = ¢;, z = ¢ (¢) is an increasing function* of ¢, and the
point is moving towards the right along the directed line 0X.
If » is negative, z is a decreasing function of ¢, and the point is
moving towards the left. If for ¢t = ¢;, »; = ¢' (¢;) = 0, the point
at the instant ¢ = ¢, is at rest. If the velocity is constant, the
motion is said to be uniform. The numerlca,l value of the velocity
is called the speed.

For example, to discuss the velocity of a point when its
equation of motion is # =1t — 2¢, we find, by differentiation,
v=2¢t— 2. Giving ¢ successive values, we ob-
t | = | v | tain the values in the table. The point 0 is the

=1 N 1 2 3

0|0 -2 o X

1 |—1| o | initial position, and — 2 the initial velocity.
2 | o0 9 | The point is therefore moving in the negative
3 | 3 4 | direction along the line OX with a speed of 2

ete. |ete. | ete.| units of distance per unit of time.t At the in-
stant ¢ =1 the velocity is zero and the point
is at rest. For values of ¢ greater than 1 the velocity is positive,
and the point moves in the positive direction along 0X.

* Calculus, p. 116.
1 That is, two feet per second, if the unit of distance is one foot and the unit of time
one second.
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26. Acceleration. If the velocity of a moving point is variable,
the point is said to have acceleration. In mathematical terms,
acceleration is the time-rate of change of velocity. That is,
acceleration at any instant is the derivative of velocity with
respect to the time. Hence, denoting acceleration at any instant
by f, we have :

dv_d (dx\ _dxc

ih r= =% )=

or, acceleration is the second derivative of the distance with

respect to the time. When the equation of motion is = = ¢(t),
we obtain, by differentiation,

% "
f=@=¢ (t)

The acceleration may be expressed in another form, which is
frequently useful in the solution of problems in mechanics. We
have z = ¢(t), and this may be solved for ¢, giving

M t= ¥ (@).
The velocity is a function of ¢; namely, v = ¢/(¢). When the

value of ¢ from (1) is substituted in this expression for the velocity,
we have v expressed as a function of z.

@ v = F(z).

This expression determines the velocity when the position is
known. We have, from calculus,*

dv_do dz,
dt dx dt
. dz dv
Since v = —, therefore, f=v=—.
dt’ Shah >
For convenience, the preceding results may be summarized :
I. Equation of motion,t x = (£).
II. Velocity at any instant, v= ‘;—at” =¢'(#).
dv _ a> dv

III. Acceleration at any instant, r= == ®=vg

*p. 5T,
P
+ Other letters, e.g. ¥, s, will be used also to denote the position of the point P.
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The physical meaning of the algebraic sign of the acceleration
is made apparent by the following consideration. If the point P
moves along OX towards the right, the velocity is positive; if
towards the left, the velocity is negative. The acceleration is
positive if v increases algebraically, and negative if v decreases
algebraically. Hence, if

P moves to the right with increasing speed,v > 0, f > 0;
P o e “ decreasing “ v > 0,f < 0;
P« o« o« Qoft % fnereasing ¢ v < 0, f < 0;
P o« wow “ decreasing “ v < 0, f > 0.

If the acceleration is constant, the motion is said to be wni-
Sormly accelerated. The special case when the acceleration is
zero, and hence the velocity constant, has been already referred to
in Art. 25 as that of uniform motion.

Dimensions. Acceleration is defined as the limit of the quo-
tient of velocity Av by time At¢. Its dimensions are therefore
velocity divided by time, or distance divided by the square of the
time. The relation between the derived unit of acceleration and
the fundamental units of length and of time is expressed by the

dimensional equation
length

Acceleration = —
time?

Two systems of units are in common use, the English and
French. These are given in the table:

Units English French
distance foot centimeter
time second second
velocity 1 ft. per sec. 1 cm. per sec.

acceleration 1 ft. per sec. in 1 sec. 1 em. per sec. in 1 seec.

27. Distance-time diagram. Discussion. The preceding dis-
cussion has shown that distance, velocity, and acceleration of a
moving point are functions of the time. The determination of
the variation of these variables with the time constitutes the dis-
cussion of the motion. The graph of the equation of motion is
very useful in making the discussion. Since z is a function of ¢,
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we may plot the curve represented by the equation z= ¢ (¢),
where ¢ is the abscissa and z the ordinate. This curve is called
the distance-time diagram. For a
given instant of time, ¢, we have
a given value of the abscissa; e.g. /\ /
OA in the figure. The correspond- - §1\<\ 4 7
ing value of z is the ordinate AB and b B

the position* on the path 0X is P,. '

Since the velocity is the derivative of z with respect to #, its
value is given geometrically by the slope of the tangent at B; that
is, by tan . The numerical value of the acceleration is not given
directly by the figure, but its sign is determined by noticing the
form of the curve. If the curve is concave upwards, the sign of
the acceleration is positive; if concave downwards, the sign is
negative.t Maximum and minimum points on the graph of the
equation of motion indicate extreme f positions of the point mov-
ing on the straight line; that is, positions where the velocity
is zero. At such a point the velocity changes sign. With refer-
ence to the moving point P this means that it ceases to move in
one direction and begins to move in the opposite direction. A
maximum point corresponds to an extreme position upwards, since
the first derivative changes from plus to minus. For a maximum
point the second derivative is negative; hence for an extreme up-
ward position the acceleration is negative. Similarly, a minimum
point corresponds to an extreme downward position and the accel-

“eration is positive. A point of inflection on the graph of the equa-
tion of motion indicates that at the corresponding instant of time
the acceleration (which is the second derivative of 2 with respect
to t) is zero. When the characteristics of the motion have been
ascertained from this discussion, it will be convenient to take the
path along a horizontal line. The properties already known of
the motion on the X-axis are readily interpreted on the horizontal
path.

X

* The student must be careful not to confuse the distance-time curve with the path
of the point. The path lies on OX, and the position of the point at any instant, ¢y, is
found by constructing the point B in the diagram whose abscissa equals t1, and then
projecting this point on to the distance axis, as P; in the figure.

t Calculus, Chapter IX.

} The word ‘‘ extreme’’ here means relative extreme, just as in geometry the word
‘“maximum ”’ means relative maximum.
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ILLUSTRATIVE EXAMPLES

1. Discuss and draw the distance-time diagram for the motion defined by

(¢)) x =1 —324+2¢.
Solution. By differentiation, we obtain

(2) v=381—-6¢+2,
(&) f=6t—6.

The extreme positions of the moving point, and consequently the maximum and
minimum points on the graph, are given by the condition,

v=3812—6t4+2=0,
whence t=1+ ‘/?;?;, or approximately

t; = 0.4, . = 1.6.
The corresponding values of x are approximately
' x; = 0.38, 3 = — 0.38.
For ¢ < 0.4 the velocity is positive.
For 0.4 < t < 1.6 the velocity is negative.
For t > 1.6 the velocity is positive.

The acceleration is zero, and consequently there is
a point of inflection on the graph when ¢ = 1. The cor-
responding value of x is 0. For ¢ < 1 the acceleration is

negative, and since f =‘;—:’, the velocity is decreasing

(algebraically). For ¢>1, the acceleration is positive and the velocity is in-
creasing. The distance-time diagram may now be drawn. We may summarize
the results obtained in the following table :

t -7 v f
0. 0. 2. —6.
04 0.38 0. -3.6
1. 0. -1 0.
1.6 —0.38 0. +3.6
2. 0. 2. 6.
3. 6. 11. 12.
increases increases increases increases

This table and the preceding graph are equivalent.

From either we may

make the discussion of the motion, and in the solution of problems each should

serve as an aid to and a check upon the other.
a horizontal line follows.

The discussion of the motion on
When ¢ is zero the point P is at 0. - As ¢ increases

from 0 to 0.4, P moves to the right with a velocity which is decreasing numeri-
cally. When ¢ = 0.4, the velocity is zero and the point P is at an extreme position
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2 = 0.38 to the right (the acceleration is negative). As ¢ increases from 0.4 to 1.6,
the point moves to the left. When ¢ = 1.6, the velocity is again zero and the point

-38 .38 * 6 Valuesofp
L, 0a 38 Valugs of
is at an extreme position x = — 0.38 to the left (the acceleration is positive). As¢

increases from the value 1.6, the point moves always to the right with increasing
velocity and acceleration.

2. Discuss and draw the distance-time diagram for the motion defined by

(€))] x = acos kt.
Solution. Differentiating, we obtain
(2) v = — ak sin k¢,
and for the acceleration, differentiating (2),
3) J=— ak?cos kt = — k% [from (1)].

Hence the acceleration and distance are proportional and differ in sign. Such
a motion is called a simple harmonic motion.

The locus of (1) is a cosine curve, the properties of which are well known.
The graph of the equation of motion has maxima when x¢ =2 nw (n any integer),

X

aj

0| Ktwh? Kt=2nT
-a -

minima when %t = (27 + 1) =, and points of inflection when %t =%m At

any maximum point the ordinate is equal to @, and at any minimum point it is
equal to —a. The variation of x, v, and f is exhibited in the table.

Angle %t t x v b
0 0 a - 0 —ak?
E X —ak 0
2 2k

o
¢ il —a 0 ak?
" P>
3w 8w 0 ak 0
2 2k
27
2 il 0 —ak?
T k a a
etc. etc. etc. etc. ete.

It is now easy to make the discussion of the motion. When ¢t =0, % = @, »%,=0,
/o i8 negative, and the point starts from an extreme position to the right. As ¢
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increases from 0 to %, the figure [see also (2)] shows that the slope of the tangent

line (and consequently also the velocity) is negative, and the point moves towards
the left. When ¢ = ’_’:, = —a,v =0, f>0, and the point is at an extreme posi-

tion to the left. As ¢ increases from 7_krto 27", the velocity is positive and the point
moves to the right. When ¢ = 2—]:5, we have again the initial values of x,v,and f. As

t increases from the value g};_r , the motion just described is repeated again and again.

The motion is a vibration or oscillation between the points N and N’ of the figure.

N’ _a . a N Valuesof
t- o Cteo, X
t-‘% : ‘z':‘_,c.- Valuesof't
elc etc.

The distance a is called the amplitude of the vibration. The time required to

move from N to N7 and back to N again is 2}:'. This is called the period of the

vibration. The point midway between N and N’ (the point 0 in the figure) is
called the center of the vibration,

The periodicity of the motion may be best established by reasoning thus. We
note first that the series of values of any trigonometric function is repeated when the
angle has increased 2 = radians. Since x, v, and f are in this case dependent in their
variation upon sine or cosine, then it is plain that they assume their original values
when %t has increased to &t + 2 7. But

k42 :k(t + -2;")
Hence ¢ has changed to ¢ + 2—}:—, and the increment 2—’:— is accordingly the period.

3. Discuss the motion defined by
1) x = Acos (kt + B).

Solution. The distance-time diagram is again a cosine curve with A for maxi-
mum displacement. The difference from the preceding example consists in this:
the initial position on the path is not at an extreme position, but at 2y = A cos B.
The conclusion is, therefore :

The equation (1) represents a harmonic motion with the period 2—”, and this is
true for all values of A and B. k

Equation (1) is the general solution of the equation 71, Chapter XIV, which is
called the differential equation of harmonic motion. The statement just made ex-
plains the designation.

4. Discuss the motion defined by

(@) T = aet.
Solution. Differentiating and using (1), we obtain
(2) v=—aet=—2,

® Sf=aet=nx.
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In this case, therefore, the acceleration and distance are proportional and agree
in sign. From (1)x = %, and therefore x, which is always positive, decreases
€

numerically as ¢ increases; v is always negative and  x;

N
decreases numerically (that is, the speed decreases). ) -
The graph is now readily drawn and exhibits
the motion of a point from N towards O with &

constantly diminishing speed and acceleration. ol ) T
The motion dies away as O is approached. There is obviously no period, and the

motion is called aperiodic.

5. Discuss and draw the graph of the equation of motion,
@™ x = ae—*t cos kt,
a, «, k being arbitrary, positive constants.
Solution. Differentiating, we obtain for v and f the expressions,
@) v = — ae—*¢(o cos k¢ + k sin kt),
3) f=ae[2 aksin kt + (0 — k?) cos kt].
The graph of (1) is readily constructed and the characteristics of the motion ap-
pear from it. Write (1) in the form of a product,
(4) x =ae~*t-coskt.

The factor cos kt varies
from — 1 to + 1. Hence the
distance x varies from — ge—
to + ae—°t; that is, the graph
of (4) is bounded by the curves

B

B -
e

(B) x= —aeot,x =ae

These are the dotted lines
of the figure.

