=

SECOND COURSE IN ALGEBRA

BY

HERBERT E. HAWKES, Pu.D.

PROFESSOR OF MATHEMATICS IN COLUMBIA UNIVERSITY
AND

WILLIAM A. LUBY, A.B.

HEAD OF THE DEPARTMENT OF MATHEMATICS, NORTHEAST HIGH SCHOOL
KANSAS CITY, MISSOURI

AND

FRANK C. TOUTON, Pu.B.

PRINCIPAL OF CENTRAL HIGH SCHOOL, ST. JOSEPH, MISSOURI

GINN AND COMPANY
BOSTON - NEW YORK CHICAGO « LONDON



COPYRIGHT, 1911, BY

‘ HERBERT E. HAWKES, WILLIAM A. LUBY, AND
FrRANK C. ToUTON

ALL RIGHTS RESERVED

914.7

The Athenzum Press

GINN AND COMPANY « PRO-
PRIETORS + BOSTON - U.S.A.




PREFACE

This book is designed to follow the authors’ ** First Course
in Algebra” or any other text of similar scope and treatment.
Experience shows that when a student returns to the study
of algebra, after even a summer’s vacation, a review is very
necessary ; and that it is absolutely indispensable if he comes
back after a year spent on geometry. The review presented
in the early chapters is brief, yet sufficiently thorough. Each
review topic has been given a broader and more advanced treat-
ment than is permissible in a first course. New material is used
throughout and many new applications are given in order
to make the entire review appeal to the student as fresh and
inviting.

In the chapters which deal with the subjects not given in the
“ First Course,” the aim has been to select those topics con-
sidered necessary for the best secondary schools and to treat
each in a clear, practical, and attractive manner. It has been
the purpose also to prepare a text that will lead the student to
think clearly, as well as to acquire the necessary facility on the
technical side of algebra. Lastly, it has been the desire to re-
duce the work of explanation and illustration on the teacher’s
part to a minimum. To accomplish these things every legiti-
mate resource has been employed. The material has been care-
fully selected and graded, the explanations are unusually full,
and the illustrative examples are especially numerous. When-
ever graphs appeared to clarify a subject, they have been used ;
and if at any point an explanatory note or a bit of mathemati-
cal history seemed pertinent, it has been given. Along with
the endeavor to accomplish these various ends a continuous
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effort has been made to produce a text that is modern, lucid,

mathematically correct, and interesting.

We are under especial obligation for suggestions and criti-
cisms, not only to those mentioned in the preface to our ** First
Course,” but also to Mr. J. M: McPherron of Los Angeles,
California ; Mr. J. A. Foberg of Chicago, Illinois ; and Mr. A. E.

.Booth of New Haven, Connecticut, who have read the manu-

script critically. For a careful reading of the entire proof and
for many helpful comments we are indebted to Mr. J. A. Avery
of Somerville, Massachusetts, and Professor I. M. De Long of
Boulder, Colorado.



CHAPTER
1.
II.
IIT.
IvV.
V.
VI.
VIIL

VIIIL

XVII.
XVIII.
XIX.

‘INDEX

CONTENTS

FuxpAMENTAL OPERATIONS (Sects. 1-10) .

Facroring (Sects. 11-27) .

Fracrions (Sects. 28-84) .

Linear EquaTions 1N ONE UNkNOWN (Sects. 35-37)

LiNeaRr SysTEMS (Sects. 38—47).

Roors, Rapicars, AND ExroNkNTs (Sects. 48-62)

GrAPHICAL SoLuTION OF EqQuartions 1IN ONE Ux-
KNOWN (Sects. 63—69)

QuapraTic EQuaTtioxs (Sects. 70-71)

. IrrATIONAL EqQUATIONS (Sect. 72).
. Grarus or Quapratic EquaTions IN Two VAR

ABLES (Sects. 73-74).

. SysTEMS SOLVABLE BY QuapxraTics (Sects. 75-81)
. ProGrEessions (Sects. 82-91) .

. Livrrs axp INFINITY (Sects. 92-07) .

. Locarrrams (Sects. 98-112) .

. RaTIO, PROPORTION, AND VARIATION (Sects.113— 118)
. DraciNaries (Sects. 119-126)

THEORY OF QUaDRATIC EQUATIONS (Sects. 127-181)
Tue BivomiaL Tueorem (Sects. 132-137) .
SurrLEMENTARY Torics (Sects. 138-142)

PAGE

1
16
34
42
54
82

110
118
128

135
143
159
176
183

W o
(SN |

[N T SR SR (o)
> o
[l

g
Se]

263



|

W

ILLUSTRATIONS @

GOTTFRIED WILHELM LEIBNITZ

FELIX KLEIN
JOHN NAPIER

vi

.........

........


Note
The illustrations have been moved
to follow the index.  They appeared
without pagination in the original
text.


SECOND COURSE IN ALGEBRA

CHAPTER I
FUNDAMENTAL OPERATIONS

1. Order of fundamental operations. The numerical value of an
arithmetical or an algebraic expression involving signs of addi-
tion, subtraction, multiplication, and division depends on the
order in which the indicated operations are performed. It is
understood that:

In a sertes of operations involving addition, subtraction, mul-
tiplication, and division, first the multiplications and divisions
shall be performed in the order in which they occur. Then the
additions and subtractions shall be performed in the order in
which they occur or in any other order.

Within any parenthesis the preceding rule applies.

EXERCISES
Simplify :

1.3—5+6-—38. 3.24+8.4—4+6.
2. 6+24+1—4. 4. (T—6)(18 — 2-4) =+ (20 + 4).
5. 42 —-2(18 —2.-3)+4+ 3-5.
6. 164+4+8—-104+51+16—4—-6-3-0-2+18-8
+48 —2.18 =12
7. (16 +32x 48 +8 -4 —8+4+3)x[12+4+3—-1]
+(42+6-7T— 42 —6).6.
8. Does a* =4« when ¢ =3? when ¢ =2? whena=0?
9. What name is given to each 4 in a* = 4 a ? Define each.

10. Define power. Distinguish between exponent and power.
1
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Find the numerical value of:

11. 2> — 52 4+ 6 when a = 5.

12. 2®* — 32?24+ 32 — 1 when « = 3. _

13. 2®* — 32’y + 3uy — P whenx =4 and y = 2.
at + 2% + ot B a® + o
P—xy+yt  ax+y
15. What is the absolute value of a number ? TIllustrate.

14.

when z =3 and y = 2.

2. Addition. In algebra, addition involves the uniting of
similar terms (see definitions below) which have the same or
opposite signs into one term. For this we have the rule:

I. To add two or more positive numbers, find the arithmeti-
cal sum of their absolute values and prefix to this sum the
plus sign.

II. To add two or more negative numbers, find the arithmeti-
cal sum of their absolute values and prefix to this sum the
minus sign.

III. Zo add a positive and a negative nuwmber, find the differ-
ence of their absolute values and prefix to this difference the sign
of the number which has the greater absolute value.

Obviously 2 +44+7=2+47T+4 =T+ 2 + 4, etc. Even if
we have a series of positive and negative numbers, the order in
which they occur does not affect the final result. This princi-
ple of addition is called the Commutative Law for Addition.

Similar terms are (a) integers and rational, numerical frac-
tions; (b) like indicated roots, as V2 and 3 V2, or ~/3 and 2/ 3;
(¢) terms having like literal parts, as 4 ¢ and 3 a, or 6xy* and
V2 xyt

Dissimilar terms are unlike indicated roots or terms having
unlike literal parts.

For the addition of polynomials we have the

RuLe. Write similar terms in the same column.

Find the algebraic sum of the terms in each column and write
the results in succession with their proper signs.
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3. Subtraction. For the subtraction of polynomials we have
the following

RuLe. Write the subtrahend under the minuend so that simi-
lar terms are in the same column.

Change mentally the sign of each term of the subtrahend.
Then find the algebraic sum of the terms in each column, and
write the results in succession with their proper signs.

EXERCISES
Add:
1. 16, — 3, +2, — 8, — 7, and 4.
2. 4a, —6a, —10¢, + 2 a, and 18 a.
3.4 —3y+7,82—10y —11,and 10y — 30 + T=.
4. Tx—4y—232z+2—8y,and 18y — 1T — 14 .
5. 4a>—8a% —4a®, 3a’c — 8ac®— 8a% and 3a? — 6a.

6. If x=1, y =2, and ~ = 3, find the numerical value of
each of the three expressions and of the result obtained in
Exercise 4. Compare the sum of the three numerical values
with the numerical value of the result.

7. State a rule for checking work in addition of algebraic
expressions.

Write with polynomial coefficients :

8. ay + by + cy. 12. 3(a+b)—c(a+ D).
9. 3ax —4bx 4 62. 13. 6a(r—2¢)— 3(x — 2¢).
10. 4 — abx — =x. 14. 403z — 2)— 8¢ (3x — 2).

11. Tx —3ax — 4o 15. 4m(Ba—38c¢)—6n(—3c+5a).

Subtract the first expression from the second in:

16. 4 a, 6 a. 18. 42+ 3, 8x + 6.

17. 8a% 5% 19. Ta* — 10, 5 2% 4 20.
20.  — 3¢y*+2—4dac+Tax,4x —y*+ 8 — B ax + Jac.
2l. ®*—c+3x—a*m —8ac,4®*+m —8x —10 ac + 4 a®m.
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Find the expression which added to the first will give the
second in:

22 22— 5w+ 6,32 — 52 + 2.

23. 4a® —3cx+ % 82+ Tcx —102% 4 8.

Find the expression which subtracted from the first will
give the second in:

24. 40> —2ab+ 0% Ta®>—10 ab 4 G~

25. 2 —10cx + 8a% 92> —10cx + 4 + A

26. State a rule for checking work in subtraction suggested
by the directions preceding Exercises 22 and 24.

27. From the sum of ax — ac — 3 ¢* and 4 ¢* — 3 ac take the
sum of 4¢> — 8ax + a*and 4ac + 3ax — 5%

Remove parentheses and combine like terms:

28. 4 —3 —(a —22)+ (3 — a).

29. 6+ Bc—8x+2)—(c—x— 2).

30. 6 —[—(e—c)+Bc—4a)]

, 3L Tc—[Bce—4)—6—-(4x—3a—0c)].

-3 4 —2@x—3)—3[z—34 —2x)+8].

733 62 —4B —bx)—4[2@x —4H)+32x—1)—(z—T)]
.34. 32—2[1-3Q2xz—3—a)—5{ac —Bx—2a)—4}]

35. State the rule for the removal of a parenthesis

(@) when it is preceded by the sign plus;

(b) when it is preceded by the sign minus.

Inclose in a parenthesis preceded by the sign plus those
terms which contain « and y, and inclose all other terms in a
parenthesis preceded by the sign minus.

36. 2+ 2xy + o2 — @ 37. x*+14ab — 49a> — %

38. ¥+ 6y + 92— m* —10m — 25.

39. a' +102%® — & + 12 ¢*d — 36 d* + 25 ¢°.

40. State the rules for inclosing terms in a parenthesis pre-
ceded by (@) the sign plus; () the sign minus.
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4. Multiplication. In multiplying one term by another the
sign of the product, the coeflicient of the product, and the expo-
nent of any letter in the product are obtained as follows :

I. The stgn of the product is plus if the multiplier and the
multiplicand have like signs, and minus if’ they have unlike stgns.

II. The coefficient of the product is the product of the coeffi-
clents of the factors.

II1. The exponent of each letter in the product is determined
by the general law 78 X 1P = na+o,
For the multiplication of polynomials we have the

Rure. Multiply the multiplicand by each term of the multi-
plier in turn, and add the partial products.

An extension of the law for exponents in multiplication is
the Law of Involution : (n9)® = e,

This last law implies the more general forms:
( xayb)c — xacybc,
and ( ( xa)b)c — xabc'

5. Division. In dividing one term by another the sign of the
quotient, the coefficient of the quotient, and the exponent of
any letter in the quotient are obtained as follows:

L. The sign of the quotient is plus when the dividend and the
divisor have like signs, and minus when they have unlike signs.

I1. The coefficient of the quotient is the quotient of the coeffi-
cient of the dividend by that of the divisor.

IIL. The exponent of each letter in the quotient is determined
by the law n? - b = na->, ,

The method of dividing one polynomial by another is stated
in the

Rure. Adrrange the dividend and the divisor according to the
descending powers of some common letter, called the letter of
arrangement.
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Divide the first term of the dividend by the first term of the
divisor and write the result for the first term of the quotient.

Multiply the entire divisor by the first term of the quotient,
write the result under the dividend, and subtract, being careful
to write the terms of the remainder in the same order as those
of the divisor.

Divide the first term of the remainder by the first term of the
divisor for the second term of the quotient, and proceed as before
until there is no remainder, or until the remainder is of lower
degree (§ 8) in the letter of arrangement thm/z the divisor.

6. Meaning of a zero exponent. The laws for exponents stated
in the formulas of §§ 4 and 5 are assumed to hold for all values
of @ and b. ’

Then X+ 2 = 2%~ = 2"
x(l
xa

Hence x'=1.

That is, any number (except zero) whose exponent is zero is
equal to 1.

7. Meaning of a negative exponent. If, in the formula of § 5,
b is greater than a, we obtain a negative exponent for n. The
meaning of such an exponent is illustrated as follows:

x®
By § 5, w“b:m“'("“’):z—b.
But dividing both terms by a°,
r® ¢ 1
xa+b or xamb - E .

1
Therefore xvh==.

xb

. 4 c
More generally, cx~¢ = —, and — = cx4.
x¢ x ¢

Hereafter it will be assumed that all the preceding exponential
laws hold for positive, negative, zero, and fractional exponents.



FUNDAMENTAL OPERATIONS 7

- EXERCISES

Perform the indicated operation:

1. (42° — 32)(22). 2. (2 + 3) (5x — 6).

3. Substitute 2 for z in ‘each of the factors of Exercise 2,
and in the product. Compare the numerical value of the product

with the product of the numerical values of the factors. Then
state a method of checking numerically work in multiplication.
4. Bz —1)% 8. (' 4 e 1)
5. (Ta?* — 8z + 3)~ 9. (°+ 2e ")
6. (:)c% + m%f)z. 10. (& — e7®)%
7. (af — 2y 11. (2= — 3o =),
12. (m'l’ + at +1) (x% . +1).
22 3 4 22 1
. (53 2)(F -5 3)
14. (4% — 6ac 4 3)(TaPe — a?° + 4).
15, (2 — 22y® + o) (2® + 2x® + o).
16. (x=! —3x — 227 %>
17. (@ ¥+ 22% — 32ty
2a> a  2\[/2a®  a*® 2a
18. <?—5+?>(?+3—T>'
19. (5a?* — 3z~ — 6z~ + 89
20. 2 —2—90="? ifx =—9.

21.
22.
23.
24.

—daxy+4y=?if x=3and y=2.

=32 +3xy— =2 ifx=2and y=—3.
@+ 3% +3xP+ PP =2 ifr=—4andy=—2.
(r—e)2=?ife=2; if e=—3.

25. ¢2* — 26"+ e 2*=2? ife=2and x=2.

26. (8a* —62* — 4x)+(— 2x).

27. (@ — T +12)+(x — 3).

28. State the Associative Law of Multiplication. Illustrate.
29. State the Distributive Law of Multiplication. Illustrate.
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30. (a® — 64)+ (z — 4) (2* — 4 + 16).

31 (x* —8a®+ 332 — 30)+ (2* + 3o — 5).

32. State a method of checking work in division similar to
the check of multiplication.

Find the remainder in:

33. (82 —a® — B)+(2z — 3).

34, (4ot —2? —3)+ (22t —x —1).

Divide:

35. x4+ 83+ 125 — 30ay by x + 2y + 5.

36. 2*+ 4"+ 2*— 3wyz by 2 + y + =.

37. af — at? + ot — b¥ by b — 2.

38. B2+ a® —4da by 2a- %+ 2+ 3%

39. ¥ — 5t by [(@? — ob) =+ @T0 + yT0)].

40. 9m + 4m 113 by 3m¥ — 54+ 2m L.

41. 2>+ 4272 — 29 by a* — 22— 5.

42. 92’ + 252t — 192 * by S22 4 3¢ — Tz 2

43. (%f + 2g—f>+<37w + %”) (6402 + 962y + 144 4?).
44. <6a3+6x3+%—ax2+35;2w>+<%;|—2:3—x>-
45. <95i5 24‘2%”’3—12 +%— 4—4%“2— 41“4>

8. Detached coefficients. A term is rational if it may be
obtained from unity and the letters involved by means of the
four fundamental operations without the extraction of any root.

A term is integral if it has no literal denominator and the
exponent of each factor is a positive integer (or zero).

The degree of a rational integral term is the sum of the
exponents of the letters in the term.
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An algebraic expression is rational and integral if its terms -
are rational and integral.
An integral expression may not be rational. Nor is every

2
rational expression integral. Thus, % + Vx4 8 is integral

b

but not rational, while % + - + 8 is rational but not integral.

A rational integral expression is homogeneous if its terms
are all of the same degree.

In the multiplication or division of polynomials which in-
volve but one letter or which are homogeneous in two letters
much labor can be saved by using the coefficients only.

EXAMPLES

1. Multiply 3a® — 42 + 6 by 22 — 52 + 3.

Solution : Since z? is missing in the first expression, its coefficient
is zero. Inserting Oz? and detaching coefficients, the multiplication
is as follows: S+ 0—4+4 6

2— 543
6+ 0—8+12
—15+ 0+ 20— 30
+94+ 0—-12+418
6—-15+1+32—42+18

Supplying the powers of z, we obtain as the product 6 28 — 15 z*
+ 2343222 — 422 418,

2. Divide
6t —112% + 2272 4 2T xy® — 18 * by 22 — Sy 4 642

Solution : 6—-114 2427—-18|2—-546
6—15+18 34+2—-3

4 —16 + 27
4—104+12
— 6+15—-18
— 6+15—-18

Therefore the quotient is 8 22 + 22y — 3 y2

In both multiplication and division by detached coefficients
zero must be supplied for the coefficient of any missing term.



Yo

10 SECOND COURSE IN ALGEBRA

EXERCISES

Use detached coefficients and perform the indicated operation :

1. (»*—8x+16)(2x — 3).

2. (@ —dx+ 4@+ 4z +4).

3. (&®— ab + V%) (* + ab + 7).

4 22°+ 5w+ 2)+ 2z +1).

5. (2 + 42 —16)+ (xz — 2).

6. Bay —6y*— 22" (82— 6y* — Bay).

7. 9t —4x 41322+ 4 — 62°) (32 —x + 2).
8. (2 + 43"+ (@ — 2ay + 24°).

9. (8la* — 1710 + 250*) +(9a® — 50 + 9 ad):
10. 4 —2a*—3a?—ba '+ 2a)+(2a*—2—aY).
11. (8:26—129012*‘;//“1—}—Gm%y—ﬂ—g/—"’)—:—(,?w%‘—y‘l).

12. Which expressions in the preceding exercises are () not
integral ? (0) not rational ?

Note. It is interesting to observe that our ordinary decimal nota-
tion really involves the use of detached coefficients. The number
649, for instance, is an abbreviated way of writing 6 -102+4 .10 + 9.
In fact, the various digits in any number in the decimal form are
the detached coefficients of some power of the number 10.

9. Synthetic division. This method of division abbreviates
the actual work, where the divisor is a binomial.

EXAMPLES

1. By long division we have

328 —8224+ 92— 8|z —2
3 28 — 6 a2 322—22 45

— 2224+ 92

— 222+ 4z
5xz— 8
5xz—10

2, Remainder

The preceding division can be shortened by omitting the
letters and arranging the work as was done in Example 2,
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page 9. But the usual process just given can be abbreviated
still further. We may also omit the first number of each
partial product, since it is merely a repetition of the number
just above it. Thus we obtain

3—849— 8|1—-2
— 6 3—245
—2
+ 4
5
— 10
2, Remainder

Since the sign minus before 2 in the divisor changes every
sign in the partial products, if we replace — 2 by + 2, we may
add the partial products thus formed to the dividend instead
of subtracting them. (This change of sign is not an actual
necessity, but it is a great convenience in practical work.) Then
bringing the figures into horizontal lines and using only the
second term of the divisor with its sign changed, we have a
further abbreviation of the process:

3—8+9— 8|2
+6—44+10

Here we have all the essential work for the complete divi-
sion of 3a® — 82+ 9 — 8 by « — 2. For the figures on the
lower line 3, — 2, 5 up to the remainder, 2, are the coefficients
of the partial quotient 3a* — 2 + 5.

2. Divide 22* — 142 — 6 — 54 by = + 3.

Solution : 240—-14—- 6-—-54|—38
— 06418 —12 4 54
2—64+ 4—18 0

Therefore the quotient is 22% — 622 + 4 x — 18.

Since the remainder is zero, =z 4+ 3 is a factor of the
dividend. This method of obtaining factors will be used in
Exercises 5-21, page 26.
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EXERCISES

Divide by synthetic division:

1. & —ax—12 by z + 3.
2. 2 —2x—4byx—2
3. 2®4+ 224+ 96 by = + 4.

Using synthetic division, find the remainder in Exercises 4,

6, 8, and 10:

4. (2 — 5z 4 6)+(x — n).

5. Substitute » forx in 2> — 52 4+ 6 and compare the result
with the remainder obtained in Exercise 4.

6. (@ + bx + ¢) + (x — n). .

