==> geometry/cover.earth.s <==
We know that V = (4/3)*pi*r^3 and A = 4*pi*r^2.
We need to find out how much V increases if A increases by 1 m^2.
dV / dr = 4 * pi * r^2
dA / dr = 8 * pi * r
dV / dA = (dV / dr) / (dA / dr)
= (4 * pi * r^2) / (8 * pi * r)
= r/2
= 3,250,000 m
If the area of the cover is increased by 1 square meter,
then the volume it contains is increased by about 3.25 million cubic meters.
We seem to be getting a lot of mileage out of such a small square of cotton.
However, the new cover would not be very high above the surface of the
planet -- about 6 nanometers (calculate dr/dA).