Again, the product in (4)
vanishes only when one of the
factors is zero. But e—¢t is
never zero for finite time. Hence x = 0 when and only when cos k¢ = 0.

Furthermore, the graph touches * the boundary curve when cos &t =+1. We
therefore draw also the quxiliary curve x; = cos kt. 'We now observe that

(PN

(1) Thepoints of contact with the boundary curves are directly over (or under)
the maximum and minimum points on the cosine curve.

(2) The required curve crossesthe T-axis at the same points asthe cosine curve.

The graph may now be drawn, for we have merely to construct a winding
curve from the initial point ¢ = 0, # = @, which shall cross OT at My, M3, M;, ete.,
and touch the boundary curves at points corresponding to M,, My, etc.

From this construction it is obvious that maximum and minimum values of X
occur between each intersection on OX and the succeeding point of contact with

* For when cos %t = £+ 1, then sin %¢ =0, and we find from (2) v = F aee—*. This
equals Z—:, from (5). Hence the slope of (4) at M;, My, etc., is the slope of the proper
boundary curve (5).
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the boundary curve; that is, for a value of ¢ between successive odd and even

multiples of 2Tk. In fact, from (2), v =0, when

6) acoslct+ksinkt=00rtankt=-—%-

Now the tangent is negative when the angle is of the second or fourth quad-

rants. Hence k¢ must lie between2 and 2;, or 32’" and :4—5, etc., or ¢ is between

successive odd and even multiples of 2Lk

The characteristics of the motion are now obvious. It may be described as a
vibration with constantly diminishing amplitude. Remembering that the simple
harmonic motion represented by the factor a cos k¢ of (1) has the constant ampli-
tude g, it is plain that the presence of the second factor e—*¢ accounts for the dimin-
ishing amplitude.

This factor diminishes as ¢ increases, and is called the damping factor. The
motion is called damped vibration.

From (6), it appears that a period of time equal to (from kt =2 m) must
elapse between successive maxima. The motion is accordmg]y said to have a period
equal to 2—]:5 , the same, namely, as the period of the undamped harmonic vibration

(Ex.’lglzq; successive amplitudes obey a simple law. For such positions differ by a
semi-period, and hence two such values of  may be written in the form
z, =a'e", x,= a'e—a(t+%).
Taking natural logarithms and subtracting, we obtain
log x; — logas = uf

That is, the logarithms of successive amplitudes form a decreasing arithmetical
progression. :

This is otherwise expressed by the statement that the logarithmic decrement of
the amplitude is constant.

6. Discuss the motion whose equation is
(@))] x =Ce 1t cos (It + %),
in which C, u, 7, and vy are arbitrary constants, u being positive.

Solution. The construction of the graph is precisely as in the previous ex-
ample ; namely, the boundary curves are

&) z = 4 Cent,
and the quxiliary cosine curve is
3 21 = cos (It + 7).

The difference from the preceding case is in the initial position, which is now
2o = C'cosy, an arbitrary point on the path, not necessarily (y = 0) an extreme
position.

The result i is then this:

The motion defined by (1) is a damped vibration with the penod ——, and this is
true for all values of C, v, 1, and n, provided p>0.
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Equation (1) hasthe form of the general solution of the equation 73, Chapter XIV,
which is called the differential equation of damped vibration. The theorem just

stated explains this designation.

1. Show that each of the following motions is uniform or uniformly accel-
erated, draw the distance-time diagrams and ‘discuss the motion :

(@) e=2—4¢;

) y=at+b;

(¢) s=6t—168;
(@) y=10—t— 32%;
(&) z=a+ bt +ct?;
() s=3g% + vt
(9) y=ogt — 3 g%;

(h) s=vpt+ h;

(@) s=319+ v + 3¢5
() y=560+4+10¢ —161¢2;
(k) s=%gsine-t2;

(1) s=v¢t—Lgsine.?;
(m) x=1000¢ — 16 ¢2;
(n) y=—1000¢+10¢2,

2. Show that the distance-time diagrams of uniform and of uniformly acceler-
ated motion are respectively a straight line and a parabola.

3. Show that each of the following is a simple harmonic motion.* Draw the
distance-time diagrams, discuss the motion, and find the amplitude ¢ and period 7'

‘in each case.
(a) =5bsint;
() y=10cost;
(¢c) .s=2cos }nt;
(@) x=>5sin §wt;
(e) y=asinke;
(f) & ="5cos (¢ +4m);

(9) y=10sin (Jmt—}m);
(k) y=sint 4+ cost;

(i)} s=asin(kt+a);
() %= Dbeos (ut — B);

(k) x=2sint + 3cost.
() = =acos kt+ bsin kt.

Answers denoting amplitude by @ and period by T.

(@) a=56,T=2m;
®) a=10, T=2r;
(¢) a=2, T=4;
@ a=5T1=4%;
2w
3 =a, T=";
(& a=a =

(f) a=5 T=2r;
@) a=10, T=4;

) a=V2, T=2r;
® a:q,T:%’f;
() a=bv, T=2%,

I
%) a=Vi3, T=2x;

) a=VEFB?, T=2{-

* Show that the given equation is obtained from x = 4 cos (%t + B) by replacing the

constants 4, &, B by particular values.

T,
B=—3

For x = 5 cos (t—’—2')=5cos (%—t)=5sint.

Thus for (a), *=>5sint, we set A=25,k=1,
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4, Show that the acceleration and the distance are proportional and differ in
sign for each of the following motions (simple harmonic):
(@) x=Asin (kt+ o) + Beoskt;
(b) y=Asinkt + acos (kt + B) ;
(¢) 8= asin (ut — ) + b cos (ut — B).
Reduce each to the form A cos (k¢ + B).
5. Discuss and draw the distance-time diagram of each of the following motions
and show that each is a damped vibration.*

(@) z=>5e %l cos }wt; (9) x=ae Plsinkt;
() y=2e lsin}wt; ) y=>56e¥sin(t +}r);
(c) s=10e % cost; () s=e *(asinkt+ bcoskt);
@) x=5etsin¢; 4
s - () z=10e V8 cost;
() z=¢ °°s(‘+§)‘ (k) s=e " sin(kt+B);
(N y=8c¥sin{T¢+1}; (@) y=¢"cos (kt +B).

6. Discuss and draw 1 the distance-time diagrams of the following equations of
motion:

(@) x=sint+cos2¢; (@) y=e3cost+sint;
() z=alog(1—1t); (e) y=sin}t+singi;
(© y=4( +e7%; (f)y =eTtcost + 10sint.

7. Show that every solution of %: + us =\, where x and A are constants and

u>0, defines a harmonic motion. Find the period and the center.
Ans. T = 2—1:r; (l‘, 0).
Vi \&
—+ 2 p. S 1 As =0 define damped vibrations ?
Ans. A\>u2,

9. Discuss and draw the distance-time diagrams of the following equations of
motion : .

8. When will solutions of dﬁs

@) x=tsint; ¢) s=(t+1)cost; _cost
(@) _ ©) @+1) OX P
(b) y=etcost; @ z= sut:t : o) sztsm(ur%),

10. Discuss and draw the distance-time diagrams of the following equations of
motion :

(@) x=sint +2; (e) = =ae “coskt+b;

(b) y=cost—10; (f)x=acoskt+0;

(¢) s=e‘cost+1; (9) y=acoskt+bsinkt+c;
(@ z=10cHcost +5; (k) s = Asin (kt +B) +0.

* Show that the given equation is obtained from (1), p. 52, by giving to C, &, I, and
y particular values.

1 When the function of the time is the sum of two simple functions, we may draw
the graphs of the latter and add the corresponding ordinates. For example, in (a), add
the ordinates of x; = sin ¢ and 23 = cos 2 ¢.



CHAPTER III
KINEMATICS OF A POINT. CURVILINEAR MOTION

28. Position in a plane or in space. Vectors. In the discus-
sion of the rectilinear motion of a point the quantities involved
were time ¢, position on the straight line z, velocity v, speed s,
and acceleration f. Any value of ¢, z, v, or f is indicated by a
single number (positive or zero or negative), and any value of s is
indicated by a single number (positive or zero). Quantities which
take on values that can be indicated by single numbers are called
scalar quantities. Such quantities have magnitude (4 or —) only.
A vector quantity is one which has magnitude and direction. For
example, (1) the position of a point P(p, #) in a plane is indicated
by its distance from the origin (magnitude) and the angle which
OP makes with the initial line; (2) the position of a point P(p,¢,6)
in space is indicated by its distance from the origin and the
direction of the line OP.* Since a scalar quantity has magnitude
only, any value which it may take on can be represented graphic-
ally by the length of a line taken in the proper algebraic sense.
To represent a vector quantity graphically the line must have
length and direction. By indicating the direction properly the
length may always be taken as positive. Hence we make the
definition, @ vector is a straight line having length and direction.
From this definition we conclude that two vectors
AB and A" B'" are equal if the lines AB and A" B"
are parallel, equal in length, and taken in the same
sense. If the lines are parallel and equal in length,
but taken in the opposite sense, that is, if the di-
rections differ by 180° as AB and A'B’', we say AB=— A'B'.
A vector is zero if, and only if, its length is zero. In solving
problems involving vectors we may always replace a vector by
an equal vector, which is equivalent to saying that a vector may
be moved providing it is kept always parallel to its original posi-
tion.

* Analytic Geometry, p. 394,
55



56 THEORETICAL MECHANICS

29. Addition of two vectors. If a point is moved in a plane,
the displacement is a vector quantity. Suppose a point is moved
from the origin to the position A(2, 4). The displacement is rep-
resented by a vector whose length OA = /20 and whose direc-

tion is indicated by the angle € which

the line OA makes with the X-axis.

Suppose the point is given a second

displacement from A4 (2, 4) to B (5, 3).
~%X This displacement is represented by
the vector AB, whose magnitude is V/(2—5)24 (4—38)%= V10,
and whose direction is given by the angle ¢. These two dis-
placements taken in order are evidently equivalent to a single
displacement from O to B, which is represented by the vector OB,
the magnitude of which is V34 and whose direction is given by
the angle y». Hence we say that the vector OB is the sum of the
vectors OA and AB.

OB= 0OA+ AB.

If two vectors AB and DE are given, we obtain the sum
AB+ DE in the following manner. From the point B construct
a vector BO=DE. The vector AC is now

defined as the sum of AB and BC(, and, there- g“——'g
fore, as the sum of AB and DE. '
 AB+ BC=AC.
. AB+ DE = AC. 4

The process of adding two vectors is essentially this. Bring
the two vectors into such a position that they form a broken line
ABC. Their sum is then equal to the closing
line AC. It is readily seen that the order of
addition can be changed without altering the
sum.

AB + BC = BC+ AB.

The ﬁgure is a parallelogram and the proof is obvious.

Addition of any number of vectors. The preceding process is
applicable to the addition of any number of vectors. Suppose it
is required to find the sum of the vectors 4,B,, B,C;, C,D,, and
D,E,. Thisis accomplished by repeated application of the process
of adding two vectors.
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* (1) Construct the vectors AB and BC( equal respectively to .
A;B, and B,C,. The sum of these two vectors is A C.

.. AB + B,C; = AC. D
(2) Construct CD = C,D,. The sum B
of AC and CD is AD. That is, /13'\0 E}a)
4, §
A,B;, + B,(; + C,D, = AD. o
(8) Construct DE= D,E,. The sum Ly
of AD and DEis AE. Therefore,
A,B, + B,C; + C,D, + D,E, = AE. L\

The process is applicable to any num- 4 ¢

ber of vectors and is essentially this. To add any number of
vectors, form a broken line having its segments equal, respec-
tively, to the given vectors; the sum is then the closing line.*
Since the order of addition of two vectors may be changed with-
out changing the sum, the order of addition of any number of
vectors may be changed without changing the sum.

The sum of any number of vectors is called the resultant of
those vectors.

30. Subtraction of vectors. Any vector AB may be sub-
tracted from the vector CD by adding to CD the negative of AB.
In the figure DE=—AB and CE = CD + DE = (D — AB.

_For practical purposes it is imore convenient to obtain the
difference of two vectors as follows: To
dee—r-B subtract AB from CD, lay off the two vectors

B~ D 4D - .
from the same origin; that is, construct
D fea CF =AB. Then
b [}

CF+ FD = AB + FD = CD.
¢ r Whence, by transposing the term AB,
ab FD = CD — AB.

The results of the two methods are equal, as can be shown by
comparing the equal triangles, figure @ and figure &. '

31. Multiplication of a vector by a scalar. If a vector AB is
multiplied by a positive scalar W, the result is a vector A'B'

* Analytic Geometry, p. 47.
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having the same direction as AB, while the magnitude ot A'B’ is
W times the magnitude of AB. For example, in the figure (@),

A'B' = 2AB.