7. Put » for x in 2® 4+ dx + ¢ and again compare results.

8. (@ + a2’ + bx + )+ (x — n).

9. Compare the remainder in Exercise 8 with the result
obtained by substituting » for x in «® 4 ax® + bz + c.

10. (2®* — 22% + 6) =+ (x — 4).

11. Substitute 4 for « in #® — 2 2 + 6 and compare the result
with the remainder obtained in Exercise 10.

12. Draw a general conclusion from Exercises 4 to 11.

Note. The approximate solution of equations of the third and
higher degrees, having numerical coefficients, was a problem to which
Newton devoted considerable attention. Little progress in this line
was made from his time until 1819, when William George Horner
(1786-1837), a teacher in Bath, England, published a method of
solving equations by synthetic division. His procedure was in essence
very similar to Newton’s, and its element of originality lay in the

very compact and elegant form in which he arranged the numerical
work. In the ninety years which have intervened since its publica-

" tion Horner’s method has been improved but little, which is rather

remarkable, as Horner did not have the advantage of a university
training and was by no means a great mathematician.

10. Important special products. Certain products are of fre-
quent occurrence. These should be memorized so that one can
write or state the result without the labor of actual multiplication.
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I. For the square of the sum of two terms we have the
formula

(@a+b)?=a*+2ab+ b

II. For the square of the difference of two terms we have

the formul
¢ formu (a—b)* = a* — 2 ab + .

III. For the product of the sum and the difference of two
terms we have the formula

(a+b)(a—b)=a*—b.

IV. For the product of two binomials having a common
term we have the formula

(x+ a)(x + b) = x* + (a + b) x + ab.
V. The square of the polynomial (¢ 4+ —¢) gives the formula
(a+b—c)’=a+b"+c*+2ab—2ac—2bc.
VI. The cube of the binomial (¢ + 0) gives the formula
(@4 b)® =a*+3a’+ 3 ab® + b°.
Similarly, (a—b)®=a*—3ad’b+ 3ab® — V.

ORAL EXERCISES

1. Express in words each of the formulas T to VI which

precede.
Perform the indicated operation :
2. (x + 3)% 6. (z* —x)> 10. (3a® — dxc)™
3. (x — b))~ 7. 2x + o) 11. (T + 4 ax®)’
4. 2z + 4)~ 8. (x — 32 12. (2* — 2~ 22
5. (4o —3) 9. (4 + o) 13. (a* — B %)

14. 2o —a ) (2a® —a (2" —a"®)+(2a"— a™®).
15. (162% — 242 + 9) =+ (42 — 3)=? Why?
16. (162*+ 8a% 4 2*®) + (4= + ac)=? Why?
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17.
18.
19.
20.
21.
22.
23.
24.
25.
26.

217.

28.

44,
45.

SECOND COURSE IN ALGEBRA

(x — ¢)(x + ).
(@ — 3)(x + 3).
(2 + 6)(z — 6).

(@ — 3¢)(a+ 3¢).

(m — x)(x + m).
(da+c)(c— 4 a).
(Ax—3c¢)(Bc+ 42).
(@ +4c)(@®— 4o).
(2® — ox) (2 + cx).

(4 —a’)(a® + 4.

29.
30.
31.
32.
33.
34.
35.
36.
317.
38.

(@ +3) (@ + 4).
(x4 5)(x+17).
(a + 8)(a + 6).
®—-3)(0—4).
(m — 5)(m — 10).
(e —1)(c+ 2).

(x — 3)(x + 5).
S=7(8+4).

(x —12)(x + 3).
(@ —4c)(a+ 2¢).

m? — o 39. (& — 4a)(d®+ 6a).
x4+ m =? Why? 40. (¢ —2a~")(a"+5a™").
¢ 16 ¢? 41. (ax — ac)(ax — 3 ac).
aaﬂ—éicc =7 Why? 42. Ecw—élcz)((cw—l— 802)).
at—2a® — 24 a?
g 72t mam oy ?
43. p— ? Why ¢
(@a+b+c2 46. (a—c+x)> 48. (a—c+2)%
(@+c+x) 47 (a—c—x): 49. (x —c—3a)
50. ¢L2—|—902—|—.1:2—Gr,w+2a.x—6cm:? Why ?

«—3¢c+x

51. (2¢—2a —4x)’
52. Bc—b5a+ 22)%
53. (2% 4 x* — B)%

54. (4a —3¢c— 2x).
55. (a + a1 — 3)%
56. (a® —a~®+ 4)%
57. Can the expression in Exercise 44 be squared as a
binomial ? Explain.

58. (z + o)™ 62. (z + 2)%
59. (x — ¢)% 63. (x — 2)%
60. (x — 1)>% 64. (x + 3)%
61. (x +1)" 65. (v — 4%

66. (2* 4 )’

67. (a* — 2)".
68. (ba —4c)
69. (2a° — 7%’

70. (2*— 622 +122 —8)+(x — 2) =? Why?
7. (8 — 122+ 62— ")+ (4 —4x+2)=? Why?
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72. Square (5 —7) as a binomial and check the result by
subtracting 7 from 5 and squaring the difference obtained.

73. Square z + 9 and —x — 9. Compare results and explain.

74. Find‘ the product of (9 —4)(9 4+ 3) by the formula.
Verify by simplifying each binomial and then multiplying.

75. Square: (a)42, ()59, (¢)73, (4)105, (¢) 97, and (1) 1005.

76. Expand (4 4+ 9 — 5)* by the formula. Verify by simpli-
fying and then squaring.

77. Expand (3 — 2)® by formula. Verify by simplifying the
binomial and then cubing the result.

78. Expand (¢ — 20)® and (20 — «)®. Compare results and
explain.

79. What must be added to 9a*+ 6« to complete the tri-
nomial square ?

80. What must be added to or subtracted from 16 a? 4+ 9 to
complete the trinomial square ? Why ?

Form a perfect trinomial square of:

81, 2 —?+409. 90. 2522 — 122 4 ?
82. 42+ 2?41, : 9l. @+ ?+ a2

83. 422 —? 4 9a2 92. a?* — ? 4 a— 2=,
84, 2 +4x+? 93. a** —? 4+ 16 a2~
85. 42> +4x+? 94. a**+ 1047

86. 9% 4 242+ ? 95. a® — 2?4+ 49a""C.
87. 2 4+12x + 9. 96. a® —6a®>+?

88. 42— 18ax + ? 97. a*®* —12a* 4 ?

89. 92— 4dax 4 ? 98. 4a%* 4+ ? + 25a2%,



CHAPTER 1II
FACTORING

11. Definitions. Factoring is the process of finding the two or
more expressions whose product is equal to a given expression.

In multiplication we have two factors given and are required to
find their product. In division we have the product and one factor
given and are required to find the other factor. In factoring, how-
ever, the problem is a little more difficult, for we have only the
product given, and our experience is supposed to enable us to deter-
mine the factors.

In this chapter (except in § 17) only those expressions and
factors which are rational will be considered.

An integral expression is here regarded as prime when no
two rational integral expressions can be found (except the ex-
pression itself and 1) whose product is the given expression.

It must be remembered that to factor an integral expression
means to resolve it into its prime factors.

The methods of this chapter enable one to factor all integral,
rational expressions in one letter which are not prime, as well as
some of the simpler expressions in two letters. No attempt is made
even to define what is meant by prime factors of expressions which
are not rational and integral.

There is no simple operation the performance of which
makes us sure that we have found the prime factors of a given
expression. Only insight and experience enable us to find
prime factors with certainty.

A vpartial check, however, that may be applied to all the
exercises in factoring, consists in actually multiplying together
the factors that have been found. The result should be the
original expression.

The types of factorable expressions previously considered
will be reviewed in §§12, 13, 14, 15, 16, 18, and 20.

16
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12. Polynomials with a common monomial factor. The type
form is ab + ac — ad.

Factoring, ab+ac—ad=a( +c—d).

EXERCISES
Factor:

1. 42 4 8. 4, 2¢d — 42— 2. 7. x?* — 322+ 12 2.
2.5 —-10a% 5. a’c — ac® — 4ac. 8. 2 — 6y + 2y~
3. ax— Tay. 6. 3xy+219y°—154% 9. bay+ 30y (x*+ay).
10. (Ta®>— 21ab+7a)— 14 ax.
11. 14 o®® — 21 a®®m — 49 a'2®y".
12. (3¢ — 3cd)— a (45 —15c%).
13. 272243 112977 — 1657 +2 4 8sr™+4,
13. Polynomials which may be factored by grouping terms.
The type form is ax + ay + bx + by.
Factoring, ax + ay + bx + by = (ax + ay) + (bx + by)
=a@+y)+i(@+y)
— (@ + ) (a+ D).

EXERCISES
Separate into polynomial factors:
1. 3@+ y)+ a(x+y). 3. bx(a —b)+ (b — a).
2. a(x —3)—b(x— 3). 4. 2¢(r—2s)—5d(2s—r).

5. 4 — 4y + bx — by.

HinT. 4z —4y+br—dy=4(x—y)+ bz — y), ete.
6. 3cx + 6ac + 8ax + 4%

7. — 62> +10x 4+ 21 xzm — 35m.

8 & —at—at4 20" — 22— 2.

9. rs—2s+3r—6—5rc 4+ 10x.

10. 2%¢ — 3x2¢ — 2* 4 3 — 6zt + 282

11, a%e—2 4 22+t —~ 152223 —10 4+ 10?28,
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. 14. Trinomials which are perfect squares. The type form is
a*+2ab+ V.
Factoring, a’+ 2ab 4+ 0* =(a £+ b)%

EXERCISES
Separate into binomial factors :
1. 2®4+ 62 + 9. 4, 90* —120 + 4. 7. *+ 24+ a2
2. a>—12a436. 5. 28 4+ 492>+ 4. 8. a® — 2+ a2

3. P+ + 1. 6. 97449 —42». 9. a*— 6+ 9a 4
2 da __ 2a .2
| 10.w—2—§£+144. 13. = 10 ax?* + 25 a™
‘ 9a a

14, rm=+2 L 4 — 4 922+,
‘ 11. 81l a'x® — 36 a’bx + 40% 15, a?* 44 a2 — 4.
12. 1 4 4 a*05c"2 — 4 o 16. a** — 20% + o~ 2=,
17. (x — 2+ 14 (x — 2) + 49.
18. 4(a 4+ 5> —120(a + 5)+ 90
19. (@ —0)** —18x(a — 0)* 4 8122
15. The quadratic trinomial. The type form is
x* 4+ bx +c.
For factoring expressions of this type we have the
RuLE. Find two numbers whose algebraic product is ¢ and
whose algebraic sum is b.
Write for the factors two binomials which have x for their
common term and the numbers just obtained for the other terms.

EXERCISES
Separate into binomial factors:
1. 2> — 8z 4 12.

‘Solution: The two numbers whose sum is — 8 and whose product
is +12 are — 2 and — 6. Therefore 22 — 8z +12 = (z — 2)(z — 6).

2. 2*—9x+18. 5 a2—12—11a. 8. 2°— 8z —9.
3. 22+ 2x—24. 6. a’+.3a—.1. 9. 7%% + 6rs — 40.
4. 2+ — 3. 7. ¢ —ac—90a®. 10. >+ 5 4 642,

- -
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11. 1 — 9y + a2 15. 12 a* — o®x — 22
12. 11 d* —12d%* + & 16. o** — 20 + 19>
13. 15m* — 14 mx — 2> 17. >+ 122417,
Hint. This may be written as 18. ¢?>® — 8a= %" — 2.
B 1 (2% + 14 2m — 15 m?), ete. 19. 120 4+ 7 m* — m2n,
14. 90 4+ =z — =~ 20. a** — ¢® — Ga-2",

21, (m 4 n)*e — 9(m 4 n)?*° — 22,
16. The general quadratic trinomial. The type form is
ax® + bx+c.

This important type really includes the two preceding types.

If a trinomial of this type has two rational factors, they
have the forms dx + e and fx + g¢.

Now  (dz + e)(fix 4+ g) = dfe® + fex + dgx + ge @

= df® + (fe + dy) = + ge. 2)

In (2) the product of the coefficient of 2% df, and the con-
stant term, ge, is dfge. But dfge equals fe times dg, and fe
plus dg equals the coefficient of . Therefore, if ax® + dx + ¢
has rational factors, it can be written in the form (1) and fac-
tored by grouping terms. Hence the

RuLe. Find two numbers whose algebraic product is ac and
whose algebraic sum is b.

Replace bx by two terms in x whose respective coefficients are
the numbers just found, and factor by grouping terms.

EXERCISES

Separate into binomial factors :

1. 42> — T2 —15.

Solution : Iere ac = 4- (—15), or — 60, and b =— 7. The numbers

whose product is — 60 and whose sum is — 7 are + 5 and —12.

Hence 42> — 72z —156=422—-122+ 52 —15
=4z2(x—=3)+5@E—-38)=@—-3)4z+ 5).

2. 2a>—3a— 2. 4, 40>+ a — 5. 6. 51— 22, 4 8.

3. 3>+ 8a — 3. 5. 9¢*—T1le—8. 7. Ta?4+62x—9.
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8. 624192 —T. 14. —87*4+3n° — 3.
9. 62*413x — 5. 15, 6 2% — 13 ¥ -+ 6.
10. 2a% 4+ Ta —15. 16. 20 2® — 9ay® — 2045
11. 32> —axr — 24> 17. 222 — (a + 20)x + abd.
12. 4a"—12a2l+ 9. 18. 5ni2""4+9a7n”“2—2a2.
13. 25 + 4 & — 20 cd. 19. 6ate + (3 — 25P)ats — 4,

20. 20a%*~2%* — 9a — 2002%—4,
21. 6a?t8 _ 25 q=t3pv—1 L 4202,
17. The factors of ax® 4 bx 4 ¢ by formula.* The factors of

any trinomial of this type, whether they are rational or irra-
tional, can always be obtained as follows:

Let ax?+bx+c=0. eY)
Then 242z + =0 e)
a a

|
‘ If (2) be solved by completing the square (see Exercise 1, page 271,
| “First Course in Algebra ), we obtain

| —b+VI2—4ac

‘ v %a @)
— 2

From (3), g tEVP —dac ”Z“C =0, )
— ) —=/]2 —

and T — ~b—21;ﬁ =0. ®)

From (4) and (),
( ——b+\/b2—-4ac>< —b—vb2—4ac>
PR Lt E f S el A sk LA ET N
2a 2a
Now (6) and (2) are equivalent, that is, they have the same roots.
Further, if both members of (2) be multiplied by a, the result is (1).
If both members of (6) be multiplied by @, we obtain an equa-
tion which is identical with (1), as can be verified by performing
the indicated multiplication. That is,

ax? 4 bx+4c

=a<x_ —b+\/b2—4ac><x_ —b—\/b2—4ac>. @
2a 2a

* See also page 240.

N
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EXAMPLE

Factor 102* — Tz —12.
Here a =10, b =— 7, and ¢ =— 12. Using (7) as a formula gives:
1022 —72—12

~10 (z_ —(—T)+ \/(—2732—4.10(— 12)><x_ 7—\/W>

_ T+23\/ 7—23
=10 <r 20 )(1 20 )

=2 —P5@E+4) =@z 3)(5z+4).
We may infer from the preceding work that a trinomial of the

form az? + bx + ¢ has rational factors only when 42 — 4 ac is a perfect
square.

EXERCISES

Factor by use of the formula :

1. 32+ 5x + 2. 10. 2® — 62 4 1.

2. 6224 x— 2. 11. 22° 4+ 5 + 1.

3. 224 4x+1. : 12. 322+ 62 —1.

4, 322 —b5x —12. 13. 42> — 8« + 3.

5 5a* — 19z —4. 4. 52° 4Tz — 8.

6. Ta> — 20x — 3. 15. 22— 22+ 1 — n.

7. 152° — 112 — 14. 16, 2’ + 62 —4n+ 9.

8. 3224 bmax — 2m2 1%. wz——(n+5)m+(2n+6). '
9. 42— 5nx — 672 18. 2> —nx — 22 4+ 3n — 3.

18. A binomial the difference of two squares. The type form is
a® — .

Factoring, a’ — 0* =(a + 0)(a — D).

More generally,

a4+ 2ab +0*— A+ 2cd — d*
=a*42ab+ 0 —(*— 2cd + dP)
= (o + 1) — (o — dy*
=(a+b+c—d)(a+b—c+d).
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EXERCISES

. Factor:

1. m?—n 6. 252 — 4902 10. 16 a® — 25 c*a™.

2. a®— 7. «* — a2 11. a** — o~ 2=,

3. 2 —4. 8. 1 — 9da?® 12. at - a4

4. 2 — }. 0. “4_%_ 13. (a +¢)*—1.

5. 81 — o, 25 14. (a —a)' — 4.
15. 9 — (2 4 ) 21. >+ 20 4+ 2> — 9.
16. 16 — (xz — a)*= Hint. ®+2az +22—9

17. 5%« —(m — 1)t°e. =@+ ai=9.

18. (a + ¢)* —(m + n)?
19. (a + ¢)* — (m — n)> 23. 26 —10x + 2> — 16 m>
20. (@ — x)*" — (¢ — b)) 24, 9 —12a + 4 0% — 2™,
25. m?—a?—6a—9.
Hint. m?—a®—6a—9=m2—(a®*+ 6a+ 9)=m?— (a + 3)%

26. ©* — 447 4+ 20y — 25. 28. 4m* 4 30 n%r — 92 — 25 nt.
27. 16 — 90> +12ax — 422 29. — 283 — 495 +1 — 444

30. 127 — 36 4 5%¢ — 52,

31. (m — 2)* — 47?4 28 n — 49.

32. 2 — 62+ 9 — 9>+ 8ay —16 4%

33. 4bd+ 4 —4d*—4de—0* 4 1.

34. 6¢c+ 22 —1—9E2 — 40k 4+ 412

35. 2 — 4y — 107 + 8xy 4+ 25 — 422

36. 252" — 20 +4 —42 —9a®>—12ay.

22. a? —4dac+ 4 — 2%

19. Expressions reducible to the difference of two squares. The
type form is
P & + ka'® + B,
If & has such a value that the trinomial is not a perfect square,
a trinomial of this type can often be written as the difference of
two squares. Thus, if £ =1, the adding and subtracting of «%"*
transforms the expression into the difference of two squares.

[ TN
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EXAMPLES
1. Factor a* + 0?4 0%
Solution : af + a20? + b* = a* + 2 a??% + Ut — a®?
= (a® + 0%)2 — (ab)?
= (a* + b* + ab) (a® + V% — ab).
2. Factor 49 A% + 34 k> 4 25 1.
Solution: If 36 42i% is added, the expression becomes a perfect
trinomial square. Adding and subtracting 36 2%k?% we have
49 14 + 34 12k2 4+ 25 2t =49 1+ 70 A%2% + 25 k* — 36 h%42
= (T1%+ 5 k%2 — (6 hk)?
= (Th® + 542 + 6 k) (T 1% + 5 k% — 6 RE).

EXERCISES

Factor:

1. 2t 4+ 22+ 1. <12, 2 at 41

2. ot 4+ 2%F + oyt 13. & — Gt 4+ 1.

3. x4+ 4 2%+ 16. 14. 16 4 4 2* + =&

4. 164  + 442+ 1. 15. 254 — 1142+ 1.

5. ¢t + Ad* + 25 dn 16. * + 16 y* + 256.

6. 1—194°+ 25y 17. 3% + 3a%5 + S ay’.

7. 4zt 4+ 3% + 9h 18. 16 72* — 33 2.2k% 4 36 /*.

8. 4dat — 28a%f + 9y 19. 25¢* — 51 *d* + 49 d*.

9. 9¢* — 55%d* + 25 d 20. 49 a* — 32 a%® + 64 0%
10. 9a® — 19 a%® + 25 0% 21, 64a* 4119 a%* + 814~
11, 49 7% — 44 72274 + 475 22. 81la* — 171 a®* + 251

23. 14+ 4ot IIint. 1+42t=1+422+42t—42%
24, 64c¢* 1. 26. 28+ 445 28. a*c 48
25. a2t + 49~ 27. x® 4 64. 29. attc? | 64 ot te

.

20. The sum or difference of two cubes. The type form is
a® +bd.
Factoring, a® + 0* =(a + 0)(a® — ab + 0%,
a® — 0¥ =(a — 0)(a® + ab + V7).
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EXERCISES
Factor:

1. 2% 4 64.

Solution: 2%+ 64 =2 + 43 =(x + 4)(2? — z-4 + 4?)
=(z +4)(z*— 42 +16).

2. 2% + 27. 6. 2®— ﬁs 9. 1 —1254a8.
3. a® — 64. 8 28
4. 8 + ms 7. 2°—y 3 150. ﬁ—?e.
5. 27 — mb. 8. 8a®+ 27172 11. o8 — 4~
12. a® 4 45 16. a® — 922+ 27T x — 28.
13. 2° — a® 17. a®%° — 8d™.
14. 2% + o’ 18. afe — y—3e,
15. (= + y)* — 8. 19. ¢f¢ 4 27 d%=.

21. The Remainder Theorem. If any rational integral expres-
sion in x be divided by x — », the remainder is the same as
the original expression with n substituted for z.

EXAMPLE
22—5zx +6lx—n
2 — nx z + (n—5)
(n—5)z+6
(n—>3)=z —n?4+5n

n?— 5n + 6, Remainder

Here the remainder n* — 52 4 6 is the same as 2> — 52 + 6
when 7 is substituted for «.