If a vector AB is multiplied by a nega-
tive scalar — W, the result is a vector B’A’
Fig.a which has a direction opposite to that of

AB and a magnitude equal to W times the
, magnitude of AB. For example, in the
Fig.b figure (),
B'A'= —2AB.

To divide a vector by a scalar W, we multiply the vector bynl,.

For example, in figure a,

AI

p—
Al

AB=1A'B
and in figure b, AB=—1BA.

32. Resolution of plane vectors. Suppose a vector AB is given
and it is required to find two vectors which are equivalent to AB,
that is, whose sum is equal to AB. This may be done in an infi-
nite number of ways. For, suppose C is any point, and the lines
AC and OB are drawn. Then, by the definition of a vector sum,

AC+ CB= AB.

The point ¢ may be determined so that the vectors AC and CB
are parallel to the X- and Y-axes respectively. This is accom-
plished by drawing through A a line parallel to the X-axis and
through B a line parallel to the Y-axis. These two lines inter-
sect in the required point ¢. For convenience we will denote the
vector AB by a, the vector AC by* a,, and OB by a,. The vector
a, is called the component of a in the direction
of the X-axis and the vector a is said to be
resolved along the line 0X; a, is the com- - a
ponent of a in the direction of the Y-axis, and Aa”
a is said to be resolved along the line OY. It '
is evident that a, is the projection of a on the o X
X-axis and @, is the projection of a on the Y-axis.

A vector may be resolved along any directed line by projecting
the vector on that line; that is, the component of a vector along

* In using the components of a vector a, we need to give only the numerical values.
The directions are indicated by the subscripts.
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any directed line equals its magnitude multiplied by the cosine of
the angle its direction makes with the given line.
In solving problems involving vectors it
is usually more convenient to deal with the ‘
components. If the axial components of a !
vector a are a, and a,, it is evident from the . r’v
figure that the magnitude* of a is given by 3 = =
a=Va?+a? and the direction of a is the l
same as the direction of a line from the origin to the point
(@, a,). If we denote the angle which the vector a makes with
the X-axis by («, @), we have

a, . a
cos (@, a) = ;‘; sin (@, @) = E”-

Hence we have the formulas:

a = + axz + az/z’
¢S} a, = a cos (x, a),
a, = a sin (x, a) = a cos (¥, a).

In particular the components of the vector which represents
the position of a point P in a plane are the rectangular coérdi-
nates of that point.

When the axial components a,, a, of a vector a are known, its
v A component in the direction of any line I is
readily found. Denote the angle which ?

P ja" makes with the X-axis by («, 7). The projec-

tion @; of a upon 7 is equal to the sum of the

@
@ projections of a, and «, upon !. The projec-
o/ X tion of a, upon ! is a, cos (», ¥) and the pro-
/ jection of a, upon 7 is a, sin («,2). There-

fore the component of a in the direction 7 is
(II) a,= a, cos (x, ) + a, sin (z, I).

Components of the resultant of any number of plane vectors.
Let a, b, ¢ --- be given vectors with components a,, a,; &, bys
¢» ¢, --- respectively. Let R (components R,, R,) be the
resultant of a, b, ¢ ---. By the definition of a vector sum, we
regard a, b, ¢ --- as the segments of a broken line, while R is the

*The letter a represents the magnitude of the vector a.
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closing line. By the second theorem of projection,* the sum of
the projections of a, b, ¢ --- upon any line is equal to the pro-
jection of R upon that line. Therefore,

{in R,=a,+b,+c,+ -,
_ R,=a,+b,+c,+ -

33. Vectors in space. The results for plane vectors may be
extended at once to vectors in space. Any vector in space may
be resolved along three mutually perpendicular lines by projecting
the vector upon each of the lines.

If the three mutually perpendicular lines are the X-, ¥-, and
Z-axes, the components of the vector a are denoted by a,, a,, ,.
The magnitude of a is a=Va2+ a2+ a2 and its direction is
the same as the direction of a line from the origin to the point
(@, a,, @,). The direction cosines of the vector are

a a
cos (@, @) =%; cos (¥, @) =-&’-’~ cos (2, @) =;’.

For space we have the formulas:

a =+Va?+ a’+a?,
a,=a cos (x, a),

a, = a cos (¥, a),

a,= a cos (%, a).

avy

Since the second theorem of projection holds also in space,} the
components of the resultant R of any number of vectors a, b, ¢ ---
are
Rx= x +bx+ C o
(V) . Rz/=a’y+by+cy+""
R,=a,+b,+c,+ -

When the axial components a,, a,, a,
of a vector a in space are known, its com-
ponent in the direction of any line { may
be found. Let the direction angles of ¢
be (%, ), (¥, ¥), (2, t). The projection
a, of a upon ! is equal to the sum of the
projections of a,, a,, and a, upon 1.

The projection of a, on { is a, cos (x, ).

* Analytic Geometry, p. 47. 1 Analytic Geometry, p. 328.
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The projection of a, on I is a, cos (¥, ?).
The projection of a, on [ is a, cos (2, 7).
Therefore,
(VD) a,= a, cos (x, t) + a, cos (¥, 1) + a, cos (z, ¥).

ILLUSTRATIVE EXAMPLES

1. Find the resultant of the three plane vectors a, b, ¢ whose components are
@, —2), (2, 8), (— 7, — 1), respectively.
Solution.

R.=83+2—-T==2
By (11D, {R:_—__2+6—1=3j

By (I), R =V13, cos (@, R) =——2_,
y (D, e
. 3
sin (@, R) = ——-
V13

In the figure, this result is checked by graphical construction of the resultant.

2. Three vectors a, b, ¢ in space have magnitudes equal to 12, 8, and 6,
respectively, and their direction angles are as follows:
(@) @, a)=%m (g, &)=}, (2, @)=}%r;
®) @ b)=%r @, b)=}r (2 b =4r;
@ @ e)=im (Y, e)=%7, (3, c)=%m.

Determine the resultant.

Solution. Finding the axial components by (IV), we have
Op=— 6\/5, ay= 0, a,= 6\/5,
b,=—4V3, b,=—4, b,=0,
6= 8V2 ¢y=—4, c,=—38.

Hence, applying (V), the resultant has the components

B, =—8V2—-4V3,
{1 By=-8,
R.=6V2—3.

3. Given in the X Y-plane a vector a whose axial components are (— 2, 1).
Find its component along the directed line from the origin to the point (2, 1).

¥ Solution. In the figure, [ represents the given
line, 04 the given vector, OA’ the projection of
4 OAonl.

- - 2 s 1
a . (227 By geometry, cos (x,"?) =——; sin(ax, )= —.

\ @) o ' V5’ v

= ——x By,
4 a=—22 41 L-_38 __3.s,
v VB v6 b

The negative sign indicates that ; has the negative direction on .
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PROBLEMS
1. Determine in direction and magnitude the resultant of each of the following
groups of vectors in a plane, given by their axial components. Verify the result in
each case by a graphical construction.
(@) (2,0), (—2, —6), (5,3).
(b) (-1 5)’ (2, - 1)7 (8, 2)‘
(C) (07 1)1 (51 6)9 ('_ 21 _8)1 (_31 "‘4)'
(@ (9,0, (10,5), (6,2), (1,4), (2 3).
(6) (O’ "‘9), (—11 —6)1 (29 5)’ (_11 —8)'

2. In the following examples the magnitude and angle made with OX of cer-
tain vectors are given. Determine the resultant in each case.

(@) 6,3m; 8, §m Ans. Components are [(§ — 4V3), (§V3+4)].
) 2,347; 9, 5 Ans. (—$V3, —3).
3 3
™5 . . (——, —=1).
© 3,375 1, ¢ ans. (-2, 2--1)
(@ 4, 37; 10, g, Ans. (—5V3,1).
. - (A %0 49
(e) 4 ;9,3 Ans (\/§+2‘/;’ > 2).

3. In problem 2 find the component of the first vector along the directed line
determined by the second.

Ans. (@) 0; (b)) —1; (&) ——=; (@) —2; (&) VE(V3+1).
V2

4. Given the axial components of the following vectors in space. Find the
resultant of each group :

(@) (1,1, 5), (2, —1,6). (¢) (0, 6,5), (1,9, —8).
w @1,0,8), (-1, —1,0). @@ B, —-4,9), (2, 3).
(e) (—1,2,8), (4, 6, —2), (9, 10, 11).
6. The magnitude and direction angles of certain vectors in space are as follows.
Determine the resultant in direction and magnitude,

(a) 10, 4wy 3w, 3m; 6, 4w, 3w, §m.

Ans. Components are [g, 155, 5(— % - \/§>:|
) 6, im 2w, gm; 4, 4m, 3w,

Ans. Components are [(3V2 4 2V3), —3, —5].

6. Determine the component of each of the pair of vectors in problem 6 (a),
(b), along the other,

7. A point has uniform motion along OX with a velocity of 10 ft. per second.
Find the component of the velocity along the directed line from (0, 0) to (3, 4).
Ans. 6 ft. per second.

8. Find the resultant of the following velocities, the capital letters indicating
points of the compass as usual, and the numbers the magnitude :

15 N., 20 E., 20v2 N.W., 35 W. Ans. 835vV2 N.W,
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9. Find the resultant of:
(@) accelerations 5, 8, 10 parallel to the sides of an equilateral triangle taken

in order. Ans. (Taking first component along X-axis)(—4, —V'3).
(b) velocities 2, 5, 6, 3 parallel to the sides of a square taken in order.
Ans. (— 4, 2).

10. A point undergoes three displacements of 1, 2, and 3 units, respectively, in
directions parallel to the sides of an equilateral triangle taken in order. What is
the resulting displacement ?

Ans. V3 in a direction perpendicular to the second side.

11. A ship is carried by the wind 3 mi. due north, by the current 4 mi. due
west, and by her screw 20 mi. southeast. What is her actual displacement ?

12. A mail bag is thrown from a train with speed of 20 ft. per second perpen-
dicular to the track. If the speed of the train is 40 mi. per hour, what is the
direction and speed of the bag relative to the earth ?

13. A particle is kept at rest by forces of 6, 8, 11 units. Find the angle be-
tween the forces 6 and 8. Ans. T7° 21 52",

14. A boat is carried southwest by the current with a speed of 5 mi. per Ans )
hour and 30° south of east by the wind at the rate of 12 mi, per hour. What must , 1, 74m sEReN
be the direction and magnitude of the speed due to her screw if she remains at rest ?/,/3 5° 50" W.

15. Three posts are placed in the ground so as to form an equilateral triangle,
and an elastric string is stretched around them, the tension of which is 6 lb.
Find the pressure on each post. Ans. 6V3.

16. ABCD is a square, and the middle point of BCis E. Find the resultant
of three velocities represented by AB, AE, and AC.

17. The angle between two unknown forces is 62°, and their resultant divides
this angle into 40° and 22°. Find the ratio of the component forces.

18. Three forces act at a point and include angles of 90° and 45°. The first two
forces are each equal to 2 units and the resultant of them all is V10 units. Find the
third force. Ans. V2 units.

19. If three forces of 99, 100, and 101 units, respectively, act on a point at angles
of 120°, find the magnitude of their resultant and its inclination to the second force.

Ans. V3, 90°.

20. A weight of 40 1b. is suspended by two strings, inclined to the vertical
at angles of 45° and 80°, respectively. Find the tension in each string.

Ans. 20(V6 —V2), 40(V3 = 1).

21. Given the vectors a(8, — 2), b(5, 0), c(— 10, 6), d(7, 7). Construct the
figures and find the resultants of the following :

(@) a+2b—3c;

() 2a—b+c+24;
(¢c) B3a+4c—4d;

(@) 4b—2c+5d;

() 10a+6b+4c;
(f)2a+3b+c—4d;
(9) 2a—38b—-2c—24d.
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34. Displacement in a plane. Path. Suppose a point movesin
a plane. Then its position vector changes as the time changes.
If the law of the motion is known, the position vector p is a
known function of the time, and its com-
ponents (p,==z, p,=y) are known functions
of the time ; that is,

VID  2=¢(), y =¥ (®)-

‘Equations (VII) are called the equations
X of motion. By assuming values t;, £,, £, etc.,
for the time we may compute the corre-
sponding position vectors p, Dy, Pg, etc. The locus of the extremities
of the position vectors is the path of the moving point P. Since the
components of the position vector are the ordinary rectangular
codrdinates, the equations (VII) may be regarded as the parametric
equations* of the path. The rectangular equation of the path
may be obtained by eliminating ¢ from the two equations (VII).
If p, is the position vector at the instant ¢, and if p, is the
position vector at the instant ¢,, the total displacement during the
interval of time from ¢, to ¢, is represented by the vector d = P, P,.
This displacement is evidently equal to the difference of the vec-
tors p, and p; (Art. 80); that is,

d=p,—p;-

The position of the point at the instant ¢=0 is called the initial
position. It is represented by the position vector p, whose com-
ponents are z, = ¢ (0), y, =Y (0). The length 8 of the arc de-
scribed in the interval of time from 0 to ¢ is a function of . The
expression for s is given by (66, Chap. XIV)

o= (& + (%)) a= [+ wopra

d
and g = VIIOP T W OP

The sign of the radical is always taken as positive. The deriva-

tive % is the time-rate of change of s and is called the speed.