Now if n is a letter or a number such that the remainder
n? — 5n + 6 is zero, the division is exact; and the value of =,
if substituted for z, will make ®* — 5 4 6 zero also.

Hence, if by trial we can discover a number » which, when
put for z, makes x> — 5z + 6 zero, x — n will be an exact di-
visor of #2 — 5x + 6. If 2 is put for z in 2 — 52 + 6, we get
4 —10 4 6, or zero. Therefore x — 2 is a factor of 2 — 5x + 6.

The last paragraph illustrates the following theorem :

s
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22. Factor Theorem. If any rational integral expression in X
becomes zero when any number n is put for x, x — n is a factor
of the expression.

The Factor Theorem may be used to factor many of the
preceding exercises. Moreover, many expressions which, by
previous methods, are very difficult to factor, may be readily
factored by the aid of this theorem.

Note. By means of the Factor Theorem we are able to solve cubic
equations when the roots are integers. The solution of the general
cubic equation is one of the famous problems of mathematics, and
one which is accompanied by many interesting applications. This
problem was first solved by the Italian, Tartaglia, about 1530, but
was published by Cardan, to whom Tartaglia explained his solution
on the pledge that he would not divulge it. For many years the credit
for the discovery was given to Cardan, and to this day it is usually
called Cardan’s solution.

EXAMPLES
Factor:

1. 24— 2.

Solution: If x — n is a factor of 2% + z — 2, then n» must be an
integral divisor of 2. Now the integral divisors of 2 are +1,
—1, +2,and —2. If 1 be put for z, 23+ 2—2=1+4+1—2=0.
Therefore z —1 is a factor of 2® + 2 — 2. Dividing 2%+ 2z — 2 by
z — 1, the quotient is 22 + = + 2. None of the integral divisors of 2,
when put for z, make 22 + x 4+ 2 zero; hence 2% + z + 2 is prime.

Therefore 22 + 2 — 2 = (z — 1) (2? + 2 + 2).

2. 2+ 22— 5x — 6.

Solution: The integral divisors of 6 are +1, —1, + 2, — 2, + 3,
—3,+6,and — 6. If we put 1 for z, 22 +222—52—6=1+2 —
5—6=—8. Ifweput —1forz,2®+22>—52x—6=—1+2+5—
6 = 0. Therefore z —(—1) or z +1 is a factor. Dividing 2%+ 2 22—
5z —6 by z + 1, the quotient is 2% + z — 6, which equals (z + 3) (z — 2).

Therefore 2° + 222 — 52— 6 = (2 + 1) (z — 2) (z + 3).

In the following exercises, when searching for the values of
2 which will make the given expression zero, only integral divi-
sors of the last term of the expression (arranged according to
the descending powers of x) need be tried.
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EXERCISES
1. Divide 2* + bz + ¢ by  — n and show that the remainder
is n* + bn + c. )
2. Find the remainder in (% + ax® + bz + ¢) +(x — n).
Find, by the Remainder Theorem, the remainder when:
3. «®* —x — 8 is divided by « — 3.
4. 2* — x + 6 is divided by « + 2 by synthetic division.

Factor :

(Instead of ordinary substitution, the student should use synthetic
division to find whether the remainder is or is not zero.)

5. 2 —3x + 2. 8. 2°—x — 6. 11. 2> —112 — 6.
6. 2 —4x + 3. 9. 2® —x + 6. 12, 2® — 142 — 8.
7. 2®+ 22 + 3. 10. 2 —112 4 6. 13. »*—272—10.

14. 2 + 32+ 32 + 2. 18. 4a* — 32 — 1.

15. 2 + 42>+ 5 + 2. 19. a® — 5 a’x + 2 a5

16. 2® — 6a* 4+ 112 — 6. 20. 2 — Tm> — G s

17. 2* — 112>+ 22 +12.  21. a® — 2na® — 5 0% + 678

23. The sum or difference of two like powers. The type form is
a" £ b".
The cases in which «* 4 0" is divisible by @ + b or @ — b can
be determined by the Factor Theorem.
Thus in «® — 0", n being either an odd or an even integer,
let @ =0. Then «* — " becomes * — 0" = 0. Therefore a« — b
is a factor of «* — im.
P In a” — 0", n being even, let « =+ 0 or — 0. Then a* — 0"
1 becomes 0" — i = 0, since both (4 4)* and (— 0)* are positive
when 7 is even. Therefore when » is even, both ¢ — 0 and a + b
are exact divisors of «* — 0"
In "+ 0", n being even, let @ equal either 4 6 or — 4. Then
a* + 0" becomes 4" 4 0", which is not zero. Therefore a™ 4 " is
never divisible by @ + 0 or ¢ — b when = is even.
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In a" 40", »n being odd, let @ =—b. Then a” + " becomes
(— )" + 0* = 0, since (— b)" is negative when n is odd. There-
fore when » is odd, @ + b is a divisor of «* 4 0.

Summing up:

L o — 0" is always divisible by ¢ — b.
II. a* — ", when n is even, is always divisible by ¢ —
and a + b.

III. a" + 0" is never divisible by a — 0.

IV. a" + 0", when = is odd, is always divisible by « + o.

It is worth noting that «® + 0" is usually prime when » is a
power of 2. (See, however, Exercises 23-29, page 23.)

Thus a® + 0% a* + 0%, «® + 15, ete., are prime.

In every other case a” 4 0" is not prime.

Thus a® + 0° = (a)® 4 (%3,

(1/10 + [)10 — (662)6 + ([I2)5,
a? + 0% = (a*)® 4 (1*)?, ete.

/ -
1. Factor a® — 7°.
Solution: a® — ® = (a — ) (a* + a® + a®? + ab® + b%).

EXAMPLES

2. Factor a® — 05.

Solution: a® — 3% is divisible by @ + band @ — b. It is better, how-
ever, to regard all such binomials with evgn-exponents as the differ-
ence of two squares. Thus '

a® — 08 = (a® — 1%) (aa(l- b%), ete.
3. Factor a® 4 0°. 7
Solution : a® 4 0% = (a + b) (a* — /I/ + a%? — alb® +¢4)
Note the signs of the second factor in Examples 1 and 3, —all plus
in one case, alternately plus and minus in the other.

J

4. Factor a® — ™.

Solutlon 28— 10 =28 — (y?)5
— (I— 2) [.’t‘ + za (J2)1 + x2 (y2)2+ x(y2)3+ (y2)4:1
._(x_ 2)(::4_[_1.3‘/ +.’t21/ +-Ty +j8)

| |
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5. Factor 32 x% + ¢%.

Solution : 32 z15 4 16
=209 + ()
=227+ y)[(22)" = (229 ()
Qe - @)+ ()]
= (228 + ) (16 22 — 82%° 4 4 285 — 2 2% 4 y12).

EXERCISES

“Factor :

1. 24 1. 8. 3125 — & 15. .2 — af,

2. 2° + 9~ 9. ¢ —128. 16. a2 4 o',

3. " —1. 10. ¢ — ™. 17. 322° — 1.

4. " — . 11, 2 4 4~ 18. a5 — 32 4™

5. 2 +1. 12. 14 c'd*. 19. 128" — 1.

6. x° — 32. 13. 2™ + 4. 20. 243 2% + 1.

7. 243 + a® 14. ¢* 4+ 128. 21. 1024 —243 «°

24. General directions for factoring. The following suggestions
will prove helpful : ’

L. First look for a common monomial factor, and if there is
one (other than 1), separate the expression into its greatest
monomial factor and the corresponding polynomial factor.

II. Then determine, by the form of the polynomial factor, with
which of the following types it should be classed, and use the
methods of factoring applicable to that type.

| l.ax+ay+bx+by. 5. a™"=*bd"

| 2. a’+2ab+ b a® — b,
i 3. X*+bx+ec. 6.4a*+2ab+ b — ct.
| 4. ax® 4+ bx+c. a®+2ab+b*—c*—2cd—d>.

7. a* + ka’b® + b,

II1. Proceed again as in II with each polynomial factor
obtained until the original expression has been separated into
its prime factors.

IV. If the preceding steps fail, try the Factor Theorem.



23. 2% 4 1. 29. a* — 6428 36.
o4 o atz 30. 2 — o= 37.
16 31. ' — 64. 38.
5. 2 — y*. 32. ' + a7’ 39.
“26. 2 — 4. 33. 22 — 8. 40.
27. a® — o~ 34. 2t — S, 41.
28. 22 + ¢ 35. 6422 — 4at, 42.
43. 20 —x — 2% ' 50.
44. 10 — 10 ¢Md* 51.
45. 2¢d — & — & 52.
46. «® — x* — 2® + % 53.
47. at — 9x? —x + 3. 54.
48. x* — Ta%/® + 81y~ 55.
49. 4c¢* + 205 — 11 24> 56.

11.

12.
13.
14.
15.
16.
17.

29

16 2* + 82 — 3.
a®— a + a® — b.

Sat — 1522 +12.

o —at—4dax 44
4n® + 48 n* — 28 0t
124 — 39 ay — 51 ay?

FACTORING
RE.VIEW EXERCISES

Factor:

1. 2® — .

2. 2 —x.

3. 2 — 2%

4. ot — 22+ 1.

5. a8 — 22+ 1.

6. x® — 8a® + 16 .

7. xt — 102> + 9.

8. at — 13 a% + 36.

9. 3a%t —12d%° + 124"

L
e

18 a%x® — 24 a*x — 10 &>

18.
19.

at —3xt+42® —12x.
3at+ 3a*— 27Ta — 27.
20. 2a% 4+ 3a* — 8 adb —120.
21. 4a® —a* +81+10a*x — 36 @ — 2522
22. 12¢d® — 6P —a®+4E2 4+ 9d8 — 92>

2 4 64 42,
3221 4 ?/10_
@l — 418,
162 — 1.
b 4 5.
243 — 5.
54 1.

at— a4+ a+1.

b — a4+ a—1.

a®— at— a®+ a.
5d*—5¢d—10c%
a® — 3a? + 8x —12.
121 2*—4762%°41007"
xt — a® + 122y — 36 32
57. y* — 1842 4 81 — 16 ax* — 24 2%°® — 945
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58.
59.
60.

67.
68.
69.
70.
71.

79.
80.
81.
82.
83.

94.
95.
96.
97.
98.

SECOND COURSE IN ALGEBRA

4 15 + 32 LS.
AOE® — 1024 15,
x® — 83 % 4 289 2.
64. 2> — 3+ — .

61. 14 + 5af — 2.
62. 1 — o+ af — 2.
63. ¥ — 3yt —x —y.

65. 289 — 100 a® — 5% — 20 ad.
66. 625a® —169d* + T8 cd® — 9%

¢’ — 2187.

¥ — 125 47,

5—8x — 4z

4ot — 3722+ 9.

256 —16 k*+ 8 A%k — ht.

72. x* + 4.

73. 22 — 729.

74. at*t8 4 64.

75. ot + 225 a—* — 39.
76. ® — 6224+ 122 — 8.

77. a* —9d* — 8ab + 6¢cd — 4+ 1602
78. 4% — 200 %% +25%% — 6ab~2 — 9Qa% — -4,

4zt — 92— 9.
x?e — 2% —15.

a® 4+ a + 0% + 0.
x?e — 122 4 36.
25 x?¢ + 50 ¢ — 39.

84. 64 + (&

85. 128 — 2%

86. 32> +10x — 8.
87. o —a®— a4 1.
88. 2¢*+ 3ed — 27 d%

89. 2® 32+ 9x + 27.

90. 2®* — 6a*+ 122 — 7.

91. 4 a*® — 40 a®*c® 4 100 0%

92. 42t — 254 +109% — 1222 4 8.
93. B* — K>+ 6ay +64% + 99> — QAL

e — 2 4 o727,
e’ — b 4 6e 27,
3 2% 4 5 — 28,

%~ 25— 247
6e2* — 527 —13.

99.
100.
101.
102.
108.

x®— Tay® + 64°%

PR R
at®=% —10 4 25 a2 4=,
e — e %% | 3o=7 3¢~

6z+3_|_ em+2 _ 63——9:__ 82—1‘

104. xy® + x2® + 2%y + 2% + y2 + y%= + 2ay2.
105. al® — a®b + ac® — a’c + bc® — BB,
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25. Solution of equations by factoring. For solving an equa--
tion by factoring we have the

Ruie. Transpose the terms so that the right-hand member is
zero. Then factor the member on the left, set each factor which
contains an wunknown equal to zero, and solve the resulting
equations.

One should not divide each member of an equation by an
expression containing the unknown, for by this process one or
more roots are usually lost (see Example 3, page 44).

EXERCISES
Solve by factoring and check :

1. 22— 25=0. 6. ot + 4 =5

2. 22 410="Tx. 7. 8 =13¢" — 362
3. *—9y=0. 8. 3 —ab—20*=0.
4. ¥ —ra = 304> 9. 2 — 2 =2 — 2.
5. 42— 362 =0. 10. 2%* — 224+ 1= 0.

11, x?* — 824+ 16 = 0.
12. 2+ 52 — 182 — 72 = 0.
HinT. Apply the Factor Theorem.
13. o® — 622 4122 = 8.
14, 2*+ 32— 822+ 16=122.
15. 28 4 6a® = 2 ax® + 5 a’x.
16. 2® + 9 ax® = 9ata +
17. 2® 4+ Ba?c — 16 x> — 80 = 0.
26. Highest common factor. One method of finding the H.C.F.

of two or more rational, integral expressions, which can be
readily factored, is stated in the

Rure. Separate each expression into its prime factors. Then
find the product of such factors as occur in each expres-
sion, using each factor the least number of times it occurs in
any one expression.
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EXERCISES

Find the H.C.F. of the following:

1. 28, 56, 84, and 35.
225, 120, 210, and 135,
198, 495, 693, and 1155.
816, 1224, 1360, and 4080.
91 x*®, 133 2%5, and 343 x%>
a2 — 9 2%+ 2% — 3, and 2* + 3.
a®—9a+14,a* — 4, and 54> — 10a.
L 27,22° 4832 — 9, and 52° 4 1522
42*°+ 20w, 2° + 42 — 5z, and 4 ax® + 20 ax.
. 22° 4+ 8z, 3 ax® 4+ 6ax 4 6 ax? and 3ax’ + 12 aa®. .
.82 —af a%y — 4y, 3wy — 6y, and 2® — 4o + 4.
@+ y) (@ — T, et — 2% + ¢, and (2 — 1P)2
.2 a2 — a2 — 3xa® — 4a?, and a® 4 ade.

14. ab¢ 4+ 4 al®, a?t10? + 2al’ — 2a°+10 and a8¢ — 16 0%,

© P NP TR D

- s e
W ™ = O

27. Lowest common multiple. The lowest common multiple of
two or more rational, integral expressions is the expression
" of lowest degree which will exactly contain each.
For such expressions as can be readily factored the method
of finding the L.C.M. is stated in the

RuLe. Separate each expression into its prime factors. Then
Jind the product of all the different prime factors, using each
factor the greatest number of times it occurs in any one expression.

EXAMPLE
Find the L.C.M. of
122ty + 12 23, 4 2° — 4 2% and 8ty — 8a’y® + 8a%s
Solution: 122ty + 12 zy* = 22.3.xy (z + y) (2% — zy + y?).
4o -4yt =22 2(x+ y)(z —y)-
8 2ty — 8 x%y2 + 8 a%y® = 2322 (2® — xy + »?).
Therefore the L.C.M. is 23. 3 2% (z + y) (z — ) (2% — zy + ).
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i EXERCISES
Find the L.C.M. of::

1. 24, 30, and 54.
. 105, 140, and 245.
. 15, 30, 35, 70, and 105.
. 174, 485, 4611, and 5141.
. 30 ax?, 225 a®xy?, and 75 a’x®y.
. 1222 4+ 62, 122® — 3, and 162* 4 2.
a® — 87 40* — a? and a® 4 4 al® + 2 a*>.
@t + by + a¥yf, 4o’ — 4oy, and 32° — 377
x®— 20 —B5x+ 6, 4 — o and @ — ax’.
10. o + 4a® + 16, «* — 4, a® + 8, and «* — 8.
11. 2 — 2% + ax?, 2a® + 3 d’x + aa?, and 4 a*2® — a’xh.
C12.mt—3 m2n? + 9nt, m®+ 3mn? 4+ 3m'n, and 3 n® + nm?
— 3mnk
13. 2® 4 ¢2%2 — 2, 2® — ¢~ 2%, and ** — 3 4 2777
14. 2 — 222 — 22 — 3, 2® — 27, and &* + « —12.

O Ot B W W

© »® 2



CHAPTER III
FRACTIONS

28. Operations on fractions. The four fundamental operations
on fractions and the reduction of fractions to lower or to higher
terms depend on the

PrixcipLE. The numerator and the denominator of a frac-
tion may be multiplied by the same expression or divided by the
same expression without changing the value of the fraction.

29. Changes of sign in a fraction. In the various operations
on fractions three signs must be considered, — the sign of the
numerator, the sign of the denominator, and the sign before
the fraction. Since a fraction is an indicated quotient, the law
of signs in division gives us the

PriNcIiPLE. In @ fraction the signs of both nwmerator and
denominator, or the sign of the numerator and the sign before the
Jraction, or the sign of the denominator and the sign before the
Jraction,may be changed without altering the value of thefraction.

30. Equivalent fractions. Two fractions are equivalent when
one can be obtained from the other by multiplying or by divid-
ing both of its terms by the same expression.

Two fractions having unlike denominators cannot be added,
nor can one be subtracted from the other, until they have
been reduced to respectively equivalent fractions having like
denominators.

To change two or more fractions (in their lowest terms) to
respectively equivalent fractions having the L.C.D., we have the

Rurk. Rewrite the fractions with their denominators in
Jactored form.
Find the L.C.M. of the denominators of the fractions.

34
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Multiply the numerator and the denominator of each fraction
by those factors of this L.C.M. which are not found in the
denominator of the fraction.

If the L.C.D. is not easily obtained, any integral multiple of the

denominators or the product of the denominators may be used. The
result, however, will not be in its lowest term unless one uses the L.C.D.

31. Addition and subtraction of fractions. To find the algebraic
sum of two or more fractions in their lowest terms, we have the

Ruie. Reduce the fractions to respectively equivalent froc-
tions having the lowest common denominator. Write in succes-
sion over the lowest common denominator the numerators of the
equivalent fractions, inclosing each nmumerator in o parenthesis
preceded by the sign of the corresponding fraction.

Rewnrite the fraction just obtained, removing the parentheses
in the numerator.

Then combine like terms in the numerator, and, if necessary,
reduce the resulting fraction to its lowest terms.

EXERCISES
Reduce to lowest terms :
1 18 a3¢? 3 Ta*—140* x?2® — ¢?b
© 24 a?c? T at 4 a??— 60t (ac + c”)z.
_6 s _ _
g 326 g 28 6. &=
x?— 4 (& —2) xt — ¢t
2.706"—128. 9 32+ 22— 21
z?c — 4 CTat — 14T 27
a®—1 , ot — 2P —1
L 0. —
By the use of § 29 write in three other ways:
— a 4
11. — . .
c 13 a—2¢
¢ 20 —3y
12. — . L2 E= oY,
—2a 14 3ar— 6y —axy
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Change to equivalent fractions, writing the letters in the
denominators in alphabetical order and making the first term
in each factor positive:

—3 z—y
15, —Mm———- 16. .
c—a0—0 W=D
x—3 x4+ 3 0 o -
17. Does5_w_x2—w2+w_5. Why ?

Change to respectively equivalent fractions having the lowest
common denominator :

18. §, % % o0 X, 3. gy 32+0 a—20
19. 7o, &% Cab d% " 6a | 4adb
2 3 z—1 x
R s 12 A _2a B Bar6 F—9
2+ 5 2% .
Z%0
24. Does S0+ 5 equal 34 Explain.

25. Define cancellation. Illustrate.

Find the algebraic sum of:

26.5)’6—“—1%96—34—”- 29.%_2.
27 aa_203—26-7;;_5. - 30. wzi”g2m2_zzigai-
28 w4;23_3f1;32_m83‘;48/31' a? —x9_:1:?—’|—14_mz3—4.
Ry s
33.2—ﬁ+1iv- 34. w2+m+1_w”f1.
-~ 35. w2—%+w+1.

2% — 3a? 2¢ 4 a

36 5T _6ia 92 _16a
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317 2 — 3 .
@—9@—0 -0
38 2x—4_3x+1_ x .
B z— 3 9— 62+ a?
39, 2¢+12¢ 3x—"Tec

62 —13¢cx —5¢  4a? + dex — 356

o (T e TS

2% — x? x> —3 3x—5
41 a;2r—m+1—x4+w2+1+ a2 +1
Show that:
42. c(c—y)+d—(y+dyd+c=y, when y =c — d.
43. g —L,When a=x+2,b=a+2x+4,

b d x2*4+42*4+16
c=x—2,andd=1o"— 22+ 4.
3x __ ,—38x
44. % = 51, when &** = 4.
e —¢
32. Multiplication of fractions. To find the product of two or
more fractions or mixed expressions we have the

RuLe. If there are integral or mixed expressions, reduce them
to fractional form.
Separate each numerator and each denominator into its prime
. factors.
Cancel the factors ( factor for factor) common to any numera-
tor and any denominator.
Whrite the product of the factors remaining in the numerator
over the product of the fuctors remaining in the denominator.

33. Division of fractions. For division of fractions we have the

RuLE. Reduce all integral or mixed expressions to fractional
Jorm.

Then invert the divisor, or divisors, and proceed as in multi-
. plication of fractions.
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The reciprocal of a number is 1 divided by the number.

Thus the reciprocal of 2 is }; of § is §; and of 32 is 4.

Therefore the quotient of one fraction by another is the prod-
uct of the first and the reciprocal of the second. Also the quo-
tient of a fraction by an integral expression is the product of
the fraction and the reciprocal of the integral expression.

34. Complex fractions. A complex fraction is a fraction con-
taining a fractional expression either in its numerator or in
its denominator or in both.

To simplify a complex fraction we have the

RuLE. Reduce both the numerator and the denominator to
simple fractions, then perform the indicated division.

EXERCISES

" Perform the indicated operations :
" 9a® 10x% 6 ¢? c 3at
 (2)-(32) (G ) (E)

" \ex 4 o? \ a 2a

5 <-3_0‘2>2; <9 02m8>2_-- <__ 2 a802>8 (3 (,7/20)4 )

"\2a/) "\ 4a?) "’ 5a® (10 2%
6. (8¢ — ac)=+(4m) - (8 m*®) + (I m — o’m).
dar— 2 4m2c_1‘/‘2c.2xe+ye.

: (2xe_yp)2'(2xa+?/e)-z 3
8 w2—1< 2 >x4—w2+1

Tat—1 P41 e+l
16 \2? —4

2 P — .
9.<x—2x+4 o 2> 3

10. In Exercise 9 multiply each term of the first expression
x?—4

by
sum with the product obtained in Exercise 9. Explain. Name
and state the law of multiplication here illustrated.

- Then add the partial products, and compare this
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a?—a—90  a*+9a®  4a+6

~ 11 @ —100  &*+10a  2d% + Bax
— 12 _13a\ ,d—a—42 2d°—12a
) a+ 6 a?—386  ax+6zx

4 _ 2
13. <3—“—ﬂ><6a—z—11>+<2+%+1—1>-
3a—17 @ @ @

14, <0“+_w+2_¢w2><20+a_w>+(a+26>_

a*—3ac—4c¢ ¢+ a

4¢ 15c 4da+ 20c\ | 16¢ , 152
15. <a +4>< 2a+50>7<4— o + a? >
o () () (e 22

mx\x m mx cxr — ax

x> — 8 % — (_|_ )2

17. Multiply Fr12116 @ 2)2bythereclprocalof P
18 222+ 5x+3 3x*+3axr—x—a

6+ x—1 ‘24— 2cx+3x— 3¢
<c+2a—|—(2a+1+2c)x )

4+ ar+a

Simplify each term in:

2 2®\° 2x?
o (&) -5(3) ()
¢ 2%8 2 63 8
#10(3) (i) 107 (5
2 10 2 2
= (5) 100 ()
L 10-9 (M7 12\ 10.9.8 fat\( 8 Yo
2 \0® 60)’) 2.3 \*/\6a
21. Explain why the divisor is inverted in division of

fractions. .

22. Show how the rule for the division of fractions is based
on the first principle of this chapter.
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Simplify :

8 — m
_ 28. 31. .
24. —:}:—lg—i—l . pr 2T A &
o5, T3 146 9, CtC <4c+3a2_@
403 173 29. ¢ g B¢ ) ¢
26 31-31.8; —1 g_l (Ba+2¢) e

" 8131 —1 c 3a

+3 3—° 33. 1+

x ¢ 1

7. —. 30. . 14—t
a__g (a—i—3c}_ ' 142
a2 2ac
2 m? | mn

34. 1—3 1 w5 7 oo

+5Mg} m+n'

35. 3 ! " 7 5

neT 1 6o —11—- 2—Z

1— 3 39 x 3z
6+ —— ' 11 5 «*—25
R 24 =42 7
- x  x
1-— 2a1}22 40 1
36, O+ ' 1
ab 1-—
Yy oz
1+24.%
+w+y 41. -

317. ) yz' 1+ 2 a?
:,/—2+1+E a+1+1—(b
xy +1 1 xz—a

y 1 x x2*—a®

42 — . 43.
1 y (@ 4 zyz + 2) 1 ao—=
yz +1 @ ‘4 a?

2
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3

1 1
— LT — o —_9?
44. What value has P I)z when a =¢ g and 0 =€+ — 7

45. Brouncker (1620-1684) proved that 7 (the circumfer-
ence of a circle divided by its

diameter) is four times the 1 1
fraction on the right. 1+ 9
(¢) Rewrite the fraction, 2+ o5
continuing it to —/— 225 2+ 49
"2 +ete. 2+ 3
(b) Stopping with 2 4 &1, 24+ 2 4 ete

find the difference in value
between four times the value of this fraction and the approxi-
mate value of 7, 3.1416.

Note. William Brouncker, one of the brilliant mathematicians of
his time, was an intimate friend of John Wallis (see * First Course in
Algebra,” page 302). These two scientists were among the pioneers
in the study of expressions with a countless number of terms.

The complex fraction in the exercise, if continued indefinitely
according to the law which its form suggests, is called an infinite
continued fraction. Brouncker was the first to study the properties
of such expressions.
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CHAPTER IV
LINEAR EQUATIONS IN ONE UNKNOWN

35. Definitions. An equation is a statement of the equality
between two equal numbers or number symbols.

Equations are of two kinds,— identities and equations of
condition.

An arithmetical or an algebraic identity is an equation in
which, if the indicated operations are performed, the two
members become precisely alike, term for term.

A literal identity is true for any value (numerical or literal)
of the letters in it.

An equation which is true only for certain values of a letter
in it, or for certain sets of related values of two or more of its
letters, is an equation of condition, or simply an equation.

A number or literal expression which, being substituted for
the unknown letter in an equation, changes it to an identity,
is said to satisfy the equation.

After the substitution is made it is usually necessary to simplify
the result before the identity becomes apparent.

A root of an equation is any number or number symbol
which satisfies the equation.

36. Axioms. An axiom is a statement the truth of which is
accepted without proof.

Axtom L. Adding the same number to each member of an
equation does not destroy the equality.

Axitom IL. Subtracting the same number from each member
of an equation does not destroy the equality.

Axitom III. Multiplying each member of an equation by the

same number does not destroy the equality.
42
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Axiom IV. Dividing each member of an equation by the same
number (not zero) does not destroy the equality.

Two or more equations, even if of very different form, are
equivalent if all are satisfied by every value of the unknown
which satisfies any one.

Of these four axioms, or assumptions, we shall make constant
use. If the “same number” referred to in each is expressed
arithmetically, the result is always an equation equivalent to
the original one. Further, if identical expressions involving the
unknown be added to or subtracted from each member of
an equation, the resulting equation is equivalent to the first.
If, however, both members of an equation be multiplied by or
divided by identical expressions containing the unknown, the
resulting equation may not be equivalent to the original one.
In other words, under the condition just stated, roots may be
introduced or lost by the use of Axiom III or IV respectively.

EXAMPLES
1. Let z—2=T. (¢))
Multiplying by £ — 8, 22—524+6 =7z — 21. &)
From (2), 2 —122 4+ 27 =0. 3)
‘Whence (z—=38)(z—9)=0. ' ©))
Therefore z =3 or9H.

Since (1) has the root 9 only, and (8) has the:two roots 8 and 9,
(8) is not equivalent to (1), that is, a root was introduced by the
use of the multiplication axiom.

2. Let 22—4=x+2. )
Dividing by z + 2, z—2=1 )
Solving (2), z = 3. : - (3)
But from (1), 22—x—6=0. (€3]
Whence (x—38)(x+2)=0. ®)
Therefore z=3 or — 2.

Here (5) shows that (1) has the two roots 3 and — 2, and since
(2) has but one root, 3, it is evident that a root was lost by the use
of the division axiom.



Vi,

44 SECOND COURSE IN ALGEBRA

The student should note the preceding illustration carefully,
as the possibility of dividing each member of an equation by
a common factor involving the unknown frequently arises. A
very common type is the following:

3. Let 22—-22=0. (€]
Dividing by z, z—2=0. &)
‘Whence z=2. )

But (1) has the root z = 0 also, which is lost by dividing

“both members of (1) by z.

If proper methods of solution are applied to an equation (or
to a false statement in the form of an equation), and one or
more values of the unknown which are thus obtained do not
satisfy the original statement, such values are called extraneous
(or extra) roots.

An extraneous root is a root of an equation which is not
equivalent to the original statement, but which is derived from
it in the process of solution.

37. Principles. The preceding discussion may be summed
up thus:

Prixcrere L. If identical expressions (which may or may not
contain the unknown) be added to or subtracted from each mem-
ber of an equation, the resulting equation is equivalent to the
original one.

PrincipLE IL. . Extraneous roots may be introduced into o
solution by multiplying both members of an equation by an
integral expression containing the unknown.

Prixciere II1. If both members of an equation be divided
by an integral expression containing the unknown, one or more
roots will usually be lost by such a division.

It can be seen from Example 1 that the root introduced is the
value of the unknown obtained by setting the multiplier, z — 3, equal
to zero and solving the resulting equation.

Similarly, it can be seen from Example 2 that the root lost is that

value of the unknown obtained by setting the divisor, z + 2, equal
to zero and solving the resulting equation.
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Sometimes a statement in the form of an equation has no root;
yet the ordinary method of solution appears to give one. For ex-
4z—1 z+8
z—8 z-—38 +5

If one multiplies each member by z — 8 and solves as usual, he
obtains x = 8. This answer cannot be verified because z — 3, the
denominator, becomes zero for z =3. Here the multiplication by
z — 3 introduced the value 3 for z. Checking will always discover
the falsity of such a result (see * First Course in Algebra,” page 161).

ample, consider the statement

For solving equations in one unknown which may or may
not involve fractions we have the

RuLEe. Free the equation of any parentheses it may contain
except such as inclose factors of the denominators.

Where polynomial denominators occur, factor them if possible.

Find the L.C.M. of the denominators of the fractions and
multiply each fraction and each integral term of the equation
by t, using cancellation wherever possible.

Transpose and solve as usual.

Reject all values for the unknown which do not satisfy the
original equation.

Checking the solution of an equation is often called testing,
or verifying, the result. For this we have the -

Rure. Substitute the value of the unknown obtained from
the solution tn place of the letter which represents the unknown
in the original equation. Then simplify the result until the two
members are seen to be identical.

EXERCISES

1. Give an example of (@) a numerical identity; (3) a
literal identity ; (¢) a conditional equation; (d) two equivalent
equations; (e¢) a statement in the form of an equation, but
which has no root.

- 2. Define and illustrate transposition. (¢) On what axiom
does transposition depend ? (4) If one equation is obtained from
another by transposition, are the two equivalent? Explain.
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3. What extraneous roots, if any, are introduced if both
members of the following equations are multiplied by the
' expression on the right?

(&) 2 +3=T7 x+ 4

) z+5=0 x+5

(¢) x+¢c =0 x —c

d) z+a=0 x

() x=25 ' 4
(f)x—1=0 2?4 3x + 2

4. What roots, if any, are lost by dividing both members of
the following equations by the expression on the right ?

() ?*—4=0 x— 2
@) #*—4x+3=x—3 z—3
() 4+ —12=x+4 x4+ 4
(d) «* —2x =4z x

(e) x* —16 =2 —4 x?—4
) @0y =(@ — oy z—a

Solve the following for the unknowns involved, cons1der1ng
a, b, ¢, and d as known numbers :

Te 1 92 1_3 54n_ 3
5.5 =g 12 =3 9 =1
be a = 3 3 7 m—2 17
62176~ 14 %2, 20 5z Ya_3T18
20 +5 3Q2x+1) .
TP 2w ok
12 5:1:—7_§ 4 —x _1590———22.
) 6 2\ 10 ) 6
13 1-82 2(1—62) 1—24x
’ 5 242 —3 15
3x—9 _3x—35 x , x4+m
14'3@'—5#2—8—3% 16.a+ b =1. )
Ty i1 11 Y _a_2dy—=¢
15'a+b c =z 17. 24 7 c
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2x—3b_2a—3m 90 4da

18 p R +7:7_5'
19 3 1 —-30+3).
" b(a —x) a—x 2 ab
1 3z s
20.'2—_2 ;———2'—‘3.
a1, 3 1+2y 49y

2y+1 2y—1 1—4

A \ W R
22.(1—0>f<1+z>+z+1—1.

30+ 9x a—2x

B Set6s 2ot3a >

8 2—6x 27
24.%—7—(132.—632-—7—&3-}-1.
s 4 3 2@-—14)
"z +4 -5 at—x—20
2. T 5 _ b

2@+0b) b—a BP—d

2x d[6x 2 d
7. —5——5<7—10d>—-20d<§—5—0>

28. 824 —13x =32z — 52.6.
29. 5704 — .20 % = 19.6512 — .016z.
30. .01(2z + .205) — .0125 (1.5 & — .5) = .01955.

2¢—585 .. Ta?435x— 844375
8. —5— ==—~12% 9z —11.75

1 1 5
32'm—.33a+2m “4a
'—3———.220,

33 4a 3 _ 5a __4a
"8y—.12a 2 6y—.24a y—.0da

2 3¢ — 2
3, £ 41 _3e=38a 1 o
ax [ X a cx
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PROBLEMS .

1. At what time between 4 and 5 o’clock will the hands of
a clock be together ?

Solution : First, the minute hand moves twelve times as fast as
the hour hand. Second, at 4 o’clock the hour hand is 20 minute
spaces ahead of the minute hand. Now let z equal the number of
minute spaces that the minute hand travels from its position at
4 o’clock until it overtakes the hour hand. Obviously the hour hand
must travel  — 20 spaces before it is overtaken by the minute hand.

Therefore z = (z—20)12.

‘Whence z = 214%.

Hence the hands are together at 21.% minutes after 4 o’clock.

2. At what time between 7 and 8 o’clock are the hands of a

clock together ?

3. At what time between 2 and 3 o’clock are the hands of a
clock in a straight line ?

4. At what time between 6 and 7 o’clock is the minute hand
(¢) 10 minute spaces ahead of the hour hand ? () 10 minute
spaces behind the hour hand ?

5. At what times between 5 and 6 o’clock are the hands of
a clock at right angles ?

6. If the earth is between a planet and the sun and in a line
with them, the planet is said to be in opposition. The earth
and Mars revolve about the sun in (approximately) 365 days
and 687 days respectively. Mars was in opposition Septem-
ber 24, 1909. What is the approximate date of the next
opposition ?

Solution : For the sake of simplicity we will suppose in this and
in similar problems that the planets move in the same plane and in

circular paths, of which the sun is the center.

Let 2 = the required number of days.
x

=

revolutions about the sun.

Now in z days the earth will make 3
And in 2 days Mars will make 6_;% revolutions about the sun.

But to be in opposition the earth must in z days go round the sun
once more than Mars does.
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x 4

Therefore —=—+1.

365 687
Clearing, 687 x = 365 2 + 250755.
Whence z=T79 +.

Therefore the required date is November 11, 1911.

7. If a planet is between the earth and the sun and in a -
line with them, it is said to be in conjunction. Venus was in
(superior) conjunction April 28,1909. If Venus revolves about
the sun once in 225 days, find the approximate date of the
next conjunction.

8} J upiter revolves about the sun once in 4332 days. On
February 28, 1909, the planet was in opposition. Find the
approximate date of the next opposition.

9. Saturn revolves about the sun once in 10,759 days. It
was in opposition April 3, 1909. Find the approximate date
of the next opposition.

10. Two men travel in the same direction around an island,
one making the circuit every 24 hours and the other every 3
hours. If they start together, after how many hours will they
be together again ?

11. Three automobiles travel in the same direction around
a circular road. They make the circuit in 22 hours, 3} hours,
and 4% hours respectively. If they start at the same time,
after how many hours are the three together again ?

12. Is the answer to Exercise 10 an integral multiple of 2}
and 3? Is it the least integral multiple ?

13. Is the answer to Exercise 11 an integral multiple of 23,
31, and 42 ? Is it the least integral multiple ?

14. Reduce 22, 31, and 4% to improper fractions and divide
the L.C.M. of the numerators by the G.C.D. of the denomi-
nators. Compare the result with the answer to Exercise 11.

15. The method of finding the L.C.M. of two or more frac-
tions or mixed numbers is hinted at in Exercise 14. State a
rule therefor. Find by the rule the L.C.M. of 1%, 21, and 3}.
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16. Find by the same rule the L.C.M. (a) of a and LA 0) of
y [) d )

%: c%, and —J%
17. How many ounces of alloy must be added to 56 ounces

of silver to make a composition 709 silver ?

18. Gun metal of a certain grade is composed of 169 tin
and 849, copper. How much tin must be added to 410 pounds
of this gun metal to make a composition 189 tin ?

HinT. Since the composition is 16% tin, then {48 410 = the
number of pounds of tin in the first composition.

Let 2 = the number of pounds of tin to be added.

Then 16—1_(;46& + 2 = the number of pounds of tin in the second

composition, and 410 + z = the number of pounds of both metals in
the second composition.
16 - 410 te

100 18

—, ete.

Therefore -
410 + 100

19. A 30-gallon mixture of milk and water tests 169, cream.
How many gallons of water has been added if the milk is
known to test 209, cream ?

20. How many gallons of alcohol 90¢;, pure must be mixed
with 10 gallons of aleohol 959, pure so as to make a mixture
929, pure ?

21. The diameter of the earth is 3% times that of the moon,
and the difference of the two diameters is 5760 miles. Find
each diameter in miles.

22. The diameter of the sun is 3220 miles greater than 109
times the diameter of the earth, and the sum of the two diameters
is 874,420 miles. Find each diameter in miles.

23. The distance of the earth from the sun is 387} times
the earth’s distance from the moon. Light traveling 186,000
miles per second would require 8 minutes 1833 seconds longer

- to go from the earth to the sun than from the earth to the

moon. Find each distance in miles.
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24. The mean distance between Mars and the earth when
they are on opposite sides of the sun is 234,500,000 miles.
When the two planets are nearest each other on the same side
of the sun, the mean distance between them is 48,500,000
miles. Find the distance of each from the sun in miles.

25. The diameter of Jupiter is 10}¢ times the diameter of
the earth, and the sum of their diameters is 94,320 miles. Find
each diameter in miles.

26. A can do a piece of work in 15 days and B in 25 days.
After they have worked together 3 days, how many days will
B require to finish the work ?

27. A can do a piece of work in @ days, B in 6 days, and C
in @ + b days. How many days will it take them all working
together to do the work ?

28. A cistern has two pipes. By one it can be filled in 2m

hours; by the other it can be emptied in ntl hours. Assume

n+4+1 8.
and find the number of hours required to

2 m less than

fill the cistern if both pipes are opened.

29. Discuss Problem 28 thus: What is the relation between
m and n if («) the water runs out more slowly than.it comes
in; (0) the water runs out as fast as it comes in; (c) the water
runs out faster than it comes in?

30. If both pipes in Problem 28 had been intake pipes, how
many hours would have been required to fill the cistern one-xth
full ?

31. If the radius of a circle is increased 7 inches, the area is
increased 440 square inches. Find the radius of the first cirele
(m = 22 approximately).

Facts from Geometry. The area of a circle is the square of the
radius multiplied by 7 (7 = 3.1416 approximately). This is expressed
by the formula 4 = 7R

The circumference of a circle eqtials the diameter times o. The
usual formula is €' = 2 7 R.

'
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32. Imagine that a circular hoop one foot longer than the
circumference of the earth is placed about the earth so that
it is everywhere equidistant from the equator and lies in its
plane. How far from the equator will the hoop be ?

33. Compare the result of Exercise 32 with the one obtained
when a similar process is carried out on a flagpole 6 inches in
diameter, instead of the earth.

Repeating decimals. If the process of reducing a common
fraction to a decimal does not end, the result is a repeating
decimal. Thus @& = .272727.... Here, as often as 7 appears
in the quotient there is a remainder of 3; that is, we return
after each 7 to the original fraction. Then

Fr =273, or # = 27273, ete.

Now in .27 the remainder % is really # of .01 (since 7

3
stands in hundredths’ place), or 3oL or -LL.. Therefore, if

11 7 100° ™ 100

x the identity % =.27{ may be written x =.27 + %) .

3
=1
The relation just explained will enable us to find the common
fraction which generates any given repeating decimal.

Dots are used to abbreviate the writing of a repeating decimal.

Thus .35 means .3535 - -+, and .04632 means .04632632 - - -.

34. Find the common fraction which, reduced to a decimal,
gives .393939 - ..

Solution: Let z = the required fraction.

T
Th =.39 + —.
en x + 100
‘Whence 100z =39 + .
Solving, x =33 =18

35. Find the common fraction which, expressed decimally, is :

(a) 2. @ 7. (¢) .567. (@) .02.
(¢) 3.25. Hint. Note that 3 does not repeat.

(f) 12.i89. () -714285. () .142857.
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36. A passenger train whose rate is 42 miles per hour leaves
a certain station ¢ hours and & minutes after a freight train.
The passenger train overtakes the freight in 4 hours and «a
minutes. Find the rate of the freight train in miles per hour.

37. The arms of a lever are 3 feet and 4 feet in length
respectively. What weight on the shorter arm will balance
100 pounds on the longer ?

38. A beam 12 feet long supported at each end carries a load
of 3 tons at a point 5 feet from one end. Find the load in tons
(excluding the weight of the beam itself) on each support.