* Calculus, p. 93.
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35. Velocity in the plane. Velocity curve. Suppose a point P
moves along a path AB in the XY-plane and that the equations

of its motion are z=¢(t), y=v().

Suppose that at the instant ¢ = ¢, the point is at the position P,
represented by the position vector p;, and at the instant ¢=¢, it
is at the position P, represented by the po-
sition vector p,. During the interval of time
t,—t; the displacement is represented by the
vector d=p,— p;.

The quotient Pz—Pl

_tl

is called the awerage velocity during the in- 2
terval of time t,—t;. The average velocity is a vector, since it
is the quotient of a vector and a scalar. It has the same direc-
tion as the displacement vector d = p, — p;, and its magnitude is
equal to the magnitude of d divided by ¢, — ¢,.

Let us now consider a fixed instant £= ¢, the corresponding
position vector being p;, and denote an interval of time immedi-
ately following ¢, by At, and the displacement during the interval
At by Ap. The average velocity during the interval of time At
is therefore —étl)

To fix the ideas, let us consider some particular values for At,
the unit of time being 1 second.

(1) Let At=1; the displacement
vector Ap= P P, (see figure), and the
average velocity during the interval of
one second immediately following the

instant t=1¢, is £11£4 The vector rep-

resenting the average velocity is there-
fore equal to the displacement vector,
that is, equal to the chord P, P,.

(2) Let At=1%; the displacement vector Ap = PlPa, and the
average velocity durlng the interval of one half second immedi-
ately following the instant ¢=¢, is

Pl o pp,= PPy

2 -
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The vector representing the average velocity has the direction
of the chord and its magnitude is equal to twice the length of the
chord.

(8) Let At=}; the displacement vector Ap = P, P,, and the
average velocity during the interval of one fourth of a second
immediately following the instant = ¢, is

5?: 4P P,=PP,).

The vector representing the average velocity has the direction
of the chord PP, and its magnitude is equal to four times the
length of the chord.

(4) Let At approach zero as a limit. The vector which repre-

sents the average velocity -AATP has the same direction as the chord,

and hence when At approaches zero its direction approaches the

direction of the tangent to the curve. Multiplying % by% (As

represents the increment of arc along the curve in the time At),
we may write :
. . Ap As_As A
Magnitude of e velocity = =L . 2823 . 2P,
agnitude of average velocity === - “==" -
As At approaches zero as a limit, As also approaches zero as a
Ap _ chord
s -

.. .. As
hes 1 limit, while == ap-
o approaches as a limit, while A ap

limit, and

proaches % as a limit. Therefore the magnitude of the average
ds - .
velocity approaches = s a limit.

We now make the definition : The velocity of the moving point at
the instant t = t, is equal to the limit of the average velocity as At
approaches zero. 'The magnitude* of the velocity is therefore

_ds _ \/ do\2 | (dy\?
==+ @)+ (%)
and its direction is the direction of the tangent to the path. The
cosine and sine of the inclination of the tangent are respectively:+
dr dy.
ds’ ds
* The magnitude of the velocity is the speed. The velocity is a vector quantity and

possesses magnitude and direction.
t Calculus, p. 142.
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Therefore, applying (I), we have for the axial components of
the velocity :
=ds dr_dx_ 4

Vi "=at ds
_ds dy_dy_
Y=gt as —at- V'

From (VIII) we see that the component of the velocity of the mov-
ing point P in the direction of the X-axis is obtained by differentiating
the abscissa of P with respect to the time, and the component of the
velocity in the direction of the Y-axis i8 obtained by differentiating
the ordinate of P with respect to the time. In other words, v, is
the velocity of the projection of the moving point on the X-axis,
and v, is the velocity of the projection of the moving point on the
Y-axis. Hence the

THEOREM. The azial components of the velocity in curvi-
linear motion are equal to the velocities of the axial components
of the motion.

In general the velocity is different at different points of the
path. At the point P, of the curve the velocity will be repre-
sented by a vector v;; at the point P, by a vector v,, ete. Let a

new‘sys_tem of rectangular axes be chosen, 0, X, ¥, and from the
origin O lay off the vectors vy, v,, etc. ’

The locus of the extremities of the velocity vectors in the X Y-
plane is a curve which is called the welocity curve of the motion
defined by (VII). The position vector of any point P of the velocity
curve is equal to the velocity vector of the corresponding point
P of the path. The rectangular codrdinates of P(z, ) are equal
respectively to v, and v,.
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ILLusTrATIVE ExaMPLE. Construct the path and the velocity curve for the
plane motion defined by the equations

¢)) x=10 y=cog2t.
¢ . v v Solution. Eliminating ¢, the equation
¥ * v of the path is found to be y = cos 2 2.
0 0 1 1 0 l?xﬁerentlatlng (1), the components of
velocity are
s T 0 1 -2 :
1 4 (2) v2=1, v,=—2sin2¢.
T s —1 1 0 From equations (2), it is seen that the
2 2 velocity curve consists of a portion of the
37 | 37 0 1 2 straight line Z =1. Since the sine cannot
4 4 be numerically greater than 1, we have
T T 1 1 0 no points on the velocity curve for which ¥
is numerically greater than 2.
Y (1,2)
t = (-
. t'o.'g
o X [ ) e
-7
1-2)

The codrdinates of the moving point P and the components of velocity for cer-
tain values of ¢ are shown in the table.

PROBLEMS

1. Construct the path and the velocity curve for the plane motions defined by
the following equations :

(@) x=cost, y=sint;

(b) x=acost, y=>bsint¢;

(k) x=acost, y =bsind¢;
() 2=6t—1¢, y=38t¢;

(c) x=2sint, y=cos2¢t;

(d) x=cost, y=2sin}¢;

(e) x=acost, y=acos2t;
(f)x=asin2¢, y =asint;

(9) x=a (t—sint), y=a(1—cost);
(k) x=a(t+sint),y =a (1—cos?);
(?) z=a(¢t—sint),y=0b (1—cost);
(j) x=acosdt, y=asind¢;

(m) x=at, y=>bt+ ct?;

(n) x=t, y=1+1t3;

(0) x=1-—1¢2 y=12;

(P z=at?, y=a(l-2)?%;

(@) x=at, y=">sint;

(*) x=a(l —cost), y=asint;

() x=a(l —cost), y=>sint.

2. A point describes any curved path with constant speed. What is the form

of the velocity curve ?
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3. Two points are describing free paths in one plane such that each path is the
velocity curve of the other. If the moving points be always at corresponding
positions, prove that the paths are conic sections.

36. Acceleration in a plane. In plane motion velocity may be
defined as the time-rate of change of the position vector, and the
acceleration as the time-rate of change of the velocity vector.

Since the velocity is a vector quantity, the acceleration is also
a vector quantity. Let v, be the velocity
vector at the instant t=+¢;; and v, 4+ Av ¥
the velocity vector at ¢ =%, + At. The -
change in velocity during the interval of 4
time At is represented by the vector Av and o/ av &7
the ‘average acceleration during the interval _ }/ A

0 X I
At is the quotient % . Velocity Curve

The average acceleration is a vector quantity, since it is the
quotient of a vector and a scalar. The acceleration at any instant

(t = t,) is defined as the lemit of the average acceleration -‘Z—‘; as At

approaches zero. 'This corresponds to the definition of velocity
given in Art. 35. Hence the acceleration can be obtained from
the velocity curve in the same manner as the velocity is obtained
from the path curve. Denoting the acceleration by f, it follows
that its direction is the direction of the tangent to the velocity
curve at the point corresponding to ¢ =¢,. The components of
the acceleration in the directions of the codrdinate axes are given
by formulas similar to (VIII). Thatis,if (%, 7) are the codrdinates

of the point P on the velocity curve, then fr = (%, Sy = gl_g/‘_’

and, since 7 =v,, § =v,, we have

— vy _ d(dm 1"
fa= dt — dt dt) dt2 =¢"®,

(IX) dv, d (dy d*y
fo= G =g ==

The axial components of the vector acceleration are therefore
obtained from the equations of motion by differentiating twice.
Furthermore, a statement similar to the theorem of Art. 85 may be
made:
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THEOREM. The awial components of the vector acceleration in
curvilinear motion are equal to the accelerations of the axtal compo-
nents of the motion.

The magnitude of the acceleration is obtained from its compo-
nents by applying (1),

— 2\
£ = V7T 7 =N+ (Y = VPO VO,

37. Motion in space. The discussion of Arts. 34-36 is ex-
tended easily to the motion of a point in space. The difference
amounts to the consideration of the additional co6rdinate 2. Thus
the equations of any motion in space will have the form

(X) x=¢®), y=yY&), z=xX®),

in which the independent variable represents the time. By elimi-
nation of ¢ from the two pairs of equations (X)), the path will be
determined in rectangular codrdinates as the intersection of two
cylinders. )

The velocity is a* vector determined as in Art. 35, and if the
axial components are v,, v,, v,, then in agreement with (VIII),

_das, _dx _dy. _daz
XD @ T @ T as U Tar

Finally, the vector acceleration is defined as in Art. 36, and if
S fp J. are its axial components, then

_dv, _dxw  , _dvy _dy , _dv._ A%
I  f="g =@ =@ ~a¢’' -~ ar = ap

The equations of the path being given, the axial components
of velocity and acceleration are obtained by differentiation, and -
from these components v and f are determined in magnitude and
direction by (IV).

38. Discussion of any motion. Given the equations of any
motion, the determination of its characteristics involves the fol-
lowing:

1. Notice the nature of the component motions and draw any
conclusions as to the general nature of the motion (periodic, etc. ).

2. Plot the path either by assuming values of ¢ and computing
z, y (and 2), or by eliminating ¢ and plotting from the rectangular
equation (or equations). Find the initial position.
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8. Differentiate and find the axial components of the velocity
and acceleration. Determine » and f.

4. Draw the velocity curye and discuss the variation of v with
the time.)

5. Discuss the variation of f with the time, both in magnitude
and direction.

ILLUSTRATIVE EXAMPLES

1. Discuss the motion whose equations are
(1) xr=2t, y=2t—§—t2.

Solution. Following out the discussion:

1. The motion is not periodic.

2. The path is a parabola. For,
from (1), t=42, and ... y = — {5 22, or 22 — 122+ 12y = 0, which is a parabola.
The initial position is the origin. :

Y t | x|y
0 0 0
1| 2| 13
2 | 4 | 2
v, 3 6 3
4 | 8 | 2
0l|t=0 X 5 |10 3
6 |12 0
etc. | etc. | ete,
3. Differentiating (1), we obtain,
dx d; 2
2 e =22 =2 =% _9 _ 24
@ “TaT " " T 3"
S =Vulto2=VB—§t+ %2
_d¥ _ _dy _ 2
®) =20 f=00= -2

A=V TR =4

4. The velocity curve is the straight line », = 2. The initial velocity has the
components (2, 2). Hence at 0, the point is moving in a direction making an angle
of 45° with OX. The vertical 7]

component diminishes from 2

when ¢ =0, to zero when ¢ =3, ¢ V= K v

and thereafter increases numeri- 0 2 2 22

cally but is negative. Hence 1 2 1} |zviz|
the speed diminishes from its 3 9 0 3 2 0
initial value vo = 2V2 to a mini- 6 2 |—2 |2vE

mum value 2 when ¢=3, and | o, | gp0 | ete. | ete.
thereafter constantly increases.

When ¢ =3, the highest point
(6, 3) is reached ; v, = 0, and hence the tangent to the path is parallel to the X-axis.



72 THEORETICAL MECHANICS

6. From (3) it appears that the acceleration is constant and has a downward
direction.
2. Discuss the motion whose equations are
(¢)) x = q cos nt, y = a sin nt.
Solution. 1. Both axial components are periodic with the same period, namely

27”- Hence the moving point will return to any position in its path after an interval

of time equal to _2_" and the motion is periodic.
n

2. Eliminating ¢ by squaring and adding, the path is found to be the circle
4 O oa y: =2

The initial position is (a, 0).