39. The arms of a balanced lever are 8 feet and 12 feet
respectively, the shorter arm carrying a load of 24 pounds.
If the load on the longer arm be reduced 4 pounds, how many
feet from the fulerum must an 8-pound weight be placed on
the longer arm to restore the balance ?

40. A horizontal beam 12 feet long of uniform cross section
is hinged at one end and rests on a support which is 4 feet
from the other. The free end carries a load of 130 pounds.
Excluding the weight of the beam itself, what is the weight
in pounds on the support ?

Hinrt. The products of the upward and downward pressures by
their respective arms are equal.

41. A 14-foot horizontal beam of uniform cross section weigh-
ing 200 pounds is hinged at one end and rests on a support at
the other end. (@) What is the weight in pounds on the support ?
(b) If the support is moved in 3 feet from the end of the beam,
find the pressure in pounds on the support.

42. A 16-foot horizontal beam of uniform cross section weighs
300 pounds. It rests on two supports, one at one end and the
other 4 feet from the other end. Find the weight in pounds on
each support.



CHAPTER V
LINEAR SYSTEMS

38. Graphical solution of a linear system. The construction of
the graph of a single linear equation in two variables or of a
linear system in two variables depends on several assumptions
and definitions. It is agreed:

I. To have at right angles to each other two lines: X'OX,
called the x-axis; and Y'0Y, called the y-axis.

II. To have a line of definite length for a unit of distance.
Then the number 2 will correspond to a distance of twice the
unit, the number 4} to a distance 4} times the unit, ete.

III. That the distance (measured parallel to the z-axis) from
the y-axis to any point in the surface of the paper be the
x-distance (or abscissa) of the point, and the distance (measured
parallel to the y-axis) from the z-axis to the point be the
y-distance (or ordinate) of the point.

IV. That the x-distance of a point to the »igit of the y-axis
be represented by a positive number, and the a-distance of a
point to the left by a negative number; also the y-distance of
a point above the a-axis be represented by a positive number,
and the y-distance of a point below the xz-axis by a negative
number. Briefly, distances measured from the axis to the right
or upward are positive, to the left or downward, negative.

V. That every point in the surface of the paper corresponds
to a pair of numbers, one or both of which may be positive,
negative, integral, or fractional.

VI. That of a given pair of numbers the first be the measure
of the z-distance and the second the measure of the y-distance.
Thus the point (2, 8) is the point whose x-distance is 2 and

whose y-distance is 3.
: 54
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VIL. To call the point of intersection of the axes the origin.

The values of the z- and the y-distances of a point are often
called the codrdinates of the point.

The graph of a linear equation in two variables is a straight line.
Therefore it is necessary in constructing the graph of such an equa-
tion to locate only two points whose coordinates satisfy the equation
and then to draw through the two points a straight line. It is usu-
ally most convenient to locate the two points where the line cuts
the axes. If these two points are very close together, however, the
direction of the line will not be accurately determined. This error
can be avoided by selecting two points at a greater distance apart.

The graphical solution of a linear system in two variables consists
in plotting the two equations to the same scale and on the same
axes, and obtaining from the graph the values of 2 and y at the
point of intersection. Two straight lines can intersect in but one
point. Hence but one pair of values of z and y satisfies a system of
two independent linear equations in two variables.

Through the graphical study of equations we unite the subjects of
geometry and algebra, which have hitherto seemed quite separate, and
learn to interpret problems of the one in the language of the other.

(For further details see ** First Course in Algebra,” pages 187-200.)

EXAMPLE

Solve graphically the system 22 —y+6=0andx+2y+8=0.
Solution: Substituting I
zero for z and then zero Y
for y in each equation, we
obtain for 2 z — y + 6 =0,
z|0|—38
G _o“ ’
and forz+ 2y 4+ 8 =0,
z|] 0 |—8 %7 2
y|—4 TI '
Then constructing the . [* -1 7 -2 0
raph of each equation as ~
zi‘g‘ndfcaﬁ;ed in th(e1 adjacent . (_4'—@Q<k
figure, we obtain for the 9
codrdinates of the point
of intersection of the two
lines, s =—4 and y =— 2, '

ES

T
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EXERCISES

Solve graphically : :

L 2¢+y=28, 5.w+5=—3y,

x4+2y=". 6y+2x—8=0.
9 x—y =6, 6 2w.+4g/=20,
"8x4+4y=4. T2y —10=—u.
3 z+2y+11=0, . x+y=2>5,
Ty—x =2 Ty+2=0.

4 z+2y=0, 8 y+4=0,

"8y +2x=3. T2—2=0.

In Exercise 9 graph each equation. Then add or subtract the two
equations and graph the resulting equation on the same axes. Note
the position of the third graph with reference to the other two.
Proceed in like manner with Exercises 10 and 11.

9 x4+ y =4, 10 z—y=2>5, 1 3e—4y=12,
T+ 2y="T. "8x+2y=>5. ‘4x+4+8y=—6.

12. In each of the last three exercises will the values of the
x- and y-codrdinates of the point of intersection of the two
lines, as obtained from the graph, verify in the third equation
obtained by adding the two given equations ? Why ?

13. Graph the equation x —2y = 2. Then multiply both mem-
bers by 2 or 3 and graph the resulting equation. Compare the
two graphs. Then try — 2 or — 3 as a multiplier and graph
the resulting equation. Compare the three graphs. What con-
clusion seems warranted ?

14. What are the codrdinates of the origin ?

15. Is a graphical solution of a linear system in two varia-
bles ever impossible ? Explain.

16. In the example on page 55 could different scales have
been used on the two axes ? Could the two lines have been
plotted to different scales ? Explain.

17. What is the form of the equation of a line parallel (a)
to the x-axis ? (b) to the y-axis?
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18. What is the form of the equation of a line through the
origin ? :

19. Give an example of a system in two unknowns which
has (@) no graphical solution; (b) an infinite number of sets
of roots. :

20. The boiling point of water on a Centigrade thermometer
is marked 100° and on a Fahrenheit 212°. The freezing point
on the Centigrade is zero and on the Fahrenheit is 32°. Conse-
quently a degree on one is not equal to a degree on the other,
nor does a temperature of 60° Fahrenheit mean 60° Centigrade.
Show that the correct relation is expressed by the equation
C.= § (F. — 32), where C. represents degrees Centigrade and F.
degrees Fahrenheit. Construct a graph of this equation. Can
you, by means of this graph, express a Centigrade reading in
degrees Fahrenheit, and vice versa ?

21. By means of the graph drawn in Exercise 20 express
the following Centigrade readings in Fahrenheit readings, and
vice versa: () 60°C.; (0) 150°F.; (¢) — 20°C.; (d) — 30°F.

22. What reading means the same temperature on both scales?

23. A boy starts at the southwest corner of a field and walks
20 rods, keeping twice as far from the south fence as from the
west fence. He then walks east until he is three times as far
from the west fence as he is from the south fence. Lastly he
walks north until he is as far from one fence as he is from the
other. Construct a graph of his path. Find (by measurement)
the length of each portion of it and his distance from the
starting point.

39. Elimination. The process of deriving from a system of
n equations a system of » —1 equations, containing one variable
less than the original system, is called elimination.

If one equation of a system can be obtained from one or
more of the other equations of the system by the direct ap-
plication of one or more of the axioms, it is called a derived
equation ; if it cannot be so obtained, it is called independent.
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Only two methods of elimination will be considered, — that

of addition or subtraction, and that of substitution.

40. Solution by addition or subtraction. The method of solving
a system of two linear equations by addition or subtraction is
illustrated in the

EXAMPLE

132+ 3y =14, )
Solve the system { Tw— 2y = 2. 2)
Solution: Eliminate y first as follows:
1-2, 262+ 6y = 28. 3)
@)-3, 21s— 6y = 66. 4)
@)+ (4), 17z =94 . (5)
(5) + 47, P =2 (6)
Substituting 2 for z in (2), 14 — 2y = 22, )
Solving (7), y=—4.

Check : Substituting 2 for 2 and — 4 for y in (1) and (2) gives
26 —12 =14, or 14 = 14.
14 + 8 =22, or 22 =22,

The method of the preceding solution is stated in the

RuLe. If necessary, multiply each member of the first equa-
tion by a number and each member of the second equation by
another number, such that the coefficients of the same variable in
both the resulting equations will be numerically equal.

If these coeffictents have lilce stgns, subtract one equation from
the other ; if they have unlike signs, add and solve the equation
thus obtained.

Substitute the value just found, in the simplest of the preced-
ing equations which contains both variables, and solve for the
other variable.

Cueck. Substitute for each variable in the original equations
its value as found by the rule. If the resulting equations are
not obvious identities, simplify them until they become such.

Or check in the sum of the two equations unless one unknown
vanishes in the addition.
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41. Solution by substitution. The method of solving a system
of two linear equations by substitution is illustrated in the

EXAMPLE
3z —13y =41 @
t >
Solve the system { 8411y — 18, 2)
Solution: From (1), 3x =13y +41. 3)
Solving (8) for z in terms of y, x = BL;E @
e 13y 441 .
Substituting —3— for z in (2),
8. 2Lt 111y =18 @)
%)-38, 8(13y +41) + 33y = 54. (6)
Simplifying, 104y + 328 4 383 y = 54. M
Collecting, 137y =—274. ()
(8) +137, y=—2. )
—26 441 _

Substituting — 2 for y in (4), z= 5.

3
Check : Substituting 5 for z and — 2 for y in (1) and (2) gives the
identities 15 + 26 = 41 and 40 — 22 =18.

The method of the preceding solution is stated-in the

Rure. Solve either equation for the value of one variable in
terms of the other.

Substitute this value for the variable in the equation from
which it was not obtained and solve the resulting equation.

Substitute the definite value just found,.in the simplest of the
preceding equations which contains both variables, and solve, thus
obtaining a definite value for the other variable.

CHECK. As in preceding example.

If either equation in a linear system contains fractions, it is
usually (see exception in Exercise 22, page 61) best to clear of
fractions and then to apply one of the preceding rules. Occa-
sionally one can avoid quadratics by solving without first
clearing of fractions (see Problem 7, page 77).
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EXERCISES

1. What is a constant ? a variable ?

2. Define and give examples involving two unknowns of
(2) a linear equation; (b) a system of linear equations; (c) a
simultaneous linear system; (d) equivalent equations; (e) a
determinate system; (f) an indeterminate equation; (g9) an
indeterminate system; (%) an incompatible or inconsistent
system.

3. What is the graph in each case in Exercise 2 ?

4. What is the general form of a linear equation in two
variables ?

5. To what general form may any incompatible linear sys-
tem in two unknowns be reduced ?

6. What is the general form of a linear system in two
unknowns which has an infinite number of sets of roots ?

Solve by addition or subtraction:

v 20+ b5y=38, o 9t —2n=18,
T —10y=09. " 20¢="Tn - 63.
Sx 438 =12y, 10 11m —10=—18n,

"3x+8y=0. " 9m +12n =—15,
11. 32— 2y =18, 304+ 8y =5u.
Solve by substitution:

3r —8s=13, ‘ 14 _
12. r+6s=0. 15. 62+ 3 12y =0,
13 2@+ y)+3y=4, Ty—3x—4=0.

"h=x 4. 8m —3n

oMm—on =—_9

1y 162 +T=15y, 6. 2 T6» ’

"4x45y=0. 4m —1=238n.
Solve by either one of the preceding methods:

2% 3r T s
7. 3 T9="0 8.2 2712

52— 3y=105. r+8=—2s.
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3y+1_z+20__3 3 ——é—-—O
13 12 =7 x—3, by
19. 25.
s 2y_y L, 6u_3
8 9 5 5
90, 22+ Ty =—125 25h+8+1k
. _— = 5
A2x — .08y = 33. E—10+ 74 <
26.
m4+2n 2m—n 5 1 + 20 —
5 710 2’ 8h—22 35—-55k
21.
m+n m—n n
i 7 2 2ht5k_ g
3
111 2.y, B
2.2 v O —*_3
.2_§__é, E—nh
x y_ 3
3(: r —
2r4+4s 38 28 (%:—?/) +Z )gi/:O,
2r—s 3~ ’ s -
2 =T.
23.5—E 4y
o @y by .. %
2m+3n—2_é 5 2+2 5:0
o4 m+n-+6 —3’ 9. & 3 ’
1,19 £y, 13,
m . n om 4 2
2 7 lrd
30. 3w+z+2_ 1 ’"c+4+1r7+x:O.
z— x—=z 2 5—z
m+5 m—5 m—3Bm—2n)—% 1
L. =710 m—2a—1 T30
Solve for z and y:
2 5, B 34.”;“ 1a "
3 e 24 T3,= 1% Ty
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m+y:2_w—g/ (e+d)y+ax=1,

35. 104 Tia’ 3y =1—(c+ b
r=1. 4 =T _ 2
¢ atd 38 0 T
4 =1 ¢ c* =cv.
x Y ’
3 i1 b 4 39, @Hly=2
z 'y 3 ey =7

42. Determinants of the second order. The arrangement of

numbers

has been given the meaning 4.3 —5.2.

a ¢
b d

4 2
5 3
Such an arrangement is called a determinant.
The value of any such determinant is easily found since
means ad — be.

Accordingly,B g|:5-3—2-6=15—12=3.

.. 6 —2

Similarly, ‘8 3 ':6-3—8~(—2):18+16=34.
And 3 _34 _95 =3[— 15 —(— 36)]=3[—15 4+ 36]

=3.21 = 63.
The preceding operations can be reversed and the difference
(or sum) of two products written as a determinant.

. m
Thus mn — rs can be written
r

other ways.
Similarly, ab—lk=adb—1-1=

s .
, and in a number of
n

a k
1 0

EXERCISES

Find the value of the determinants :

4 1 —3 2 2a —100
Lls 5 Y17 g “l5a 30 l
6 —2 16 5la® 0
A
2 3 -3 5 7[3¢ 0
3. 3{4 _3i' 6. 4'_7 8,' %3log —144
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Write as a determinant:

63

10. ax — cr. 12. § —ar. 14. ab + cd.
11. mz — 3 d. 13. 2k —c. 15. a« — 0.
Find the value of the fractions:

5 1 ’3 2 c b ¢c (A—o¢
16. 73 —1 17 74 1:. 18. Na °l 1. Te (T—12¢) '

1 1 3 2 a b 3

1 —1 4 3 d e Tc¢ 36
Write as the quotient of two determinants:

st — cd ar — 6 6x — hm
2 5 L LYy

2

u+1—00 %—7 95, L T~ +105-
21. . 23. . P

a?—12 2m —1 4 a

43. Solution by determinants.
{ ux + by = ¢,

For the system

M

dx + e J =1 (2)
= Cc; : Z{l: and y = af b y (see Exercise 39, page 62).
c 0
. . ce — bf [ e
Using determinants, x = P =17 ) 3
d e
@« ¢
af —cd _|d [
and y= ac—bd |a b @
d e

The determinant expressions for 2 and y in (3) and (4) can
be used as formulas to solve any pair of linear equations in
two unknowns. This method is particularly useful in the solu-
tion of linear equations with literal coefficients. The determi-
nant forms can be easily remembered and written down at once
if we observe carefully the following points:
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1. The determinants in the demominators are identical, and
each is formed by the coefficients of x and y as they stand in
the original equations (1) and (2).

II. The determinant in the numerator of the value of x is

Jformed from the denominator by replacing the coefficients of w,
a c
d, by the constant terms f.

III. The determinant in the nwmerator of the value of y is

Jormed from the denominator by replacing the coefficients of
c
Y, € by the constant terms f.

Biographical Note. Gorrrrirp WriLnrLm LeisNirz. For the last few
hundred years the study of the higher mathematics has been carried on
almost entirely by professors in the universities. It is rather exceptional
for a man not connected with any educational institution to achieve dis-
tinction in this field. Before this was the case, however, scholars were
accustomed to devote themselves to any or all branches of learning which
attracted them, and many men of wide erudition in various walks of life
flourished at different times during the two or three hundred years fol-
lowing the fifteenth century.

But of them all, the man who pelhaps most clearly deserves the title
of universal genius is Leibnitz (1646-1716). He was born in Leipzig,
Germany, and on account of the poor instruction in the school to which
he was sent, he was obliged to learn Latin by himself, which he did at
the age of eight. By the time he was twelve he read Latin with ease, and
had begun Greek. Not until the age of twenty-six, when he was sent to
Paris on a political errand, did he become deeply interested in mathe-
matics. From 1676, for nearly forty years, he held the well-paid posi-
tion of librarian in the ducal palace of Brunswick, serving under three
princes, the last of whom became George I of England in 1714. This
post afforded him time for the deep study of mathematics, philosophy,
theology, law, politics, and languages, in all of which he distinguished
himself. An incomplete edition of his mathematical works has been
published in seven volumes.

Personally he was quick of temper, impatient of contradiction, over-
fond of money, and one of the few lea.lly great men who have been
offensively conceited.

It is in his writings that we find the first mention of determinants.
He also discovered the calculus independently of Sir Isaac Newton, and the
last years of both men were embittered by a most unfortunate wrangle in
which the friends of Newton accused Leibnitz of publishing as his own,
results which really belonged to Newton.
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EXAMPLE

2y+a2="1,

S5x=2y+11.

Solution : Writing the equations in the standard form, we have

z+2y="7,
S5a2—2y=11.

Solve by determinants {

’7 2 .

11 —2| —14—922 —36

Then T 5= —s-10 —12 °
5 —9

In solving for y the denominator is the same as before; hence

1 7
b nf_1-ss_ o4,
Y="19 T 13 "12” ~
(4+8=7,
Check : {15 —4+1L
EXERCISES
Solve by determinants and check results :
1 20+3y="1, a_c_g_ﬁ
"8z —2y=4. 6. 2 37
4dx=3y+ 8, 3_96 —2—'71—8
9. + = 8.
3 S5c+4y=10a + 4, Ta4+5y=21c,
"z —2ay=0. 7'§_L_3
g Bx+.02y =185, ¢ 2c
b5z + .04y =335, s_c+ﬂ_a,+b_
4dx+ 3y =06, a' b ab
5. 8. o
3_95 g’i/_g — —”—‘b.
LTy T S PTYETW

44. Indeterminate equations. If numerical values are given
to any two variables in the equation m + n + p = 6, a value
for the third variable can be found, which, taken with the
values assigned to the other variables, satisfies the equation.

For example, let m =1 and n =2. Then m + n + p = 6 becomes
1+2+ p=26, whence p =3. Obviously m=1, n=2, and p=3
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satisfy the equation. Other values may be given to m and n (or m
and p, or n and p), and the foregoing process repeated, thus obtain-
ing set after set of roots. A few sets of roots are tabulated here.

m 1 2 0 1 6 5 |—4| 10

nl2l2|0|8{0|%|2]|-1]4

P 3 2 6

(8]
=]

3 8 |—38

In like manner, for 2m + 3n 4+ 4p =16 the following sets of
roots may be obtained:

m 1 2 0 1 6 3 |—4| 10

nl2el2|o|3|o|ls|e]|-1|B

pl2 1|4 || 1 |13]4|-12

In tables A and B the values of m and n are alike, but the corre-
sponding values of p are different in every case. Though each equa-
tion has an infinite (unlimited) number of sets of roots, no common
set appears in the tables. This suggests three questions:

(1) Iave the two equations a common set of roots?
(2) If so, is there more than one common set?
(3) Is the number of such sets of roots unlimited ?

These questions are answered by the work which follows.

Solve the system IZZ:_: ;_n])+ 461) —16. 8%
Solution : First eliminate one variable, say m, as follows:

@)-2, 2m+2n42p=12. 3)
(2) — (3) eliminates m, giving n+2p=4. 4)
Give n or p in (4) any value, sayn =8, 842p =4. ®)
Solving (5), p=—2. (6)
Substituting 8 for n and — 2 forpin (1),m + 8 — 2 = 6. )
Solving (7), m = 0. (®

Therefore the set m = 0, » = 8, and p =— 2 satisfies (1).
These values also satisfy (2),
since 0+ 24 -8 =16, or 16 =16.
Again, let p = 4 in (4), n+8=4. )
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Solving (9), n=—4. 10)
Substituting — 4 for n and 4 for pin (1), m —4 + 4 = 6. 1y
Solving (11), m = 6. 12)
Then m = 6, n =— 4, and p = 4 satisfy (1).

They also satisfy (2), since 12 —12 +16 =16.

Repetition of the foregoing process gives the four following sets
of roots for the system (1), (2):

m 2 4 0 | 3%

n 4 0 8 1 2 |—-1|—2 C

p |02 |-21 5 ]2 |-1]-10

Since, by the method just explained, table C' may be completed
and extended as much farther as is desired, we conclude that the
system (1), (2) has an infinite (unlimited) number of sets of roots.
We must not infer, however, that every pair of linear equations in
three variables has either an infinite number of sets of roots or even
one set. Such an inference is easily seen to be incorrect.

For instance, let z+y+z=38, (9]
and z+y+2z=24. )

An attempt to eliminate one variable by subtracting (1) from (2)
causes all the variables to vanish and gives 0 = 16, which is false.
Hence the method of the last solution fails.

In general, however, a system of two independent equations of
the first degree in three variables has an infinite (unlimited) num-
ber of sets of roots.

A system of three independent equations of the first degree in three
variables, no two equations being incompatible, has one set of roots
and only one.

Note. It is not a little remarkable that the writings of the first
great algebraist, Diophantos of Alexandria (about 300 A.p.), are
devoted almost entirely to the solution of indeterminate equations;
that is, to finding the sets.of related values which satisfy an equa-
tion in two variables, or perhaps two equations in three variables.
We know practically nothing of Diophantos himself, excepting the
information contained in his epitaph, which reads as follows: “Dio-
phantos passed one sixth of his life in childhood, one twelfth in
youth, one seventh more as a bachelor; five years after his marriage
a son was born who died four years before his father, at half his
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father’s age.” From this statement the reader was supposed to be
able to find at what age Diophantos died. As a mathematician Dio-
phantos stood alone, without any prominent forerunner, or disciple,
so far as we know. His solutions of the indeterminate equations
were exceedingly skillful, but the methods which he used were so
obscure that his work had comparatively little 1nﬂuence upon that
of later times.

45. Determinate systems. The method of obtaining the set
of roots of a determinate system is illustrated in the following

EXAMPLE

m+ 6n—5p =23, €))
Solve the system < 3m — 8n +4p =—1, 2)

Tm—10n+4+10p = 0. 3)
Solution : Eliminate one variable, say p, between (1) and (2) thus:
1)-4, 4m+24n—20p =92, @
2)-5, 15m —40n 4+ 20p =—5. )
@ + (), 19m—16n =87. = (6)
Now eliminate p between (1) and (3) as follows:
-2, 2m+12n — 10 p = 46. )
)1, 7m—10n +10p = 0. (%)
(M +(8), 9m+ 2n = 46. 9
The equations (6) and (9) contain the same two variables m and n.
©)-1, 19m — 16 n = 87. 10)
9)-8, 72m+16n =368. (11)
(10) + (11), 91m =455. (12)
(12) = 91, m=5. 13)
Substituting 5 for m in (6), 95 — 162 =87. (14)
Solving (14), n =1
Substituting § for n and 5 for m in (1), 5+8—-5p=23.  (15)
Solving (15), p=—3.

Check : Substituting 5 for m, 1 for n, and — 8 for p in (1), (2),

and (3), 548 4+15 =23, or 23 = 23.

15-4—-12=—-1,0or —1=—1.
356 —-5—30=0,0r0=0.
Or we may check thus:
1)+ (2) + (3) gives 11m—12n 4+ 9p =22.
Substituting for m, n, and p, 55 — 6 — 27 = 22, or 22 = 22.
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This last check fails if any of the variables vanish when the three
equations are added.

For the solution of a simultaneous system of linear equations
in three variables we have the

RuLe. Decide from an inspection of the coefficients which
variable is most easily eliminated.

Using any two equations, eliminate that variable.

With one of the equations just used, and the third equation,
again eliminate the same variable.

The last two operations give two equations in the same two
“variables. Solve these equations by the rule, page 58.

Substitute the two values found in the simplest of the origi-
nal equations and solve for the third variable.

CHECK. Substitute the values found in each of the original
equations and simplify results.

Or check in the sum of the three original equations (unless
one variable vanishes in addition).

Four or more independent equations in three variables have
no common set of roots.

In general, a system of n + 1 independent linear equations in n varia-
bles has no set of roots ; a system of n independent linear equations in n
variables, no two of which are incompatible, has one set of roots; and
a system of n — 1 independent linear equations in n variables, no two of
which are incompatible, has an infinite number of sets of roots.

The usual proof of the preceding theorem affords a beautiful
application of determinants. Though not extremely difficult, it
requires greater familiarity with determinants than the student
will acquire from this text.

A system of four independent equations in four variables
may be solved as follows:

Use the first and second equation, then the first and third,
and lastly the first and fourth, and eliminate the same variable
each time. This gives a system of three equations itn the same
three variables, which can be solved by the rule given above.
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EXERCISES
1. Find five sets of roots for x — 2y + 2 = 6.
2. Find five sets of roots for m —n — 2p = 8.
3. Fill out the blanks in table C, page 67.
4. Find three sets of roots for the system
m+n—p=S_§,
3m—2n+4p=2~0.

Solve the following systems:
20 +3y=—14 — 4z, Ar4+.3s—8¢t=4,

5. 2 —y+32=0, 7. br+t+.85s=1.2,
Cbx+z2=14—2y. 26t +.3 —r=+4.5s.
x4+ 2y 4+ 3z2=14, 20 +.05y=—1+4+.10%,
6. 4 —5y+4 62=12 8. 50x — .30y =0,
x4+ 15y + 92 =>58. 05y + .04z = 3.
In Exercises 9, 10, and 11 consider a, ), ¢ as known numbers:
r ﬁ_izﬁ, 3m+2p=06a—2n,
e Z2a 3a 10. m—bn+6p=2a—110,
9. Tr+4t=06s 6m —8p=12a 4 8.
r_s_
9 6

h+2kE—-1=380+c,
5h—4k—4l=a+0—8e,
h 3a+0d Lk 2¢
2= 6 "3 6

11.

In Exercises 12-14 solve for z, y, and z:

2

a®-a? - = a"l

12, %oV * Tl =19 §+§+§=3,
e—z_e—y_e—ﬁz — 613. a b %2 )
b= 2 = 2, 14. E“;“L z

13. ¢&.c*tt = ¢lf, 5a 2¢ 30D
AV de+d = dv, © 2y
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r4s4t+uw=0, 4h —k+m=0,

2r —s+3t—u=—16, 16 Tk+2m+2=0,
5r+9s+4u=81+6¢ "dm+x+8h =0,
r+9t—Tu=—>54—5s. 162 + 5k —x = 4.

15.

(In Exercise 18 solve for x only.)

4o —3y+ 2z=20, ax + by + cz = p,
17. 5z +4y—102 =3, 18. dx 4+ ey + fz=q,
342 —Tax — 18y = 31. gx + hy + iz =1
46. Determinants of the third order. The arrangement of
5 4 6
numbers |7 2 1| has been given the meaning 5-2.3 +7.8.6
9 8 3

4+9.1.4—-6-2.9—1.8.5—3.7-4, which equals 30 4 336
+ 36 —108 — 40 — 84 =170.

Such an arrangement is called a determinant of the third
order because it has three rows (horizontal lines of numbers)
and three columns (vertical lines of numbers). Each of the
nine numbers in the determinant is called an element.

Every determinant of the third order is equal to a poly-
nomial of six terms. e N

. 307N " ~-108
Each of the six terms

”,_—m‘\\ .

is the product of three % 0
336 72N
elements so chosen a
/
that one element, and ’/ / gy
. 36/ <
only one, is taken from ™,/
N
each row, and one ele- N\ 4
\ -
ment, and only one, is N—x"

taken from each col-
umn. If each element is positive, three terms of the polynomial
are positive and three are negative. In connection with the pre-
ceding explanation the student should study carefully the above
diagram, in which each continuous line connects three numbers
whose product gives a positive term, and each dotted line con-
nects three numbers whose product gives a negative term.
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It follows, then, that the preceding determinant is equal to
the polynomial

5.2.34+7-86+9-1.4—6-2.9—-1.8.5-3.7.4=
30 + 336 436 —108 —40 — 84 =170.
When finding the value of each product in a determinant,

the sign of every negative element must be taken into account
along with the foregoing explanations.

EXERCISES
Find the value of:
1 11 1 00 x y 1
1.2 3 1| 5 2 4 5. 9.2 2 1
2 41 -3 1 1 3 4 1
1 2 3 111 a b ¢
2.4 5 6| 6. a 1 al. 10. |[d e f
7 8 9 —a 5 6 g h 1
1 -2 3 2—-1 3 z y 1
3.3 2 1. 7.—|—3 1 2|. 1l |z y 1].
1 11 4 5 1 x, y, 1
a b ¢ a 2 7 5 1 0
4.1 2 3| 8.0 3 8| 12. ¢j¢ O 0.
a b ¢ c 4 9 8 6 «a
47. General linear system in three variables. For the system
ax + by + cz = p, (€H)
dz + ey + fz = q, 2
gx +hy+iz=r, 3)
__pei + qhe 4 7fb — cer — fhp — igb n
¥ = wei + dhe + gfb — ceg — fha — idb’ )
aqi + dre + qfp — cqg — fra — idp =
Y= e + dhe + gfb — ceg — fha — b’ ©)
L, ger + dip + gqb — peg — qha — rdb ) 6)
" aei + dhe + gfb — ceg — fha — idb )

(See Exercise 18, page 71.)
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In the fractions in (4), (5), and (6) observe the following
points :

1. The three denominators are identical.

2. Each numerator and each denominator contains six terms,
three positive and three negative.

3. Each term is the product of three letters, one of these
letters, and only one, being taken from each equation.

4. Each term in the numerator differs from the term just
below it in the denominator by one letter, and only one.

The preceding statements will help to make clear the reason
for what now follows.

Let us write the eoefficients of x, y, and z as a determinant
in the order in which they occur in (1), (2), and (3), and then
expand. We thus obtain

a b ¢
4 e f ®)
g h i

But (D)= aei + dhc + gfb — ceg — fha — idb, which is the
denominator of the fractions in (4), (5), and (6)

a
If in (D) we now replace the coefficients of «, d, by the con-

g
stant terms g, and expand, we obtain a determinant equivalent

r
to the numerator of the fraction (4) whose value is x ; for
p b ¢
qg e fl|=pei+ qhe+ rvfb — cer — flip — igb.
r ot b

Again, if in (D) we replace the coefficients of y, e, by the
h

constant terms g, we obtain a determinant equivalent. to the
r
numerator of the fraction (5) whose value is y.

Lastly, if in (D) we replace the coefficients of z, f, by the

constant terms ¢, we obtain a determinant eqmvalent to the
r



74 SECOND COURSE IN ALGEBRA

numerator of the fraction (6) whose value is z. (The student
should perform the work outlined in the last two sentences.)

Therefore we may write the values of @, %, and # for the
given system in determinant form as follows:

b b ¢ a p a b p
q e f d q d q
r h ot g r 1 g h r
x a b ¢ M v a b ¢ a ¢ ()
d f d e f d e f
g h o3 g h 2 g i

The fractions (4), (5), and (6) are general results, and can
be used as formulas to solve any three simultaneous equations
in three variables, but the equivalent forms (7), (8), and (9)
are far more easily remembered. These can be written down
at once for any system of three equations in three variables,
since

1. The determinants in the denominators are identical, and
each is formed by the coefficients of x, y, and z, as they stand
in the original equations.

I1. Each determinant in the numerator is formed from the
denominator by putting the column of constant terms (as they
stand in the original equation) in place of the column of the
coefficients of the variable whose value is sought.

The method of solution by determinants of a system of
equations in three variables is illustrated in the following

EXAMPLES
Sz +y=14 — 2, 1)
1. Solve the system <z +2=1+ 2y, 2
Ix+y=15—2z. 3)

Solution : Rewriting in standard form,
Sz+y+z=14, ®
z—2y+z=1, 6))
z+y+22=15. (6)
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From I and II preceding,

41 1 3 14 1

1 -2 1 11 1

15 1 2| -2 1 15 2| —39
= = =2 = = = 3.
t=g 1 1 - >ady —13 13

1 -2 1

1 1 2

The value of z can now be more easily obtained by substituting
the values of z and y already found in (1), (2), or (8) than by means
of determinants.

Substituting in (2), 2 +
whence

Check: (1) + (2) + (3) gives

5z2+2y+2z=380+2y—3z

1+6;

=5.

[S IR

Substituting, 104+ 64+5=30+6—15,
or 21 =21.
i x4+ y=13 + 2z, @
2. Solve the system <« + 7 =3y, 2)
x4+ 4z=—14. (3)

Solution: Rewriting in standard form and supplying zero coeffi-

‘ent .
CLERES 24+ y—22=13, 4
z—3y—02=—-17, ®)
z—0y+4z=—14. (6)
13 1 -2
-7 =3 0
—-14 0 4 — 44
= = :2.
Then T 1 1 —) Y
1 -3 0
1 0 4

The value of y can now be more easily obtained by substituting
2 for z in (2) than by means of determinants.

Accordingly 24+7=38y;
whence y=3.

Similarly, by substituting 2 for z in (3), 2 + 42z =— 14;
whence z=—4.

Check: ()+ @)+ B3z +y+42+7=—14+22+3y.
Substituting, 64+3—-164+7=—1—8+9,0or0=0.
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As we have seen, determinants have a very useful application in
the solution of systems of linear equations in two or three varia-
bles. With some practice one can solve such equations more rapidly
by determinants than by the other methods which have been given.
If the student studies advanced algebra, he will learn of determi-
nants of the fourth and higher orders, and of the usefulness of such
determinants in solving linear systems in four or more variables.
Moreover, he will then see that the theory of determinants is an
absolute necessity for the discussion of the general theory of linear
systems in n variables.

EXERCISES

Solve for «, y, and z as in the two preceding examples:

zt+y+z=1, @ y_
lL.Lz+y—2=2, 3+2—9’
x—y+z=3. 6.E+i=8,
x+2y+z2=1, 23
2. 2x+y—2=0, .1/_’_5:13'
x+2y—=2=0. 3 2
2w+y=5+z’ (L.’E—*—Z):I/:O,
3. x—22=6, 7. cx — bz = 2be,
3y +2z=u. bx 4+ az — cy = b2
z+y=1, he + ky — lz = 2 bk,
Lt r=2, cky —hx+1z=211,
y+z=3. he — ky + lz =2 1l.
z+y=3a, max + mx, 4+ x, =0,
.xt+z=4a, . mx + x, + mx, = ma — a,
y+z=5ba mx — 3mx, + x, = 4ma.

Note. Like so many other discoveries, the determinant notation
was noticed independently by two men. In a letter to a friend, writ-
ten in 1693, Leibnitz outlined the method of solving equations by
the means of determinants; but, so far as we know, he used the nota-
tion in his own work very little, and certainly did not publish it dur-
ing his lifetime. In fact, the letter in which this reference is found,
did not come to light until 1850, and the fact that Leibnitz knew
anything about determinants was not generally recognized until after
that time.
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In 1750 Cramer, a professor in the university at Geneva, rediscov-
ered this method of solving linear systems; and his work had the
good fortune to be accepted by scholars, forming the real beginning
of the development of the subject. Since that time a great many
have written on the subject, and to-day determinants are used in
every field of advanced mathematics.

PROBLEMS

1. A and B together can do a piece of work in 32 days. If
they work together 2 days and A can then finish the job alone
in 2} days more, how many days does each require alone ?

2. A man and a boy can do in 18 days a piece of work which
5 men and 9 boys can do in 3 days. In how many days can
one man do the work ? one boy ?

3. If ax + by = 2 is satisfied by « = 2 and y = 3, and also
by « = 6 and y = 5, what values must a and & have ?

4. A launch, whose rate in still water is 12 miles per hour,
goes up a stream whose rate is 2 miles per hour, and returns.
The entire trip requires 24 hours. Find the number of hours
required for the trip upstream and the number for the return.

5. Two sums are put at interest at 59, and 69, respec-
tively. The annual income from both together is $100. If the
first sum had yielded 19, more and the second 19, less, the
annual income would have been decreased $2. Find each sum.

6. A sum of $4000 is invested, a part in 5 per cent bonds at
90, and the remainder in 6 per cent bonds at 110. If the total
annual income is $220, find the sum invested at each rate.

7. A train leaves M two hours late and runs from M to P at
509, more than its usual rate, arriving on time. If it had run
from M to P at 25 miles per hour, it would have been 48 minutes
late. Find the usual rate and the distance from M to P.

8. A train leaves M thirty minutes late. It then runs to P

at a rate 209, greater than usual, and arrives 6 minutes late.
Had it run 15 miles of the distance from M to P at the usual
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rate and the rest of the trip at the increased rate, it would
have been 12 minutes late. Find the distance from M to P and
the usual rate of the train. )

9. The rate of a passenger train is 62 feet a second and the
rate of a freight train 38 feet a second. When they.run on
parallel tracks in opposite directions they pass each other in
20 seconds. The length of the freight train is three times the
length of the passenger train. Find the length of each.

10. The rate of a passenger train is 45 miles per hour and
the rate of a freight train is 30 miles per hour. The freight
train is 240 feet longer than the passenger train. When the
trains run on parallel tracks in the same direction they pass
each other in 1 minute and 20 seconds. Find the length of
each train.

11. The length of a freight train is 1430 feet and the length
of a passenger train 550 feet. When they run on parallel tracks
in opposite directions they pass each other in 18 seconds, and
when they run in the same direction they pass each other in 1
minute and 30 seconds. Find the rates of the trains.

12 Two contestants run over a 440-yard course. The first
wins by 4 seconds when given a start of 200 feet. They finish
together when the first is given a handicap of 40 yards. Find
the rate of each in feet per second.

13. It is desired to have a 10-gallon mixture of 459 alcohol.
Two mixtures, one of 959 alcohol and another of 159 alcohol,
are to be used. How many gallons of each will be required to
make the desired mixture ?

14. A chemist has the same acid in two strengths. Eight
liters of one mixed with 12 liters of the other gives a mixture
849, pure, and 3 liters of the first mixed with 2 liters of the
second gives a mixture 869, pure. Find the per cent of purity
of each acid. :

15. The crown of Hiero of Syracuse, which was part gold
and part silver, weighed 20 pounds, and lost 11 pounds when
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weighed in water. How much gold and how much silver did it
contain if 191 pounds of gold and 10} pounds of silver each
lose one pound when weighed in water ?

16. One angle of a triangle is twice another, and their sum
equals the third.. Find the number of degrees in each angle of
the triangle.

17. The sum of three numbers is 108. The sum of one third
the first, one fourth the second, and one sixth the third is 25.
Three times the first added to four times the second and six
times the third is 504. Find the numbers.

18. The sum of three numbers is 217. The quotient of the
first by the second is 5, which is also the quotient of the sec-
ond by the third. Find the numbers.

19. If the tens’ and units’ digits of a 3-digit number be
interchanged, the resulting number is 27 less than the given
number. If the same interchange is made with the tens’ and
hundreds’ digits, the resulting number is 180 less than the
given number. The sum of the digits is 14. Find the number.

20. In one hour a tank which has three intake pipes is filled
seven eighths full by all three together. The tank is filled in
1} hours if the first and second pipes are open, and in 2 hours
and 40 minutes if the second and third pipes are open. Find
the time in hours required by each pipe to fill the tank.

21. The sum of two adjacent sides of a quadrilateral is 140
inches. The sum of the first of these and the side opposite is
160 inches ; the sum of the first side and the fourth side is 172
inches. The perimeter is 352 inches. Find each side.

22. The sum of two sides which meet at one of the vertices
of a quadrilateral is 20 feet. The sum of two which meet at
the next vertex is 27 feet. The sums of the two pairs of oppo-
site sides are 23 feet and 29 feet respectively. Find each side.

23. The sums of three pairs of adjacent sides of a quadri-
lateral are respectively 80 feet, 108 feet, and 116 feet. The
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difference of the fourth pair of adjacent sides is 24 feet. Find
each side. )

24. Two chairs cost % dollars. The first cost m cents more
than the second. Find the cost of each in cents.

25. A and B together have ¢ dollars. A gives ¢ dollars to
B, after which B gives m dollars to A. Then A has 1 as many
dollars as B. Find the number of dollars each had at first.

26. A and B together can do a piece of work in m days. B
works ¢ times as fast as A. How many days does each require
alone ?

27. A man rows m miles downstream in ¢ hours and returns
in @ hours. TFind his rate in still water and the rate of the river.

28. A man dying leaves a widow and eleven children. The
law provides that the widow shall receive one half of the estate
and that the other half shall be divided equally among the
children. The executor of the estate, after paying all debts,
has $3400 in cash. But five of the children had borrowed from
their father $400 each, for which he had accepted their notes.
The executor found these notes worthless. How shall he divide
the cash on hand ?

29. Solve in positive integers Sa + 2y = 42.
42—-2y

5 ot T3

Now if z is to be integral, }(2 — 2 y) must be integral or zero;
that is, 2 — 2 y must be zero or an integral multiple of 5. Hence
the least value of y is 1.

9_0o
HINT. 2 = =— =Y,

The various related sets of values which satisfy this equation
may be effectively represented to the eye by the graph of the
equation. Then if the line whose equation is 5x + 2y = 42
passes through any points both of whose coordinates are posi-
tive integers, each pair of these values is a set of roots. If the
line does not enter the first quadrant, we can see at a glance
that the equation has no set of roots which are positive
integers. '
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30. Solve in positive integers Tx + 2y = 36, and illustrate
the result graphically.

31. In how many ways can a debt of $73 be paid with five-
dollar and two-dollar bills ? Illustrate the result graphically.

32. A man buys calves at $6 each and pigs at $4 each,
spending $72. How many of each did he buy ?

33. In how many ways can $1.75 be paid in quarters and
nickels ?

34. A farmer sells some calves at $6 each, pigs at $3 each,
and lambs at $4 each, receiving for all $126. In how many
ways could he have sold 32 animals at these prices for the
same sum ? Determine the various groups. .

35. In how many ways can a sum of $2.40 be made up with
nickels, dimes, and quarters, on the condition that the number
of nickels used shall equal the number of quarters and dimes
together ? Determine the various groups.



CHAPTER VI
ROOTS, RADICALS, AND EXPONENTS

48. Definitions. The square root of any number is one of the
two equal factors whose product is the number.

For a given index the principal root of a number is its one
real root, if it has but one; or its positive real root if it has
two real roots.