3. Differentiating (1),

(©)) vz = — an sin nt, v, = an cos ni.
LU= Vo2 4 o2 = an.
3) Je = — an?cos nt, f, = — an? sin nt.

2

Sof= \/j;2+ff=anﬁ::;

4. The velocity curve is a circle of radius an. Hence the speed is constant.
Also when ¢ = 0 the components of the velocity
are (0, an). Hence the point describes the circle
in a counter-clockwise direction.

5. From (3) the magnitude of the accelera-
tion is constant. To determine its direction, we
observe by comparing (1) and (3) that

) Jfo =— n%x, fy=—n?y.
If in the figure, P is (x, y), then the point
(— n2x, — n?%), lies on the line OP produced
through O. Hence the wvector acceleration at P
8 directed towards the center. .

The motion just described is called wuniform circular motion. The axial com-
ponents (1) are both simple harmonic motions with the same amplitude ¢ and the

Velocity Curve

same period 27 (Compare
n

example 2, p. 49.)

3. Discuss the motion
whose equations are

X (1) z=at y=>bsint

Solution. 1. The com-
= ponent of the motion in the

direction of the Y-axis is
periodic, while the motion in the direction of the X-axis is uniform.
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2 Eliminating ¢, the path is the sine curve

Y= bsin @’

a

whose period is 2 ¢ and maximum ordinate is b, The initial position is (0, 0).
3. Differentiating (1),

) vz=a, vy="bcost. ..v=Va?+b2cos?t.
(3) fo=0, fy=—bsint=—y. .. f=Vi

4. The velocity curve is the portion of the straight line £ = a between the
points y =b and §y =—b.

From (2) the velocity at 0 has the components (a, b).
The speed varies between « (when t_’—; 32", etc) and
Va2 + b2 (when ¢t =0, =, etc.). That is, the speed is least
at the highest and lowest points, and greatest at the point
of intersection with OX.

5. From (3) the acceleration equals the ordinate numerically but differs in
sign. Its direction is parallel to the axis of Y.

The motion here discussed may be thus described. The point moves with con-
stant speed a parallel to O.X and simultaneously executes simple harmonic motion
parallel to OY.

4. Discuss the motion represented by
(€)) x=2sin¢, y =cos2t.
Solution. 1. Both components are periodic, and it is apparent that the

moving point will return to any position in its path after an interval of time equal
to 2.

11 x Yy

0 0 1 Cl1) A1 By
i 2 -1

T 0 1
v | =2 -1 g
2z | 0 | 1 / 01 x
ete. | ete. | ete. Cteat)  Alo)  “Blaw

2. Since cos 2t =1 — 2sin? ¢, we find, on eliminating ¢,
y=1—2sin2¢t =1— 122
That is, the path is a portion of the parabola %2 4+ 2y —2 = 0. The initial position
is 4 (0, 1),

3. Differentiating (1),

(2) v =2co0st, v,=—2sin2¢.
v =2 Vcos?t +sin22¢.
(3) f.=—2sint=—2x, fy=—4cos2t=—4y.

. f=VETI0H



74 THEORETICAL MECHANICS

4. The velocity curve, plotted from the parametric equations, has the form of
the figure 8.

From (2), when ¢t =0, v,=2, v, =0. The point ini-

tially at 4 moves to the right to the extreme position ¢ Vs Yy v
B (2, —1), at which point (¢ =} =) the velocity is zero. 0 9 0 2
It then returns through 4 to C(—2, —1), at which ir | 0 0 0

point v is again zero (¢ =4 v). The point is again at 4 | °
i 7 T | =2 0 2

when ¢ =2, and the vibration is then repeated.

) x| O 0 0
vzz) 7 (Va2 2m |2 | 0 2
t3/ v etc. | etc. |etc. | ete

4 So | Sy J
0 0 —4 4
jr | —2 4 V20
T 0 —4 4
im 2 4 |.v20
2w 0 —4 4
-2,2) (Vz,-2) ete. | ete. | ete. | ete.

t=4F '3

5. From (3), the acceleration has the components (—xz, —4y). At A the
acceleration is downwards ; at B or C it is tangent to the path. For, differentiat-

ing the equation of the path in 2, we get %:—x, and hence the slope at B is
—2. But the slope of the vector whose components are (— 2, 4) is % =—2.
Therefore the acceleration at B is tangential. Similarly for €. In the figure
the vector acceleration is drawn to scale.

AA!, BB/, and C(' are the vectors representing the acceleration at the points
A, B, C, respectively. The unit of length for the acceleration vector is 3 the unit

on the X-axis.
Z

The motion just discussed is therefore an os-
cillation with parabolic path, the period being 2 .
The components (1) are simple harmonic motions \ g
with different periods, namely, 27 and =. Their =
resultant motion is that of a point executing simul- e
taneously simple harmonic motions parallel to
perpendicular axes, the ratio of the periods being 2.

?
»

J
e

I

5. Discuss the motion in space defined by

)
it
[
——
o

(1) =x=acost, y=asint, z="0t.

Solution. 1. The x- and y-components of the
motion are harmonic vibrations, and the z-compo-
nent is uniform motion. .

2. The path is a helix on the cylinder 22 4+ y2 = a2 (Calculus, p. 272). The
initial position is (e, 0, 0).
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3. From (1), we obtain, by differentiation,

@) v, =—asint, vyy=acost, v,=b.
o v=Va? + b2
3) fe=—acost=—2, fy=—asint=—y, f,=0.
s f=a

4, Whent =0,v,=0,v, =a, v.=D.
Hence (b>0) the point describes the helix with constant speed in the upward
direction.

5. The acceleration is constant in magnitude, is parallel to the X Y-plane, and
is directed towards the Z-axis, since the direction from (0, 0, 0) to (—z, — ¥, 0),
when drawn from (z, y, 2), will pass through the axis 0Z.

By comparison with example 2, it is seen that (1) may be regarded as the
motion of a point having simultaneously uniform circular motion around OZ and
constant speed along OZ. Such a motion is obviously that of any point on the
periphery of a screw which is forced inward at constant speed. For this reason
the motion defined by (1) is called a screw motion.

PROBLEMS
1. Discuss each of the following motions:
(@) x=38t, y=2—t; () z=a(t—sint), y=a (1 —cos?);
() x=1-8t, y=6+1¢; (m) x = acos®t, y=asindt;
(¢) x=a+bt, y=c+dt; (n) x=a(t+sint), y=a(l—cost);
(@) =12, y=}¢t; ’ (0) x=a(t—sint), y=>b(1—cost);
(e) z=1—1¢, y=12; (p) z=a (t+sint), y=>b(1 — cost);
(f) =3t y=6¢t—12; (9) x=asind¢, y =bcosdt;
(9) x=at, y=">bt— 3} gt*; (r) z=at? y=a(l—-1t)?%;
(R) x=at>+bt, y=ct; (s) x=a (1 —cost), y=asint;
(@) z=t, y=1; () x=a(l—cost), y=">bsint;
() =2 y=13; (w) x=cost, y=4sin}t;
(k) x=aeH, y=Dbe*; (v) x=acost, y=ucos2t;

(w) x=asin2¢, y=asint.

2. Discuss each of the following motions, the components in each case being
simple harmonic motions :

(e) x=2sint, y =2cost; (¢) z=uasint, y=">sin (¢ 4 B);
(b) x=2sint, y=38cost; (f) x=2sin}t, y=cost;

(¢) z=sint, y=cos2t; (9) = =acost, y=>bcos2t;
(d) x=asinkt, y=>bcoskt; (k) z=sin}t, y=asing;

(#) x=acos (kt+B), y=bsin (kt+ B);
(j) x=acos (kt+B), y =bcos(kt+ B).

3. Discuss each of the following motions in space:
(@) z=t, y=t+1, 2=3—1¢;
(b)) x=1—-2¢t, y=2t—5, z2=1t—6;
(¢c) x=at, y=10bt, z=ct;
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@ x=at+a, y=bt+ by, z=ct+c;;

(e) x=sint, y=t, z=cost;

(f) x=0bt, y=asing, z=acost;

(9) x=acost, y=>bt, z=asint;

(h) x=acost, y=>bsint, 2= Acost + Bsint;
@) z=t,y=1—12, 2=31244¢;

() 2=t2+8t+1, y=12—2, 2=1-81¢;
(k) x=2cost, y=3cost, z=1;

(1) x=sint, y=cos2¢, z=sint;

(m) x=sin¢, y:\%cost,z:\%cost;

(n) x=acos(kt+B), y=>bsin (kt+B), 2=¢;
(0) x=acos?t, y="0t, z2=asind¢;

(p) x=a(t—sint), y=t, 2=0a (1 —cost).

39. Motion in a prescribed path.. The question may be raised:
What characteristics must any motion on an ellipse possess?
Certain points are readily settled. If the path is

D B2 + a%? = a%?,
either axial component of the motion (VII) may be chosen, and
the other is then determined. Thus, if we choose the z component
as the simple harmonic motion,

z = a cos kt,
then, from (1), by substitution,

a?b? cos? kt + a%y? = a%?, or
y = bsin £t.

In general, on a preseribed path one axial component may be
chosen arbitrarily, and the other s then found by substitution and
solving. ‘That is, we set = ¢ (t), where ¢ (¢) is assumed, substi-
tute in the given rectangular equation, and solve for y.

Further useful equations are the following :

From v, = g—::, v, = %, we obtain
dy
(2) . dy _ dt _Y

dz drv v,

dt
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When the path is given, ZlTy is found by differentiation, and (2)
z

gives a relation between the components of the velocity which
holds for each point of the path. For example, for the ellipse (1),
this relation is
ey
N 20 v
\ \ﬁ'( Ex vy Vg
Differentiating (2) with respect to z, we get

vxi%— vygl.y_x
ﬂ_i@);@:ﬂ__dt.
da?  dt\v,) ~ dt v,°

. _dj.l_vrf —'Ufz 3
€)) s ——E——vaa (using (IX)).

In this equation the value of the second derivative of y with re-
spect to z is found from the equation of the prescribed path.

From (2), it has been seen that one of the axial components of
the velocity may be chosen and the other is then determined.
Knowing v, and v,, we may obtain f, and f, by differentiation,
and then check the results by equation (3).

IuvustraTiVE ExampLE. If the path is the equilateral hyperbola zy = ¢, and
vy = k (constant), find v, and f,.
Solution. From the equation of the path, % =_Y.
x

Hence, from (2),

@ o=vy - U= B,

dx Y
From the equation of the path, we find y = &
‘ ©

By substituting, (4) becomes

®) ve = — K2,
c
Differentiating with respect to ¢,
2
(6) So=— 2—I—caw, = 2—§ix3
c ¢

! .
From the equation of the path y = ‘;’:, we find % = 2—:, and substituting in (3)
2 x

from (6) and remembering that f, = 0, the results check.
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PROBLEMS
1. In the following problems the path is given, Find (1) f, if v, = 8; (2) Jy if

(a) xy =a? Ans 2ﬁ2x8-2—“2y.
at
- -8 . 3
) y=a= Ans. @loga’ o2 (log a)? y.
(¢) y2=4azx. Ans. -’9—2; _ta2
. 2a y8
(d) +-” =1
(e) H—b:;_
Nt +yt=ab;
(9) = aarc versq—(2ay—y2)%. (Here g_xz__y__)
o Y-y
dns, _Pw . _ae®
. ) 2
Qa-p»i Y
- Fray . oy
) y== (e +e ) Ans. y2_a2)% p=

2. In the following problems the path and the component of velocity along
one axis are given; to find the component of acceleration along the other axis.

(@) c+y=1; v, =cos kt. Ans. f,=ksinkt.
A
(b) Ax+By+C=0; v, =2 —1¢. Ans. f,,:—é(l——2t).
¢) y¥2=4ax; v, =ct. Ans. f,:i(ct?+y).
Y 2a
(@) y*=4ax; v,=sine. Ans. fyzgy_;‘(yzcost_4azsinz 0.
91 02— 2. g Lo =0 2ycos2t , a®sin22¢ .
() #*+y*=a?; v, = sin2¢. Ans. f. 2{ e
2t 2¢4
) ?+r=a; v =0 Aus. fy=—=2=5
2
()] §;+—b—2 1; v, =nb cosnt.
2 P, ca?(y , act?
(h) a_2+%:l’ vy=cl Ans. fzz_ﬁ(é-'_? .
29 g, —
(©)] GQ“ﬁ—-ly vz = ct?

o 22
[6)) ;2——--1-1_0 v, = asec?t.

(k) 2y = a?; v,=asect.
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3. In the following problems the path and one component of the motion are
given; to find the components of velocity and acceleration and to discuss the
motion.

(@) ¥2=4ax; y=ct O) ____f_l; x=ct

(b) y2:4af£; X = acost.

¢) ®24+y2=a?; x=>bcosnt; (b £ a).

© Y ( ) (f)_.--—-+l 0; x=atant.

(@) 22+ y2=a?; y=ci?
(9) zy=a?; y=atant.

4. A point describes the curve given with constant speed ; to determine the
components of velocity and acceleration.

(a) Az+By+ C=0. ()ﬁ_ﬁ:1

) 22+ y2=a ) zy = a2
i1 1

() 2 =4azx. (9) 22+ 9y*=a>

k) y = alogsin»,
@ 2481 S
o b2 (i) y="blogcosz.

5. Given v, = kx, vy=ky. Show that the path is a straight line passing
through the origin, and find the components of acceleration.

6. Given v, = ky, v, = kz. TFind f,, f,, and the equation of the path.

7. A wheel rolls on a horizontal plane so that its center has constant speed.
Compare the speed at any instant of a point on the circumference with the speed
of the center.

8. Find the axial components of the acceleration in problem 7, show that the
acceleration at any instant of a point on the circumference is constant in magnitude

2
(: i) and is directed towards the center of the wheel.
[

9. A wheel rolls upon the inside of a second wheel whose diameter is twice its
diameter, If the center of the smaller wheel moves with constant speed, show that
a point upon its circumference will execute simple harmonic motion.

10. The pin of a crank moves in a groove in a vertical bar whose extremities
move in horizontal grooves. If the crank pin rotates with constant speed, show
that any point of the vertical bar will execute simple harmonic motion.

11. A point describes a curve with an acceleration parallel to OY. Show that

2
f= 2% , where ¢ is the constant speed parallel to OX.

12. A particle describes the cycloid = a(§ — sin6), y = a(1 — cos6). Show

that — = g"’i If the acceleration is at right angles to the line joining the cusps,
a Y

show that it varies inversely as the square of the distance from this line, or also
directly as vt.
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z x
13. A point moves on the catenary y =4a (e®+e ).
Show that 2 = 1 v2y2
a2
If the acceleration is parallel to OY, show that it varies directly as the velocity.
14. What points on the rim of the wheel in problem 7 have the same speed as

the center ? Ans. Points of an arc of 60° described about the lowest point.

40. Tangential and normal accelerations. For plane motion
the components of the acceleration vector in the directions of the
codrdinate axes are given by (IX). The components in the direc-
tions of the tangent and normal to the path are obtained by
applying (II).
~ We first adopt a convention as to the positive direction along
the tangent and normal. The positive direction along the tangent
PT shall agree with the direction of the velocity. The positive
direction along the normal PN shall agree with the direction
obtained by rotating P 7 counter-clockwise through a right angle.
Hence, by the definition,

€5 (% M) =5+ (= T).

If f, and f, are the tangential and
normal components of f, from (II),

. (2) fi=Sf.cos (z, T) + f,sin (2, T).
""" P (®) fo=S.cos (&, N) + f,sin(a, V).
o X The second member of (2) is re-

duced as follows. Since by assumption (z, T ) = (=, v), we have

cos (z, T) =cos (z, v) =

) J

sin (z, T') =sin (z, v) =
Hence, by substitution in (2), using (IX), we get
A %.&4( 2 g dv) dv,
dt v dt v =t T at) " de
Since v = .2 + v,2, by differentiation,

20@_2021117,_*_2%(111

de dt dt

Ldo_ 1 dvz
T d@ 'v( o dt)
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Sifnilarly, to transform (8), we have, from (1) and (4),

cos (z, N)=—sin(z, T) ==Y,
v
sin (z, N) =cos (z, T) =%.

Substituting in (3), we obtain
) £, =2l =l

v

If B denotes the radius of curvature of the path (formula
64, Chapter XIV), we have, by (VIII) and (IX),

3
R=—Y .
v Sy — VS
Hence, we write (6) in the form
2
6 — ﬁ.
® £=3

-For reference later we give also another form for f,. From
(3), Art. 39, we have

Py _vofy = vfe,

da? v,3

Hence, from (5),
' _u Ay
™ fu=2228

The results found give the

THEOREM. If the vector acceleration at any point of the path is
resolved along tangent and normal, its components are
, ‘ _dv_ds_ dv =2
(XIID) =g a="as T ®
where R 18 the radius of curvature.

Since f; and f, are at right angles, we have obviously
F=NFEFFR
Two important results follow from (XIII). 1. If the pathisa
straight line,llz= 0, and .. f,=0. That is, in rectilinear motion
the vector acceleration is directed along the path. 2. If the speed

is constant, %%: ¢, whence z_gtsé =0 and .. f,=0. Hence in curvi-
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linearmotion with constant speed the acceleration is directed along
the normal.

Furthermore, in any curvilinear motion (f, = 0), the accelera-
tion is directed towards the concave side of the path. To show this,
four cases must be considered. From formula (7), for f, it is

plain that f, is positive or negative according as v, and% have
like or unlike signs. By Calculus, p. 187, the path is concave up-

wards or downwards according as %2 is positive or negative. The

four cases to be considered are :
1. The path is concave upwards and the point is moving

towards the right. Therefore, % and v, are positive; hence f, is

positive and the resultant of f; and f,, that is, f (fig. @) is di-
rected towards the con-

)
N cave side of the curve.
ANV 4 W\ I 2. The path is con-
\P { 7 -5 } P‘/ cave upwards and the
@ = v (b) point is moving towards
‘ the left.  Therefore,
3
N . oy
A s 5 b Zz—z is positive and v,
A ;
T T N e :
/f,, N\ / 7 | is negative ; hence f, is
© N @ negative. By definition

. (1), the normal PNV is
directed downwards, hence f, is directed upwards and the re-
sultant f is directed towards the concave side of the curve
(fig. b).

Similar results follow for the two cases when the curve is
mncave downwards, as in figures ¢ and d.

Since the direction of the tangent agrees with the direction of
the velocity, we have from the figures the criterion: ZT%e velocity
vector is rotating counter-clockwise when f, is positive, clockwise when
S 8 negative.

The significance of the algebraic sign of f; is easily determined.

Since f; = (%(ié?i), it is seen that when f,1s positive the speed is

dt
increasing; when negative, the speed is decreasing.



KINEMATICS OF A POINT. CURVILINEAR MOTION 83
When the equations of motion are given, we proceed as fol-
lows to find f; and f,:
1. Differentiate and find v,, v,, fo fpr
2. Find v from v = Vo2 +v,2
3. Differentiate this last result, giving f, =
4. Find f, by (5), p. 81.

IrLustrRATIVE Exampre. Determine the normal and tangential accelerations
in the motion defined by

dv,

dt

x =qcost, y=bsint.
Solution. Eliminating ¢, the path is the ellipse
b2%e? + a2y? = a?b2
Following the directions given, we find

v,=—asint, v,=bcost, f;=—acost, f,=—Dbsint.
Hence v = + Va2sin? ¢ + b%cos?¢. From these values we obtain
dv_ (e —Db?)sint-cost

dt  +VaTsinZt + blcostt

fu= Vafy — VS _ ab .
v + Va?sin? ¢ + b2 cos?¢

=

‘We note the following table of values. The point
¢ x Y | So | Ja| describes the ellipse counter-clockwise. The normal
0 a 0 0 a acceleration is always positive, agreeing with the fact

PP b 0 b th.a,t the .velocity vector rotates always counter-clock-

r l—al 0 0 a wise. Since f; >0 when the point lies in the first and

gr| 0 |—b| 0 b third quadrm}tsz the speed increases from 4 to B and

o 0 0 a A’ to B'. Similarly, from B to A’ and B' to A the
speed decreases.

PROBLEMS
Find f; and f, for problems 1 and 2, p. 75, and discuss the results.

41. Equations in polar coérdinates. In many cases it is more
advantageous to employ polar codrdinates in studying motion in
a plane. If (p, 6) are the polar cordinates of a moving point P,
the equations of motion have the form

(XIV) P=%(0), 6 =4(D),
since obviously p and € are now functions of ¢.

In rectangular codrdinates the derivatives of 2 and y with
respect to the time were of fundamental importance. Similarly
in using polar codrdinates we shall expect their derivatives to
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appear. The time-rate of change of the radius vector p is called
the radial velocity of the point (p, ). The time-rate of change
of the vectorial angle @ is called the an-

¥]
gular velocity o of the point (p, ).
- That is,
g < dp =radial velocity,
OR :
< == angular velocity.
0 b4

We desire to obtain the components
of the velocity vector and of the acceleration vector when re-
solved along and perpendicular to the radius vector. We first adopt
a convention as to the positive directions along these lines.

The positive direction along the radius vector is defined as in
Analytic Geometry, p. 149. The positive direction perpendicu-
lar to the radius vector is the direction obtained by ¢nereasing the
vectorial angle € by a right angle.

Denoting the components of the velocity and acceleration
vectors along the radius vector by v, and f, and perpendicular to
the radius vector by vs and f,, respectively, we have, (apply-

ing (IT)),
v, = 0,08 0 + v, sin 6,
@ {é;o= v,C08 (g+ 0)+ vysincgr + 0>= — v, 8in 6 + v, cos 6,
and

Jo=JS.cos0 + f,sin 6,
® { szOS(z+9)+f,,sin(;—r+9)=—fxsin0+fycos0.

To transform the derivatives of the rectangular coordinates into
the derivatives of the polar codrdinates, we have the relation,

z = p cos 0,
W y=psiné.
By differentiating (4), we obtain
(v = 0030 -—psmei‘?

®)

. d6
Avy=s1n0;i—§+pcos0(—i?

A
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and )
—c0s0%P _ 9gingdp. 40 _ e(d_9>2_ Ll
© f,,_cos;edt2 2 sin 2 3 Peostg psin T
Y dp df _ (d9> dz0
fy—s1n0d?+2cosﬂdt e psin @ +p<,099dt2.

Substituting (6) and (6) in (2) and (3), respectively, we
obtain, after simplifying,

)
'vozpﬁ:po),

XV) _ap (de) av,
p=ar P\at) = ar ~ P

a» dp d0 _1a
o=Pant % & p dt

(p'w);

i d0) &0 | ,dp df
-z == ~— 492 =
since (”2 )= dt< at) ~Pae ™ " a @
| Of course v =Vo,2+ 0% f=VS2+ fo as usual.

ILLusTRATIVE ExaMPLE. A point describes a circle whose equation is given
in polar coordinates. Discuss formulas (XV) for this case (compare Art. 38).

Solution. If the origin is on the circumference, the equation is

(€)) p=2acosb.
Differentiating with respect to ¢,
dp dae .
2) £=—2qasinfd —,orv,=—2asiné. w
@ dat a’ P

c 2= 10,2 4 vg2 =4 a?sin? 0 w? 4 p%?

=(4a?sin?0 + 4 a2 cos? 6) w2
Hence
3) v?=4a%2 orw= 2”—‘1, and v, =—v sin 6.
Equations (8) express angular and radial velocity in terms of speed, and are

easily found directly from the figure. This verification is left to the student.

To find the component accelerations, differentiate (2) again. This gives
ggﬂ:—2acos0w2 2 asin 092
dat at

. 0w
= — —2 —_—
pw? aSlnodt
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) v fy=—2put —2asin 6%
at

Vp dw

——2pu 4. 9@

P +w dt

=—2pu?+ 2 (by (4), Art. 42).
w

Similarly,
() Jo= %d%(p“’w):%vpﬂ%
) =2 wv, + plL.
Substituting in f2=f,%+f¢?, we find after reducing,
6) 12:02(4 w2+%:)=4a2(4 Wt a?).

This equation expresses the total acceleration in terms of the angular velocity
and acceleration.

Ir particular, assume fy =0, that is, let the acceleration be directed towards
the origin. Then, from (5),
™ %(,;%):0. v p%w = ¢, and (,,:'%.
Also, from (5),
2wv,+p0=0. .- a:-m‘

P
Then (6) becomes
fi=4 a2(4 gt ‘"2"»2) =16 d%™? _ 64 atut,

s’ o m
8 ¢2w? 8 a2c?
®) o fE- =20
p p

the negative sign being used since the acceleration must be directed towards 0.

This result is due to Newton, and may be stated as follows: If a particle
describes a circle with an acceleration directed towards a point on the circumference,
the acceleration must be inversely proportional to the fifth power of the distance.