From the law of signs in multiplication it follows that

Euvery positive number or algebraic expression has two square
roots which have the same absolute value but opposite signs.

It is customary to speak of the positive square root of a
number as the principal square root; and if no sign precedes
the radical, the principal root is understood. When both the
positive and the negative square roots are considered, both
signs must precede the radical.

For extracting the square roots of any monomial we have the

RuLe. Write the square root of the nmumerical coefficient
preceded by the sign + and followed by all the letters of the
monomial, giving to each letter an exponent equal to one half
its exponent in the monomial.

A rule much like the preceding one holds for fourth root,
sixth root, and other even roots.

The even roots of negative numbers are considered in the chapter
on Imaginaries.

In this chapter only a single odd root of a number is con-
sidered ; that is, the principal odd root.
The cube root of any number is one of the three equal factors

whose product is the number.
82
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Tor extracting the cube root of a monomial we have the

RuLe. Write the cube root of the numerical coefficient followed
by all the letters of the monomial, giving to each letter an expo-
nent equal to one third of its exponent in the monomial.

A rule much like the preceding one holds for fifth root,
gseventh root, and other odd roots.

49. Square root of polynomials. Extracting the square root
of a number is essentially an undoing of the work of multipli-
cation. The square of any polynomial may be represented by

(4+t+u)=0 420+ 2+ 20w+ 2 tu + u?
=P+@2h+0)t+C2h+2¢t4+w)u
A little study of this last form, and a comparison with the
example which follows, will make clear the reason for each

step of the process.
EXAMPLE

R+2h+034+2hu+2tu+ w2|h+t+u
h2
First trial divisor, 24 |+ 2 ht + £
First complete divisor,
Qh4t|+ 20+ 2=2h+ D)t
Second trial divisor, 2% + 2¢ + 2 hu + 2tu + u
Second complete divisor,
2h+2t+u |+ 2hu+2wuwtui=CL+2¢+u)u
Therefore the required roots are 4 (& + ¢ + u).

EXERCISES
1. State the rule for the sign of (a) the odd root of a
number; (0) the even root of a number.
2. State the rule for extracting the fourth root of a monomial.
3. State the rule for extracting the fifth root of a monomial.
4. How can one obtain the fourth root of a polynomial ?

5. State the rule for extracting the square root of a
polynomial.



84 SECOND COURSE IN ALGEBRA

6. Can one obtain the fifth root of a number (z) by ex-
tracting the square root of its cube root? (0) by extracting
the cube root of its square root? Explain.

Extract the square roots of :

7.t + 42— 222 — 122 + 9.

8. a®*—10a*—4a® 4+ 250>+ 20 + 4.

9. 4a84+12a* —7—24a"* 4+ 168

10. 49¢7 % —28¢* 4+ T4c™2 — 20 4 252
11. 9a* — 62t 4+ o* — 662t + 2227 + 121 .
12. 25a° — 1022 + 90af + 2 — 1824 4 812k,
13. 16m~ " — 8m~* +104m — 26 m* + 169 m® + m~L,
14. 2a* —2a®+ T4 a®> — 28 a 4 4.
a*> 162  4a  16c 20
9ot Tt Ty
1 8e 92, o ba, 1
‘4t & a* " 252* B bz
Find the first four terms in the square root of:
17. 14 2. 18. 25 + a
19. Find the first three terms in the fourth root of the
expression in (@) Exercise 7; (/) Exercise 11.

15.

16

50. Graphical method of extracting roots. When obtaining the
square roots of arithmetical numbers by the graphical method
we proceed as follows: Let = represent any number and y the
square of that number; that is, we let y = %> Then we con-
struct the graph of this equation, obtaining first the table:

|3 |1|2e|8|4a|5|6|7]s8

y | 3+ | 1|49 |16]|25)36 49|64

Plotting these values, we obtain curve 0D of page 85.
From this curve we can read off the square root of any
number between 1 and 100 correct to one decimal place.
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Curve 04 is a portion of the graph of y =% and BC is a
continuation of 04. From this curve we can obtain the cube
root of any number between 1 and 200 correct to one decimal
place. The cube root of numbers between 1 and 100 we obtain
from curve 04; for numbers between 100 and 200 we obtain
the cube root from BC.

If one desires greater precision or a larger range of numbers, or
both, he can obtain them by using a large piece of cross-section paper
and a different scale. Such a curve, if carefully drawn, is convenient
for any computation not requiring great accuracy. The point in its
favor is that one can read off the square roots or the cube roots more
rapidly than he can obtain them by the methods of § 50 or § 142, or
even by logarithms.

The graphical method can also be used to extract fourth and
higher roots.

EXERCISES
From the graph read:
1. The square root of (a) 20; (0) 45; (¢) 59; (d) 68.
2. The cube root of (a) 25; (0)18; (¢) 52; (4)165; (¢) 150.
3. The square of (a) 2.4; (0) 6.1; (¢) 7.9; (d) 8.3.
4. The cube of () 3.2; (8) 3.9; (c) 2.8; (d) 5.6; (e) 4.8.

51. Square root of arithmetical numbers. The abbreviated proc-
ess of extracting a square root of an arithmetical number is
as follows:

7'32'67'892706.8 4
4
471332
329
5406[36789
32436
54128435300
433024
2276

Therefore the square roots of 7326789 are + 2706.8 4.
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It follows from the preceding example that the work of extracting
the positive square root of a number may be a never-ending process.
The number 7,326,789 has no exact square root; and no matter how
far the work is carried, there is no final digit. As the work stands
we know that the required root lies, between 2706.8 and 2706.9. It
is correct to say that 2706.8 is approximately the square root of
7,326,789, or that it is the square root correct to five figures.

The method just illustrated for extracting the positive square
root of a number is the one commonly used. For it we have the

RuLE. Begin at the decimal point and point off as many
periods of two digits each as possible : to the left if the number
is an integer, to the right if it is a decimal ; to both left and
right if the number is part integral and part decimal.

Find the greatest integer whose square is equal to or less than
the left-hand period, and write this integer for the first digit of
the root.

Square the first digit of the root, subtract its square from the
JSirst period, and annex the second period to the remainder.

Double the part of the root already found for a trial divisor,
divide it into the remainder (omitting from the latter the right-
hand digit), and write the integral part of the quotient as the
next digit of the root.

Annex the root digit just found to the trial divisor to make
the complete divisor, multiply the complete divisor by this root
digit, subtract the result from the dividend, and annex to the
remainder the next period, thus making a new dividend.

Double the part of the root already found for a new trial
divisor and proceed as before until the desired number of digits
of the root have been found.

After extracting the square root of a number involving deci-
mals, point off one decimal place in the root for every decimal
period in the number.

CHuECK. Ifthe root is exact, square it. The result should be the
original number. If the root is inexact, square it and add to this
vesult the remainder. The sum should be the original number.



N,

88 SECOND COURSE IN ALGEBRA

EXERCISES

Find the square roots of :

- 1. 6889. 3. .6724. = 5. 4.2025.
- 2. 56169. 4. 1.4641. 6. .04028049.
Extract the square roots, correct to four decimal places, of :
7. 5. 8. .07. 9. 13, 10. 237,

11. Find the hypotenuse of the right triangle whose legs
are 183 and 264 respectively.

12. A baseball diamond is a square 90 feet on each side.
Find the distance from the home plate to second base, correct
to .01 of a foot.

13. The hypotenuse of a right triangle is 207 feet and one
leg is 83 feet. Find the other leg, correct to .01 of a foot.

14. The hypotenuse and one leg of a right triangle are
respectively 292849 and 207000. Find the other leg.

15. The side of an equilateral triangle is 11 inches. Find its
altitude, correct to .1 of an inch.

16. Find the side of an equilateral triangle whose altitude
is 10 inches, correct to .001 of an inch.

17. Find the area of a triangle whose sides are 12, 27, and
35 inches respectively, correct to .001 of a square foot.

Fact from Geometry. If a, b, and ¢ represent the sides of a triangle,
and s equals one half of a + b + ¢, the area of the triangle equals

Vs(s—a)(s—b)(s— ).
18. By the method of Exercise 17 find, correct to .01 of a
square inch, the area of a triangle each side of which is 22 inches.

19. Find correct to two decimals the sum of all of the diag-
onal lines that can be drawn on the faces of a cube whose edge
is 9 inches.

20. Find the radius of a circle whose area is 40 square feet.

21. Find the diagonal of a room whose dimensions in feet
are 14, 20, and 30.
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22. Find the diagonal of a cube whose edge is 1 foot.

© 23. A room is 24 feet by 40 feet by 14 feet. What is the
length of the shortest broken line from one lower corner to
the diagonally opposite upper corner, the line to be in part on
the walls or the floor, but not through the air ?

24. Take any two integers and form three others from them
thus: find the sum of their squares, the difference of their
squares, and twice their product. Is the square of one of the
three resulting numbers equal to the sum of the squares of the
other two ? Discuss this with reference to the sides of a right
triangle.

25. One leg of a right triangle is 28. Find integral values
for the other two sides.

52. Fundamental laws of exponents. The laws of exponents
may be stated as follows:

I. Law of Multiplication,
xe. xb — xa+b,

Law I may be stated more completely thus:

x?.xb.xC.. .= yatbtect--,

This follows directly from the definition of an exponent and
from the Associative Law. For instance, zz = 22, and zzx = 2% and
zzzzz = 2° by definition. Hence zx.zza = zzzaz, or 22- 2% = 25

II. Law of Division,

X+ xb=x2"0,

This follows from Law I. For by that law z2 = 22—?. 2, Hence,
dividing both sides of this equation by a?, we have z* + 2% = z2—b,

III. Law of Involution, or raising to a power,

( xa)b — xab.

This follows from Law I, when instead of the distinct factors a9,

2%, and z¢, ete., we have b factors, each equal to z@.

Law III includes the more general forms

(xayb)c= xacybc and (((x“)b)"')- .o = yabcees,



90 SECOND COURSE IN ALGEBRA
IV. Law of Evolution, or extraction of roots,

a
Vb X% = xb,

It is assumed that these laws hold for all real values of «, b,
and ¢, excepting under IV, where & cannot be zero.

53. Zero and negative exponents. The meaning of a zero ex-
ponent and of a negative exponent was explained on page 6.

It follows from the meaning of a negative exponent there
explained that

Any factor of the numerator of a fraction may be taken
. from the numerator and written as a factor of the denominator,
and wvice versa, if the sign of the exponent of the factor be
changed.

54. Meaning of a fractional exponent. The fourth law ex-
presses the meaning of a fractional exponent. The meaning
may be made clearer thus:

From Law I, #¥ -a* = 2. Since o* multiplied by itself gives
x, ¥ is another way of writing Vz; that is, at =z
Similarly, a¥.a¥ . 2% =a. Therefore 2% is another way of
writing %; that is, 2% = Va.
1

In general terms " is another way of writing v/ ; that is,
1

x"=x.

Further, af = ot ot ot = (90%)3 = ( \/9_0)3,
and af =o't = (acs)% = V2t

Hence (\/a;)g =Vt

Similarly, at = ot ot = (90‘3’)2 = (\3/9—0)2,
and Vat = (@)t = (z- a)¥ = ot .ot = ot

Therefore (\8/9—0)2 = Va2

In more general terms xg’ = (\7;)“ =Vxq,
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EXERCISES

Write with positive exponents and then simplify results:

1. 8k 3. 328, 5. 272, 7. (32
2. 16, . 4. 125%. 6. 497%. 8. (3)°%
9. 873, 12. (32)* g5, 422
10. (— 27)% 13. 16-15, To8.2n
11. (.09)% 14. (.008)~ %, 16. (3)~%-(3)"- 2
17. 5.2 — 15+ (5-2)° — 2(3) + 8 H + () &
2-1 31 9-1_3-1 §—¢
18. T' HiINT. —;T = 1 = ete.
42
. -2 __ Q-1 —1 Lrd — 5t
19. —i—z 2_1- 23. @ g8 2T
+ 24. me~2 mor
31441 e 22~ 2%q~"®
20. 351 = 25. 3a~ % 29. e
_ _ 422 1
4-% — 2-38 26, — . 6102
21"‘ 4-1 4 2-1 ) m=? 30. ame—3
3.3 — 3tte 6a—*m 4= Yatm—3
22. 9.32+¢ 27 m—2 31. 0 3Pm—2
32 2 H 2 2 t
=g INT. S ST = ot
a2
4 z~3 a4 221
33. po 35. w-—__?'—}—(L”ﬂ,. 3%. —a‘3—|—8x_3'
x % — a2 ct4a?41
34. w_z_a_.z' 36. x_l_a_l' 38. m'
‘Write without a denominator :
2 -2
39. = a 21 43, 20m
a a~%c m (e — m)°
4 q? me a—2mB
0. =2 . . o atm®
0 cem? 42 m+c 44 m~%a® (m — a)?
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‘Write, using positive fractional exponents instead of radical
signs :

45. Va. 49. V. 53. V2 + a.

46. Ve. 50. 4 v/d?. 54. V3 = ot

47. ~/m. 51. 3~/ 4. 55, V4 =+ g2
48. \8/0_2 52. 5¢~ c~2 56. 50\/4a+c‘5.
57. VaVa. Solution: \/a\/a:\/—c;E: Vat = of.

58. vV Vm. 59. v Ve 60. 4v/ 18 V3.

61. Veo. 62. 67759,

MISCELLANEOUS EXERCISES

Perform the indicated operations :

1. 25273, 13. ((904)5)115. 24. ot = o3,

2. acg b, 14. (m?)e 25. ¢ =+ e 7.

3. at. b, 15. (x~1)=2 26. 21+ &

4, .77, 16. (z%)2-= 27. e¥—1 .+ gn-1,

5. e2~2.¢8"20  qn (@t 28. 47 -+ 22,

6. e~ 1.glmC, 8. ((x_a)w)%'. 29. 8+ 4%

7. ()% 1 30. 28.4% + 82

8. (c*)® 19. (z¥=<)==e. 31. 420+ 2n,

9. (et) 20. [(42%)°- 84818 39 gon . 9o
10. (%) 21. 2. 2® <+ b 33. 437. 2% o Q2n
11. (¢~ 2 22. x®. 2%+ 2% 34, (2 — 227 %)%
12. (5)7™ 23. at + ot 35. (zf — 32t).

36. (@ ?— 20" = 8) (a4 4)(a* — 2).
37. (44 7= — 4)% 41, (.2: — y%)+(x* — _1/1)

38. 2a—8a ' —4a? 42, (a7 ?—27?) +(w_’}—|— a_%).
39. (2 —a®)+ (m% + a'{’). 43. (z7 %+ 7% —:—(x_%-l- a,—%)_
40. (z®* —2) =+ (w — 2*). 4. (3x~2 — 48 a*) + (w_ 3 + 2 a).
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T a5 @ — )+ (@ + oyt 2ty + o)+ (at 4 90).
' 46. (x4 32 a) +(m% +2 a%) + 2280} + 8 abat.

47 (@2 — @t —12)(4 — @) + 48 + 16 4+,
<ei; -2 62;— ,3> (= ) + (7 e
49. (*— 56 +10e" —10¢ "4 573 — ¢~ %)

+ (" 4 e —2).

50. Point out the error in the following:

48.

Let « be a number such that ¢* = — 1.

Then et =1. .

Hence 2¢0=0,orx=0,
and = =1

Therefore 1=—-1.

55. Classification of numbers. All the numbers of algebra are
in one or the other of two classes, real numbers and imaginary
numbers.

Real numbers are of two kinds, rational numbers and irra-
tional numbers.

A rational number is a positive or a negative integer, or a
number which may be expressed as the quotient of two such
integers.

Any real number which is not a rational number is an irra-
tional number.

A pure imaginary number is the indicated square root of a
negative number.

56. Radicals. A radical is an indicated root of the form
1 1

~n or ¢ W, or of the form n™ or ¢n".

A surd is an irrational root of a rational number.

The index determines the root to be extracted and the order
of* the radical.
The radicand is the number, or expression, under the radical
sign.
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EXERCISES

Write with radical signs:

1. 2% 4. 4ob.

2. (ac)k. 5. 6cat.

3. (490)%. 6. afct,
Find the numerical value of:

9. 43, 13. 4%,
10. 36%. 14. 278,
11. 648, 15. (— 8)%.
12. 81%. 16. ().
Write with fractional exponents :
21. Va' 25. 5~/8a*
22. Vad. 26. 6~/64 25,
23. 3Vab. 27. 5~/— 125 &~
24, 4 V42 28. ¢ V(x + a)
32.

7. 3at (0296)%.
o — )%
8. 4a’(c I

a? (¢ — )

17. (— 32)%,

18. (#)f- (1g)%.
19. (—125)%. (g
20. (—243)%. (81)%

ScVax®- \3/5_1*

29.
~/5 2 Vaz
30. Ve Ve.

31 Vate. Va2,

Give an example of («) a real number; () an imaginary
number; (¢) a rational number; (d) an irrational number; (¢) a
radical ; (f)asurd; (g)an index ; (%) aradicand ; (¢) the principal
odd root of a positive number; () the principal even root of a
positive number ; (%) the principal odd root of a negative number.

33. What is the distinction between a rational number and
an irrational one ?

34. Which of the numbers 8, 3, .343, V4, \/— and T
(7 = 3.14159 +) are Tational ? irrational ?

35. Give a geometrical illustration of an irrational number
by means of a right triangle.

36. Is a radical always a surd ? Illustrate.

37. Is a surd always a radical ? Illustrate.

38. Distinguish between a surd and a radical.
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39. Which of the numbers V3, V4, \gffﬁ, V \3/6, V24 V3,
and V7 are surds ? Which are radicals ?

40. What is the principal root of: V4, \3/5, and V— 8°?

41. Name the order of: v/ 6, a’}, V4 5, c&, and Vm?.

42. How many real numbers can be found for a designated
odd root of (a) a positive real number ? (0) a negative real
number ?

43. Change the word “ odd” in («) of Exercise 42 to * even,”
and answer. .

57. Simplification of radicals. The form of a radical expres-
sion may be changed without altering its numerical value. It
is often desirable to change the form of a radical so that
its numerical value can be computed with the least possible
labor.

The simplification of a radical is based on the general
identity :

Vas=Va . Vb = a¥b.

A radical is. in its simplest form when the radicand

(«) Is integral.

) Contains no rational factor raised to a power which is
equal to, or greater than, the order of the radical.

(¢) Is not raised to a power, unless the exponent of the power
and the index of the root are prime to each other.

For the meaning of (2), (0), and (¢) study carefully the

. EXAMPLES .
Of (@): 1. V3=v5=v16=}V6=3V6
2. 63 =6V3=6V}3=63V3=2V3
3. =42 = e 12 = /g, V12 = 1 V12,

f3 (152 1 ——
4. %_\j25x2_\j—25x2'10w_5x 15 .
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Of (0): 1. Vidab =+Vdat 2 =V (222 2 = 22> Va.

2. 5V2455 =580 3ar =5V (22) 3 =10z V3.
V16 —8V2=V4(4 —2V2)=2V4— 22

(2]

Of (0): 1. Va=vV2=2t=2t_~/2
2. V9 =V3=23=35 = V3.
3. Vit = afot = abo = 4 Va.
EXERCISES
Express in simplest form :
1. Vi8.. 10. V3. 19. V54 — 918
2. V16, 1. V-3 20. V81 — 3/243.
2V Y o1 V31075,
4. 4V=54. 13 6v/—}. -
5. 4/40. 14. /1 (32 22. \f#
6 VVI. 15 VF-G) —
7. V3vh, 16 VTP 23. \jP - <?>
8. /1. 17. V4 — 8/3. e
9. V3. 18. V36 +18v5. ¢ \ET <§> va.
Express entirely under the radical sign:
25. 3. 28. o Va. 31. x® Vai
26. 4V/3. 29. 2¢ Ve b
27. 2V3. 30. 41 3 \,;2
f————
33. (2a41) 472_—1 34, 2 "53 “ \II(x i2§ 5

Express in simplest form with one radical sign:

35. VVz 38 vV~ 41 \3vV33. 44, NV R,
36. V¥ 30 V/oamm a2 VB 45 Ve
37. Ve 10. V3v3 3. 2295, 46, N
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Addition and subtraction of radicals. Similar radicals are

radicals of the same order with radicands which are identical
or which can be made so by simplification.

The sum or the difference of similar radicals can be ex-
pressed as one term, while the sum or difference of dissimilax
radicals can only be indicated.

EXERCISES
Simplify and collect :
1. \/§+\/18. — 1. avVaP —~VaPx — 5/
2. V50 + V98 — /32, _ 8. VB VaE— 12V
3. V16 + V54 — 3/2. 3a 32 po
4 V192 — 4214+ Y375 > \J—-Jr \JT_ \J_'
5. 10\/5—\/T-}+4\/J§-i. F \j 528
6. 3vV2+3VE—2VA
11 V322 4+ V1250 _\/0131 —

12. \/(ca + ¢ —c '\/<t6 + c) +2¢ \/(w + c)a

13. a,—c)4+c\/a 2ac+ & —|—(a+c)\/w——c

O R AR R RN Lt

15. V24 + V(B a+ 9)(« + 3)2 — V8l + a V9 — 43,

16. 2V9a® — 9a® — 3V9al® — 90® + V(a® — 1) (a + D).

_ a—f—b \/72 (l+]) 36(17)2—36[}3.

17. (e —10) + 25« 25b+ \' P

59. Multiplication of real radicals. Radicals of the same order

are multiplied as follows:
Example 1. Multiply 2 Vo —3Va —4Vax by 2 Va.