PROBLEMS

1. Plot the path,* find vp, vy, fp, fp, and discuss the motion defined by the
equation :
(@) p=2asint?’ 0=12;

®) p=2at, 6=arccost (0Lt <1);
(¢) p=acost, f=asect;

(@) p=asint, 0 =sint;

(e) p=tant, 0 =cott;

(f) p=atant, 0 = cot2¢;

@ p=ce, 0=1t;

(k) p=a(l—1t), 6 =arccost (0<t<L1);
(Z) p=asint, 0=1t¢t;

(j) p=acost, =1}t

* The path may be plotted from the parametric form as given, or the ordinary polar
equation may be obtained by eliminating ¢.
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2. A point describes the ellipse p = — 2.
1—e¢cosé
Let 6 be given in terms of E by the relations,
V1 — e2.si
sing=Yl—€ -SinE ., cosEte
1+ecosE l4+ecosK
and E be given in terms of ¢ by
nt = E + e sin E.
203
Prove =-"% £ =0 wherea=_—-L .
fP Pz ) fO 1_e

42. Rotation. When the path is a circle, the motion is called
rotation. If the radius is », the equations of motion are

@ p=r, 0=19(.
The position of the point is completely de-
termined if @ is known. For this reason,
the equation p = r is unimportant and it
is customary to call the second equation,
) 0=+,

the equation of the rotation.

From (2), we obtain by differentiation,

3 Z—f = angular velocity = w ;
€)) % = %‘:—= angular acceleration = .

That is, the angular acceleration is the time-rate of change of
angular velocity. Angles being measured in radians, angular
velocity is measured in radians per second. For example, if
o= }m and is constant, the radius OP
rotates through a right angle in each sec-
ond. In the same way angular accelera-
tion is measured in radians per second in
each second. For example, if «=1 and
is constant, the radius OP rotates with
increasing angular velocity, the gain be-
ing one radian per second in each second.

The speed in rotation is readily found.
For if § — 6, is the angle turned through in the time ¢, and s the
length of the corresponding arc, we have

s=r(0 — 0.
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Hence, by differentiation,
ds df

®) G- orr=re
In rotation the speed equals the angular velocity times the radius.
Next, consider the tangential and normal accelerations. These
are also readily expressible in terms of @ and «. For by (XIII)

and (5),

f=tdr_de_ .,
6) dt dt
( 2 22
f__'v e 3
b

The same are found from (XV) by noting that in rotation
fo=—Ffufo=re

THEOREM. If w and « are respectively the angular velocity and
angular acceleration in rotation, the speed and acceleration are
determined from

XVDH v =10, f; = 1ra, fp ="re0c

IrLusTrRATIVE ExampLe. A fly wheel is making 120 revolutions per minute
(R.P.M.). If the angular velocity diminishes at a constant rate, find the number
of revolutions if the wheel stops in one minute.

Solution. The motion of the wheel is determined by the motion of one of its
points. Let wp be the initial angular velocity.
Then, since * 120 R.P.M. = 2 R.P.S. = 4 = radians per second, we have wo = 4 .

Since the angular acceleration is constant,

o= %’ =k, .. w=kt+c, where c is the constant of integration. But w = wg
when ¢ = 0.
(€)) . cow=kt+woor w=kt+4w.

Since the wheel comes to rest in 60 sec., w = 0 when ¢ = 60.
. 0=60k+4mandk=— &

2 cow=—ggwt+4m
Writing w = %:-, integrating and assuming ¢ = 0 if ¢ = 0, we obtain from (2)
3) 0= — w2 + 4wt

which gives the angle turned through in any time. If ¢ =60, 6 = 120 », and hence

the number of revolutions is -21 = 60.
T

* In general, angular velocity = %’; . R.P.M.
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PROBLEMS

1. In the following problems the equation of motion of a point describing a
circle is given. Discuss the motion.

(@) 6=at+0b;

) 6=at?+bt+c;
(¢) 6 =sint;

@ 6=t—t;

oml
e 6 = wsin™t,
(e) 0=msinf

2. A fly wheel making 360 R.P.M. is subject to a constant retardation of 1
radian per second per second. How many revolutions does it make before stop-
ping ? What time is required ? Ans. 36 xrevolutions ; 12 = sec.

3. A fly wheel starting from rest is subject to a constant angular acceleration
of } radian per second per second for two minutes. Find the angular velocity and
the number of revolutions made at the end of the first minute; at the end of the
second minute. 900 R.P.M,, 450 rev.; 1800 R.P.M, 1800 rev.

m m m

Ans. — 22
k3

4. A fly wheel starting from rest and subject to a constant angular acceleration
for 3 minutes makes 5000 revolutions. Find the acceleration.
Ans. o = 5—% rad. per second2.
5. A fly wheel making 500 R.P.M. and subject to a constant retardation comes
to rest after making 2000 revolutions. What time is required ? Ans. 8 min,



CHAPTER IV
KINETICS OF A MATERIAL PARTICLE

43. Momentum. In the preceding chapters motion of a material
particle has been studied without reference to mass or force. The
latter are now to be taken into consideration. We begin with the
definition:

Momentum or quantity of motion is the product of mass and
velocity, or

¢)) Momentum at any instant = mv.

From the definition it is plain that momentum is a vector quan-
tity, being the product of the vector velocity by the positive num-
ber m. The direction of the vector momentum is the same as that
of v, but its magnitude equals the product of mass and speed.

44. Force. The science of Mechanics is founded upon laws
or axioms which sum up the results of experience in the observa-
tion of motion. A set of three Laws of Motion was proposed by
Sir Isaac Newton (1642-1727), the statement of which is general
enough for present purposes. Considering these laws as needed
in the development of our subject, we begin with the

First LAw orF MorioN. Every body persists in its state of
rest or of uniform motion in a straight line, except in so far as it
may be compelled by force to change that state.

Remembering that uniform motion in a straight line means
motion with constant vector velocity, it is plain that uniform motion
means constant vector momentum. The First Law is often ex-
pressed by saying that the body has tnertia. A body has no power
of itself to change its state of rest or motion, but continues to
move with constant momentum when not acted upon by an im-
pressed force. That is, by the First Law we conclude that no
Jorce is acting upon a body if the body is at rest or moving with con-
stant momentum.

If, however, the momentum is variable, then the existence of
forces acting upon the body is inferred. We thus come to the

90
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SEcoND LAw oF MotIioN. Change in momentum is caused
by forces acting upon the body. Force and change in momen-
tum agree in direction, and the magnitude of the force at any
instant is proportional to the time-rate of change in momentum.

In this statement of the Second Law is contained the defini-
tion of force. For consider the motion of a material particle
of mass m. Its momentum at any instant equals mv. Since m
is constant, change in momentum means change in vector velocity,
and the direction of change in velocity we know agrees with the
direction of the acceleration. By the Second Law, therefore,
force and acceleration agree in direction. Furthermore, the
magnitude of the force at any instant is proportional to the time-
rate of change in momentum; that is,

(2)  Force at any instant = k % <mv>= kmi%:kmf,*

where k is a constant factor of proportionality. Hence the Second
Law leads to the result :

The force acting at any instant upon a material particle has the
direction of the vector acceleration and in magnitude is proportional
to the product of the mass and acceleration. Force is therefore the
cause of acceleration.

The value of the factor % in (2) depends upon the units
assumed. Evidently for analytical purposes it is convenient to
assume £ =1. This is shown below to be equivalent to assuming
that force is measured in so-called scientific units. For theoretical
purposes, therefore, we may assume as the magnitude of force,

I Force = m W — mf,
() dat 2

In Applied Mechanics, however, it is found more convenient to
select £ not equal to unity. (See Art. 45.)

Observation of falling bodies makes familiar the phenomenon
of changing momentum. The force in question is then called
the weight of the body, or also, the force of gravity. That is,
weight is the force of attraction exerted by the earth upon other
bodies. The acceleration caused by weight is nearly constant in

*1In equation (2) the differentiation is made on the assumption that the mass is
constant. If the mass is variable, a special investigation is required. See Routh,
Dynamics of a Particle, p. 80.
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a small region near the earth’s surface and is denoted by g. This
acceleration is also called the intensity of gravity. The numerical
value of g varies from place to place and also depends upon the
units of length and time adopted. In the English and French
systems, respectively, as an average value,
g = 382.2 ft. per sec. in 1 sec. (English),
- g =983 cm. per sec. in 1 sec. (French).

Dimensions. From the definition of force it follows that its
dimensions are mass times acceleration. The derived unit of
force is therefore expressed in terms of the fundamental units of
mass, distance, and time by the dimensional equation

Force = 1888 X length
time 2

45. Units of force. Scientific units. For theoretical purposes
it is convenient to define unit force as that force which will
produce unit acceleration in unit mass. With this definition it is
apparent that in equation (2), Art. 44, the factor of proportion-
ality, &, is unity. Hence, in scientific units,

(@) Force = mass times acceleration.

In the English system, the unit of mass is the pound and
the scientific unit of force is the poundal. Hence, one poundal
18 that force which will give to a mass of one pound an acceleration
of one foot per second in one second. In the French system, the
unit of mass is the gram and the unit of force is the dyne.
Hence, one dyne t8 that force which will give to a mass of one
gram an acceleration of one centimeter per second tn one second.

Technical units. In engineering practice the English unit of
force is equal to the weight of unit mass and is called the pound.
Referring to (2), Art. 44, since the force in questlon is weight,
we must replace f by g, and thus obtain

F = kmg.
By hypothesis, when m is unity, so also is #,
.1=kgand ... k=1=+g.
Substituting in (2), Art. 44, gives as the magnitude of force in
technical units,
2 Force = mass times acceleration divided by g.
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Comparison of the two systems of wunits. Mass, time, and
length are measured by the same units in both systems. As just
explained, however, force is measured by different units. To
find the relation between the latter, we may apply (1) to the
case of weight, whence, in scientific English units,

3 Weight =mg (poundals).

Since, by definition of the technical unit, the weight of a 1-lb.
mass equals 1 1b. of force, hence the equivalence,

€)) One pound of force = g poundals.

The student will observe that in technical units weight and
mass are numerically equal. The difference is one of dimensions
only.

The following Table of Equivalents, together with equation
(4), will be found useful :

ExcLisH FrENCH
1 foot = 30.48 centimeters;
1 pound (mass) = 453.6 grams ;
1 poundal = 13,825 dynes;

1 pound (force) = 4.45 (10)°® dynes.

46. Rectilinear motion. If the path of a material particle is
a straight line, the expressions for the acceleration are given by
(I1I1), Chapter II. Hence, applying (I), and denoting the force*
by F, we have

Dividing by m, we have the force equation or the differential
equation of motion in a straight line.
F_do F_av F_,dv
an a’ O @ =g or (© =vor.
Suppose the mass m is given and the force is known. It
is required to discuss the motion. For this purpose we must

determine z from equations (II) by integration. If Fis a function
of the time only, (@) should be used; if # is a function of the

*.The discussion of the text assumes scientific units in all cases.
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velocity only, () should be used; and if ¥ is a function of the
distance only, it is usually more convenient to use (¢). - However,
in case of a linear function of » and =z, that is, if # = Av + Bz 4 C,
where A and B are constants and € is constant or involves ¢, use
(@) (see equations T1, 72, 78, 74, Chapter XIV). If Fis a con-
stant, either form may be used.

The force alone is not sufficient to determine the motion
completely. For example, let us consider the case of a particle
projected vertically in a vacuum. Obviously the motion will
depend upon the position (on the vertical line OX) from which
the particle is started, and upon the velocity with which it is
projected. The initial position z, and the initial velocity v, are
called the nitial conditions, and it will be shown that when known
they determine the motion completely. The only force acting
is the weight, whose magnitude is mg. The direction of the force
is downward, and if we choose the positive direction along 0X
downward, we have, from (II), (3),

F_mg_dv
m m dt’
or !
dv_
dt
Multiplying by dt and integrating,
) v=gt+ ¢

where ¢, is a constant of integration; and since v = %, we may
multiply by d¢ and integrate again, obtaining

) 2= g0+ et + o
where ¢, is a second constant of integration.

To determine the constants of integration, we make use, of
the initial conditions. Suppose the particle is started at the
point z, with the velocity of projection »,, Then when ¢=0,
z =z, and v =v,. Hence, substituting in (1) and (2), we have

an Y% = 1 ‘
@"H Zy= Cy
Hence the equation of motion is
x =192+ vyt + z
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The discussion may be made according to the directions given in
Chapter II.

47. Resultant force in rectilinear motion. If a particle mov-
ing in a straight line be acted upon by two or more forces directed
along the line of motion, the resultant acceleration is the algebraic
sum of the accelerations due to the separate forces. Suppose the
particle is acted upon by n forces, Fy, Fy, -+, F,. The acceleration

due to F| is f} =£1, to F, isf2=£’2, sy to F, isfn=ﬂ, and the
m m m

resultant acceleration, f, is given by

M F=fitfyt - f=Bait it o B

Hence, if # denotes the algebraic sum or resultant of the
collinear forces (¥ = F, + F, + .- F,), we have, from (1),

@ B =mf.

That is, if a particle moving in a straight line be acted upon by any
number of forces directed along the line of motion, the product of the
mass and the acceleration is equal to the resultant force.

ILLUSTRATIVE EXAMPLES
1. A heavy body is projected in a vertical direction. Determine the equation
of motion if the resistance of the air is proportional to the speed.

Solution. We take the X-axis vertical with positive direction downwards.
There are two cases : (@) when the body is falling ; (b) when it is rising.

(a) The weight, acting downwards, is positive and equal to mg. The resistance
of the air always opposes the motion, and hence, when the body is falling, this
force is negative. Since the velocity is positive, we have

Resistance =— pmo,
where u is'a factor of proportionality.
The resultant force is F = mg — umo.

(b) When the body is rising, the resistance of the air acts in the same direction
as the weight, and is, therefore, positive. Since the velocity is negative, we have

Resistance = — umv,

and the resultant force has the same form as in case (a).
Hence, in this problem, the force equation is the same when the body is falling
as when it is rising.
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Since the force is a linear function of v, we use (II) (@),

Pz_F_, .,
e~ m !
or
a2 dz
1 == =y,
™ wtrg =Y
The solution of the homogeneous equation (see Calculus, p. 440),
[
=0,
ar e
is z =1+ cgem kL

We see by inspection that a particular solution of (1) is « =% ¢, and hence the
general solution is
@) T = %t + €1 + coent,

The constants of integration are determined if the initial position, xy, and the
velocity of projection, vy, are known. Differentiating (2), we find the velocity,

3) V= % — uCge — Mt

If w=u, v=v, when t=0, we find, from (2) and (8), cz =2 —
. ut
¢1 =1%o + % _ %, and hence the equation of motion is
[T )
x:gt+x0+3*l—l+(g-—”—°)e“#'.
B w2 \p? o
2. A box of mass 100 1b. is placed on an elevator which ascends with an acceler-
ation of 10 ft. per second per second. What pressure does the elevator exert upon
the box ?
Solution. Taking the positive direction upwards, and denoting the pressure of
the elevator on the box by P, we have for the resultant force,
F=P—mg =mf.
Substituting the values of m and f, we find
P =100(10 + 32) = 4200 poundals.

PROBLEMS

1. Find the equation of each of the following rectilinear motions under the
given conditions :
(@) F,=mt; =1, v=0, when¢z=1.
Ans. x=388—3t+ 4.
®) Fy=m@—=1); y=0, v=1, when¢=0.
Ans. y=3t8 -1 +1¢.
© F_ ; =0, v=0, when t =2.

Ans. x =@ —1)[log(t—-1) —1]1+1

1
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(@ Fy,=mcost; y=0, v=0, when ¢=0.
Ans. y=1—cost.
(¢) Fy=—mz; x=a, v=0, when t:%’-
Ans. x=asint.

(f) Fy=—my; y=0, v=1, when¢=m.
Ans. y = —sint.

(¢9) Fr=—mx; x=acosB, v= —asing, when t=0.
Ans. x=acos (t+ B).

(k) Fy=—mk¥%; y=acosp, v=—aksinp, whent =0.
Ans. y=acos (kt + B).

(?). F,=—mn%; x=asiny, v=ancosy, whent=0.

() Fy=my; y=0, v=1, whent=0.
Ans. y=131(et —e™).

(k) Fy=—2my—2mv; y=0,v=10, when ¢ =0.
Ans. y =10e"tsint,

() Fo=—25mx—6mv; x=a,v=0, whent=0.

Ans. x = Z—e—3‘(4 cos4t+3sin4t).

(m) Fp=—2pmv—Kkmz; =0, v=>, whent =0, (k> nw).

b
Ans. © = ———=e #'sin Vi — u2¢,

\/k2—/42
(n) F,=—4mzx+2mcost; x=0,v=0, when¢t=0.
Ans. x =1} (cost—cos2t).
(0) Fy=—my—msint; y=0,v=0, when¢=0.
) Ans. y=14tcost— }sin ¢
(p) Fo= —k2mx +msinnt; x=0,v=0, when ¢=0.
n

Ans. €= — cos kt +

(@) Fy=—kmy+mcosnt; y=0,v=0, whent=0.

(rj F,=—mz+msint+3mcos2¢t; £=0,v=0, when ¢t = 0.

1
k(K2 — n?) v—n

97

2. Discuss the following rectilinear motions, taking into account the initial

conditions.
(¢) [f=a+2, given v=c¢, 2 =0, when ¢ =0.
) f=x3; given v = vo, ¥ = %o, When ¢ =1{o.
(c) [f=02; given v =%, =0, when ¢ =0.
@ f=av; given v = b, m:%, when ¢ =0.
2 __ J2p2
(e) f:g__kg_; given v=0,2=0, when ¢t =0.
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N F,:m(acz—lt);given v:c% x:%, whenz:%. ‘
¢
Answers :
() z=—1log(l—11P).
1 g+kv g et—e Rt
@ t_ﬁl()gg—kv'v_i.ekt_l.e—kz’

a—4c2?
d4c¢t

(62) vzg (t”+82~8>—(1—=logct; x =y att +§2:‘:t—-%(tlogct—t)+

3. Show that a particle projected with a velocity vo and acted upon by a
constant force mk will acquire a velocity equal to V2kxz +v? in moving the
distance .

4. A body is projected vertically upwards with a velocity 7. Prove the
formulas v= V— gt, h = Vt —} gt2, where h is the height at any instant. What
is the greatest height ? Ans. h= Z_{

29

5. A body of 25 lb. mass is acted upon by a constant force which in 10 sec.
gives it a velocity of 75 ft. per second. What is the magnitude of the force in
poundals ?

6. A heavy body is projected in a vertical direction. Write the force
equation and find the equation of motion if the resistance of the air is proportional
to the square of the speed.

Ans. When the body is rising, F=mg + pmv?; =z =i log sec (Vug t+c¢1) + ca.

When the body is falling, F =mg — umv?; =\/g t+ 1 log (1 — e~%Vkgt+e,) + ca.
o

7. An elevator, starting from rest, has a downward acceleration of 16 ft. per
second per second for 1 sec.,, then moves uniformly for 2 sec., then has an
upward acceleration of 103 ft. per second per second until it comes to rest.
(a) How far does it descend? (b) A person whose weight is 150 1b. experiences
what pressure from the elevator during each of the three periods of its motion ?

Ans. (a) b2 ft. (b) 75 1b.; 150 ib.; 200 lb.

8. Equal masses of m 1b. each rest upon two platforms, one of which has
at a certain instant a velocity of a ft. per second upwards and the other a velocity
of b ft. per second downwards. Both platforms have an upward acceleration f.
Compare the pressures of the platforms on the bodies.

9. A bucket containing 112 1b. of coal is drawn up the shaft of a coal pit
and the pressure of the coal on the bottom of the bucket is equal to the weight of
126 1b. Find the acceleration of the bucket. Ans. ¢

8

10. While ascending vertically in a balloon with a velocity v, a man drops a

stone when h ft. above the ground. Find the time required for the stone to fall to

the ground. Ans. v+ VR4 2¢gh
9

.
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“11. A string which can just sustain a mass of 10 1b. against gravity is attached
to a mass of 2 Ib. which rests upon a horizontal table. Supposing that friction
is {4 the weight of the body, find the greatest acceleration that can be given to the
body by means of the string.

12. A particle moves in a straight line under a force directed towards the origin
2

and varying inversely as the third power of the distance. Prove v2 = ’% + vo2, if &
z

is the absolute intensity. If the initial distance and velocity are respectively b and

’g, show that the equation of motion is 22 = b2 — 2 kt. Discuss the motion.

13. A particle is projected with a velocity v in a medium offering a resistance
proportional to the square of the velocity. Show that the equation of motion may

be written s =1 log (uvt + 1). Discuss the motion.
I

14. Find the equation of motion if the force is a periodic function of the time.
Hint. Assume* F,=macos kt. Then F, varies from ma to — ma with the

s 2 27 __a
period = Ans. x =— o cos kt + vot + %o.

15. When is the motion in problem 14 periodic and what is the period ?

Ans. vy =0, period = 27"'

16. A particle describes a straight line under the action of two forces, one con-
stant and the othér an attractive central force proportional to the distance. Show

2.
that the force equation may be written Z? =— 2y + f, where x and f are constants.
Find the equation of motion and discuss it.

Ans. y= ccos(ut + »)+ —-2 , where ¢ and » are constants of integration.
s

17. Show that the motion in problem 16 is central motion, the center being at

Y= +,i2 and attracting directly as the distance. (@) What is the period of the
s

motion ? () If y =@, v =0, when ¢ = 0, find the amplitude. Ans. (a) 2w .
N

18. A spring balance is extended } in. by a mass of 11b. and the force of the
spring is proportional to the extension. The spring is then pulled downward and
released. Show that the force equation has the same form as in problem 16, namely

&
24 =9(1—48y). What is the period of the vibration ?

Ans. 27 __ L sec. nearly,

visg 11

* A finite periodic function of the time must have the form A4 sin (bt ) or
A cos (bt + v), where 4, b, and v are constants.
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19. A particle is acted upon by a center of force which attracts directly as the
distance and moves in a medium resisting directly as the velocity. Show that the

force equation may be written fuicd +2 ,u@ + k2¢ = 0. Find the equation of motion
: dg? dt
if u<k.
Ans. x = Ae—rtcos (V2 — p2t + v), where A and » are constants of integration.
20. Write the force equation for a particle which is acted upon by an attractive

center of force proportional to the cube of the distance if the particle moves in a
medium offering a resistunce proportional to the square of the speed.

21. A central force is attractive and varies as the nth power of the distance.
If the particle starts from rest at the distance ¢ from the center, find the time of
arriving at the center when (1) n =1, (2) n=-3.

Ans. (1) —T—, (2) %2, where  is the absolute intensity.
2V vV

22. In example 1, p. 95, show that the velocity approaches 9 as ¢ increases

n
indefinitely. Show also that when the particle is projected downwards with this
limiting velocity, the velocity remains constant, and the motion is uniform.

48. Curvilinear motion. Axioms on force action. Concurrent
forces. Three things must be known of a force in order to com-
pletely determine it, namely, its magnitude, its direction, and its
point of application. Forces are therefore not vector quantities in
the sense in which a vector was defined in Chapter ITI, because the
line of action of a force cannot be moved without changing the
effect of the force. We are, however, familiar from experience
with certain properties of force action which at least suggest
vector properties. In fact, it isevident that if we confine ourselves
to forces acting simultaneously upon a material particle, since at any
instant such forces have the same point of application, magnitude
and direction are now alone significant. Such forces are said to
be concurrent. For these forces vector resolution and composition
have meanings with which we are familiar. These results of ex-
perience we state in the form of axioms.

‘AxioMm 1. The acceleration produced by the simultaneous
action of any number of concurrent forces is equal to the accelera-
tion which would be produced by their vector resultant.

In other words, any number of concurrent forces may be re-
placed by a single force equal to their vector sum.

Axiom 2. If a force is resolved along any direction, the accel-
eration dueto this component may be found by resolving the original
acceleration along that direction.
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For example, given a force F which causes at a given instant
the vector acceleration f in the motion of a materla.l particle of
mass m. Then, by (D),

@ F=mf.
If now we resolve F and f along any directed line /, the corre-

sponding components being F; and f;, respectively, then f;is the
acceleration caused by F;, and by (I) and Axiom 2, we shall have

@ F, = mf;.

That is, the component of a force along any direction equalsthe mass
times the acceleration along that direction.

49. Curvilinear motion. Suppose a particle moves in a plane
and is acted upon by n forces, F,, F, ---, F,. By the first
axiom on force action the n forces may be replaced by a single
resultant force # obtained by the vector addition of the individual
forces ¥, F,, ---, F,. By the second axiom on force action the
component of the resultant force # in the direction of the X-axis
is equal to the mass times the acceleration in the direction of the
X-axis. Similarly, the component of F in the direction of the ¥-
axis is equal to the mass times the acceleration in the direction of
the Y-axis. Hence we have the rectangular force equations for
plane motion:

Fr.=m —'J(il:f, Fy=m —zg, ) or
dv, d
111) F,=m u", Fy=m 7’;9, or
dv, dvy
F = 'z' F = M
z dx’ v =My ay’

where
F, = sum of 2-components of all forces acting,

F, = sum of y-components of all forces acting.

The equations of motion are obtained by integrating the force
equations.
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