. Solution : 2vVz —8+vVa —4Vax
2 Vax

4zVa—6aVz—8ax

Radicals of different order arve multiplied as follows:
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Example 2. Multiply V2 by a.
Solution : \/; = n% =nd= W.
\8/:_6 =gt =af = \6/;:_2.
Then W-%Z?z%-xgz%-\(}/x_zzm.
The method of multiplying radicals may be stated in the

RuLE. If necessary, reduce the radicals to the same order.

Find the products of the coefficients of the radicals for the
coefficient of the radical part of the result.

Multiply together the radicands and write the product under
the common radical sign.

Reduce the result to its simplest form.

The preceding rule does not hold for the multiplication of imagi-

nary numbers; that is, for radicals of even order in which the radi-
cands are negative. This case will be discussed in the chapter on

Imaginaries.
EXERCISES

Perform the indicated multiplications and simplify the
products :

1. V3./21. . VEVEVE 13 Yo Va

2. V12.V18. 8. V3. V2. 3 [a

3. Vi. V33, 0. V5. V2. 1 \j; \j; ‘

4. V20.~/12. 10. Vi2.\/3. - 15 V22-/3z.

5. V2% 11. Ve Va. 16. (V& — 32

6. Vi-VEVE 12, Va2 .Vdh 17. (2V3z —1)

18.3Vz —3. Vaz —8.  20. (Ve —3—+Viz—T7)
19. (Ve —~a =3 2L (vVa—~/3z)(4a).
22. (5V5 4+ 93 — VT 4+ 2+V105)(V3 + V5 — V7).
6—2V5\' [(VB+1)(VB4+1)T] (V2+1)(9V2—-9)
23'( 3 > 2 ' 16

I.Is.
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24. (c\/E — \/E+x \/;)(\/Z— \/9_6)
25. (Va — Vac + Vo) (Va + Vac + Ve).
26. (V22 —1—V5)(2V22 —1 4 V145).
Determine which of the two sards is the greater:
27. V11, V5. -
Solution: /11 =11} =118 = Vi1 = V121
/5 = 5% = 5% = V58 = V/125.
Since 125 >121, then /5 > V/11.
28. /6, V3. __30. V3, V6. 32. 33, 2 V10.
29, V19, V7. 3L 2+/5 V89,  33. V48, V6l

Arrange in order of magnitude :

34. V3, V6, V125. 35. 46, 325, 4 V64.
Reduce to respectively equivalent surds of the same order:
36. V3, V3R 38. 2%%,5%%.
37. Va + b, Va —b. 39. \8/1'—]/, é/wa, \5/967?/.
Square :

40. V3. 42. V5 — \/.) 44, V4 — 43,
41. 24, 43. 43 45. V6 —32.
Cube :

46. V3. 48. V5 — V3. 50. 3V2 — 2 V3.
47. 35, 9. V3—~5. 51 (V1-V2),
Simplify : ‘

| &

52. \jR'Z —< L VB — §>2 54. \j R _<1_22—_*/§>2

(e 5+ 2] s (v 5 )

56. \Ke“ +

~

> (e*—2e*)(e*—2e ")+ "+ 7" — 6.

O]I
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60. Division of radicals. Division of radicals is usually an
indirect process performed by means of a rationalizing factor
for the divisor.

One radical expression is a rationalizing factor for another if
the product of the two is rational.

Thus @ V7 and Vn are rationalizing factors for each other.
A like relation holds between @ Vn and ~/n?

An important pair of radicals is Va+ Vb and Va—Vb.
Two such binomials are called conjugate radicals and either is
the rationalizing factor for the other.

Division of one radical by another may often be performed
as follows:

Example : Divide 6 V5 by 3 V3.
Solution: 6 V3 + 3 V3 =2V} =3 V15.

Direct division of radical expressions in which the divisor is
a polynomial is very difficult. In such cases we use the

RuLe. Write the dividend over the divisor in the Jorm of a
Jraction. Then multiply the numerator and denominator of the
Jraction by a rationalizing factor for the demominator and sim:
plify the resulting fraction.

This rule applies in all cases, while the rule for direct division
fails when dividing a real radical by a radical of even order whose
radicand is negative.

Every irrational algebraic expression containing nothing more
complicated than rational numbers and radicals has a rationalizing
factor. To find this factor for any given irrational expression is a
problem which requires considerable algebraic training. At the
present time it is wholly beyond the student to find the rationalizing
factor of even so simple an expression as the denominator of the

V2+3
V2 + V2 + /2
can be obtained, however, by dividing the sum of the approximate
values of the terms in the numerator by the sum of the approximate
values of the terms in the denominator. (The table on page 262 may
be used to advantage in work of this character.)

fraction The approximate value of such a fraction
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EXERCISES

Find a simple rationalizing factor for:

1. 3T 4. V3. 7. V6 —V11.

2. 5 V4. 5. V16. 8. 3V7T—2+V13.

3. TV8. 6. V5 —T. 9. V3u— 2z
10. Va—c¢— Va. 11. V2 + V3 — /5.

Perform the indicated division and simplify results:
12. V12 ++3.  “14. 843, .16 24+ 33,
13. V8 V24 ~15. 8 +2V2. v @+ ¢V
18. (\/E — \/1—8)— 2/3.
19. (12 —3~V6 —4+V24)+ 3 V2.
20. V6 + V2.
Hi~T. \/_ -+ 8‘E:l/_ﬁ_‘: \/6\3/I: \/g\a/Izetc.
VOO R/
21, V8 =+ V2. 22. V32 + V2. 23. \s/i—\/;
24. 3 +(2 —V3).

. 3. (@3 3@+VB)
o 3+ Q=) = T v v
25. 4 +(V2-1). 7. VT +V2 — /3.
26. V3 + (V2 +V3). 28. V2 — V3 +V3 V2.

29. (\/? + \/5)—(2\/7 —_ \/5)+(19 -3 \/%)

30. Find to four decimals the numerical value of the results
in Exercises (o) 24, (b) 26, and (c) 27.

31. In Exercise 26 divide the numerical value of the numer-
ator by the numerical value of the denominator, each having
been obtained to five decimals. Compare the quotient with the
result obtained for that fraction in Exercise 30.

32. What conclusion can be drawn from Exercises 30 and
31 regarding the rationalization of the denominator of a frac-
tion before finding its numerical value ?
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Change to respectively equivalent fractions having rational
denominators :

33, Yo+ V2 35 NVa+ Vb, 37 Vz—8+V8
V2 Va—~i T Vess—s
2V5+3V7 Vo —2Ve 44 4

Yavi—avi M Varve Ve~

Perform the indicated division :

39. (V10—V5)+(V104+V35).  40. (& — Ve)+ (2 — 3 Vo).
41. (Va + ¢ — V) +(Va + ¢ + Va).
42. (V3 4+V2)+(2 — V3 +V2).
43. (V5 — V1) + (V5 + V7T —V2).

44. TIs there any real distinction between the direction before
Exercise 33 and that before Exercise 39 ?

45. Does 3 — V7 satisfy 2* — 624+ 2=02?
46. Does Z—_—O@ satisfy 22° — 752 +161=07?
47. Does } (5 + V109) satisfy 822 — 5z —7=07?

61. Square root of surd expressions. The square of a binomial is
usually a trinomial. IHowever, the result of squaring a binomial of
the form Va + Vb is a binomial, if ¢ and & are rational numbers.
Thus (V7 —3)2=7—2/21+38=10—2 +/21. Herein10—2~/21,
10 is the sum of 7 and 3, and 21 is the product of 7 and 8. These
relations, and the fact that the coefficient of the radical /21 is 2,
enable us to find the square root of many expressions of the form
a+2-Vb by writing each in the form of z + 2\/9?7/ + y and then
taking the square root of the trinomial square as follows:

Example : Extract the square root of 9 — V'56.
Solution: 9 — V56 =9 — 2 V14.

We now find two numbers whose sum is 9 and whose product
is 14. These are 7 and 2.

Therefore 9 — 2 V14 =2 —2+/14 + 7= (/2 —/7)2
Hence the square roots of 9 —~/56 are + (1/2 — /7).
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EXERCISES
Find the positive square roots in Exercises 1-12:
1. 6—2V8. 3. 13 + V48. 5. 11 — 47
2. 7+ 2+V10. 4. 8 —~/60. 6. 17 +12V2.
7. 11— 38 10 Be_ za
4
8. 652 — 20 V3 a2 1. 23 4+ 2 Vi — 10,
9. 126a — 104 V5. 12. o + vV — 1.
13. V9+3vV8 =7 + 7.
4. V15— 5VE=7 15. Va+ Vot — 42 =2

16. \/m'3+7n+2n+2m\/m+2n:?

Note. In the writings of one of the later Hindu mathematicians
(about 1150 A.p.) we find a method of extracting the square root of
surds, which is practically the same as that given in the text. In fact,
the formula for the operation is given, apart from the modern symbols,

as follows: Va + Vb = Va +b+2~/ab. The study of expressions

of the type \/ Va + Vb had been carried to a most remarkable
degree of accuracy by the Greek, Euclid. His researches on this
subject, if original with him, place him among the keenest mathe-
maticians of all time ; but his work and all of his results are expressed
in geometrical language, which is very far removed from our algebraic
symbolism, and for that reason is little read now.

62. Factors involving radicals. In the chapter on Factoring it was
definitely stated that (except in § 17) factors involving radicals would
not then be considered. This limitation on the character of a factor
is no longer necessary. Consequently many expressions which pre-
viously have been regarded as prime may now be thought of as fac-
torable; thus

3:02—1—(95 3+D(@V3-1) and 422 = 5= 2z +5)(2z—/53).
It is not usnal to allow the variable in an e)q)ression to occur under
a radical sign in the factors. IHence, if z is a variable, the trinomial
224 z +1 is not regarded as factorable into (z + vz +1)(z — Vz +1),
though (@ +Vz + 1)@z —Vz+1) =22+ z + 1.
Therefore in this extension of our notion of a factor it must
be clearly understood that the use of radicals is limited to the
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coefficients in the terms of the factors. Such a conception of a fac-
tor is a necessity for certain work in advanced algebra and geometry,
and is very desirable in solving equations by factoring.

To restrict the use of radicals in the way just indicated is neces-
sary for the sake of definiteness. Otherwise it would be impossible
to obey a direction to factor even so simple an expression as 2% — y?;
for if the variable is allowed under a radical sign in a factor, 2% — y?
has countless factors.

Thus 22— 2 =(z + »)(z — )
=@z +y) (Ve +Vy) (Ve —Vy)
=@z + y) (Vz + V) (Ve + Vy) (Va —Vy) = ete.

EXERCISES
Factor: .
1. 2> —11. 3. ¥4 2. 5. 3x% — 27.
2. 3z° —16. 4. 2 —12. 6. 5a® 4+ 125.
Find the algebraic sum of:
7 2\/5+ 72 . 8 :zi—l—c _m§+c§"_.
Ta—1b \/a—l—\/b " Vz—Ve x—c¢
Solve by factoring and check :
9. 2> —5=0. 11. «* 4144 = 26 2%
10. 22> —-3=0. 12. 42t + ¢ = 2® + 4 c2®
MISCELLANEOUS EXERCISES
Solve for n: .
1. ¢® a®= a™ 6. 42.22 =27, 11. 22.2" = 32.
2. 28.2%7 =2 7 43.28 =2n, 12. 8%.4%3 =2~
3. 24.28 =2~ 8. 4%.24 = 227, 13. 8%.42 =2,
4, 25.2n =21, 9. 3*.9° =3~ 14. 9%.27% = 3.
5. 3.2t =9.2, 10. 9%.3» = 3% 15. 277.9% = 3©
16. 8*.42" = 21, 20. 81.27" — (971)%‘
17. 3°.9" = 81~ 21, (25 = &
18. 9. 3% =27~ ’ (125)?
19, 22n+2.4n+2 — §2n 22, 26n+8. 4346 — (8ryn,
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Solve for x:

23. 2t =8, 26. «f =— 343, 29, (axt)® = 2T.
24. o ¥ = 5. 27. 1o ¥ =2 30, \8/:;2 V25
95. o8 =256. 98 (xh-e_49. Vi V16

Express in simplest form with positive exponents :
31 (V=27a")" 33 Vieta, 35. (af Va-i) k.
32. (\/4 16 a*2®)” L 34, (a ~z~ 2)3. 36. (x“ 2/ g8 \/11)4.

— 2/ —
317. (ac_2 o \s/a?) %. 2. Va.
3 —
38. [(¥829)°]". 43. V V.
2 4 3 —
39. (V V16 ). 14, V¥V,
— 2 —
40. | (272" 3. L 45. V2 ut /o,
Sax? -1
N 5 5\2 46 (252%)°
41. (a%w_% ax~* \/x"}) . ) 5z
Simplify :
2, 2\0 5 _3
47. <.’1, Wi > y lf x +~ ¥. 55 a” - 1G%(L 4 .
r—y Ty 4
48. <an—1> . ((‘LB—n)S' (a2n+5)—1‘ a %4 =
nt?2 L a*
49. gt - artl, 56. [(x — »)*), (if z # ¥).
n n 1
50. “n—l -+ Tl 57. ($$_1>"_+1.
51. aq¥—™ j:z"iu 5. <7-?2§2 . 23% %'
52, ((@rt1y==1)" 7", 28 s
53. [(@ ™)~ )+[((@")")*1.89. [(22%)°- 2t 22)7H7 4,
3
54. (Vg + V)1 60. [327%.9177%,
4n+1 n+ 1
61 .. + 3.

* 2n<4n—1)n - (4:n+l>n—l

s\ -2 /20 g0\ b 2 y¥\~8 /n® t
) o) Gar) GF) ()

62.

™
N
o
S| R
S 2,
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63. [(5a)>-(5a)r—2n ],
64. (a% . aTST) L

65. ('r'_%s% Vs~ g)é-

66. Va® + 3z~ 1.

68.

# -3 \-2
Y Xy .
. (ww > <\/90y >

m'n  mort?

67. 7m—4y—d' 6 abed—8
gen.gut1.6nth ol q0ma40
(2_3)7._3"—% 187+2
. abre Vab~e .
a2 tadicd
7. rrg/%z\/a?g;f/;.

70.

1.—1-8—1'n—5s—s

Find the square roots of:

@E’y“‘zg"‘%m‘z

73. ac6 +4aatyt+9— 4x3ﬁ + 628 — 12ad%.

43/

4. 2
¥

Find the indicated roots of :
::)2 + 4]%‘.

75. [(¢" — e

12 7/

+++

— 20.

1

76. [(¢* + 2-1e~%)i— 275

77. (24 e 2"+ 2+ 46" — 46_1)%.
78. (@ ° 4 172 % + 1622 — 62+ — 24)%.

1 4 - _1 i
' 79. <;—\4/_ P _4a 1+1>.
4 q=88 9 a” 4[)4 o 16a-4* 6a-2%\}
80. <_'9— + + 15 5 > '
Simplify :
a2 —a32? (@ —Dax"~' —a- 2z
3\2 2 1\2
81, — @& 83. @ —1)
— -—.ma
a? x? —1
2} (3 a%) — (x® + 5)4a® lax ) —(x*+1)22
(m4)2 (w2>2
82. 84.
x8 + 20 x4+ 1
x* x?

3abc® 21x—2%y5-¢



85.

86.

87.

88.

89.

90.

91.

92.

93.
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CnZanxn—l — . Zaan-—l

(2 a)z

xn

x2a

a=5(— 22" 1) — (@® + 3) (— Ba~%)

; (x_ 5)2

243
m——5

e~ (ne") — (en® + 1) (— ne~ ™)

(e~ nl')'z

2 enz + 1

P

(Vz+1) g ¥ —Vadah

(Vz +1)
Vz
~x +1
\/aac——xg~b—bx(aac—mﬂ)_%-((b—2x)
(Naz — 2
b+ Vax — a?
(m)Z L e 1)—’%(7&.7:"“1)
( 90'“—1).2
22 Vi — 1
V' —10z-5 —5a -} (@ —102) (22 —10)
(Vo 102y
5 -+ (af — 10a)}
Show that mon Vm — Vn .
\/E+\Fn \/m——n \/m——n
Show that ‘”\1/7‘:—%: e .
\a/a+\l/a_c e

107
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PROBLEMS
(Obtain answers in simplest radical form.)

1. The side of an equilateral triangle is 12; find the
altitude.

2. The side of an equilateral triangle is s; find the alti-
tude and the area.

3. The altitude of an equilateral triangle is 20; find one
side and the area.

4. Find the side of an equilateral triangle whose altitude
is a.

5. Tind the altitude on the shortest side of the triangle
whose sides are 9, 10, and 17. Find the area of the triangle.

6. Find the altitude on the longest side of the triangle
whose sides are 10, 12, and 16.

D In the adjacent regular hexagon
AB = BC = CD, ete. O is the cen-
ter and OK is the apothem of the
hexagon.

¢ 7. Find the apothem and the area
of a regular hexagon («) whose side
is 15; (b) whose side is s.
Fact from Geometry. A regular hexa-
4 I B gon may be divided into six equal
equilateral triangles by lines from its center to the vertices.
8. Tind the side and the area of a regular hexagon (a) whose
apothem is 25; (b) whose altitude is /.

9. The base of a pyramid is a square, each side of which
is 10 feet. The other four edges are each 20 feet. Find the
altitude and the volume of the pyramid.

Fact from Geometry. The volume of a pyramid or cone is a4
where a is the altitude and b is the area of the base.

10. The side of an equilateral triangle is 18. Find the two
parts into which each altitude is divided by the other altitudes.



ROOTS, RADICALS, AND EXPONENTS 109

Fact from Geometry. The altitudes of an equilateral triangle inter-
sect at a point which divides each altitude into two parts whose ratio
is 2 to 1.

The altitude of a regular tetrahedron (DK in the adjacent
figure) meets the base at the D
point where the altitudes of the
base intersect.

11. ABCD is a regular tetra-
hedron. If each edge is 12, find
CR, CK, and lastly the alti-
tude DK.

Fact from Geometry. A regular
tetrahedron is a pyramid whose

four sides are equal equilateral -
triangles.

12. Find the altitude and vol-
ume of a regular tetrahedron
whose edge is 15.

13. Show that the altitude and the volume of a regular tet-

2 — 3
rahedron whose edge is e are respectively é V6 and {;2 N

B I



CHAPTER VII
GRAPHICAL SOLUTION OF EQUATIONS IN ONE UNKNOWN

63. Functions. An algebraic expression involving one or

_more letters is a function of the letter or letters involved.

The letters of a function are usually referred to as variables.

A function is called linear, quadratic, or cubic according as its
degree with respect to the variable or variables is first, second,
or third respectively.

Examples of the functions just named are respectively
4o —7, 22°—5x +18, 2 +82*— 22— 6.

After a function of any variable, say x, has once been given,
it is convenient and usual to refer to it later in the same dis-
cussion by the symbol f(z), which is read the function of x, or
more briefly f of .

64. Graph of a function. A graph always shows a relation
between (at least) two variables. The graph of a function of
one variable is a curve showing the value of the function for
any real value of the variable. This means that one axis must
be the x-axis and the other the function axis, or F-axis. The
method of constructing the graph of a function of x is the
same for a linear, a quadratic (see * First Course in Algebra,”
pages 259-266), and a cubic function in one variable.

65. Graph of a cubic function. To graph the functionz®—5x 43,
first prepare a table of values as follows:

10
(M)
ol
co

When z=|—4|—-3|—2|—1| 0 1

f(x), e —bz+3=—41|—-9| 5 7018 |—-1]1

D
ooj—
—t
Ot
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Plotting the points corresponding to the numbers in the table
(except the first and last), we obtain 4 (-8, —9), B, C, D, E, G,
and H,in the order named. The curve crosses the z-axis three times:

3

1
/
c [
/ \\ H
- N\
// D)3 lll
/ AN
’ ! \ b
[=X: - . ) N X
[ T E
I 4
/
|
|
|
|

A
A-

T

£

once between 1 and 2; again between 0 and 1; and a third time
between — 2 and — 8. At the points of crossing f(x) is zero. There-
fore the values of z at these points are the roots of 28 —5x 4+ 3 = 0.

These are approximately 1.8, .6, and — 2.5,

EXERCISES
(Exercises 12-16 refer to the preceding graph.)
1. Construct the graph of f(x) =3x — 9.
2. Does the z-cobrdinate of the point where the line crosses
the z-axis satisfy the equation 3z —9=0? Why?
3. What is the graph of any linear function of = ?
4. Construct the graph of f(x) = 22* — x — 6.
5. Do the x-codrdinates of the points where the curve crosses
the z-axis satisfy the equation 22> —2 — 6 =0? Why?
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6. What kind of a line do you expect the graph of any
quadratic function in one variable to be ?

7. State a rule for the graphical solution of a linear or a
quadratic equation in one variable.

8. What is the effect on the graph of a quadratic function
of z, if a positive number is added to the constant term ?

9. What change occurs in the roots of a quadratic equation
in z, if a positive number is added to its constant term ?

10. When does the graphical solution of a quadratic equa-
tion give but one real root ?

11. When does the graphical solution of a quadratic equa-
tion fail to give the roots of the equation ?

12. If the function #® — 52 + 3 be set equal to 4, can the
roots of the equation thus formed be read from the graph ? If
so, read them.

13. Set «® — 5 4 3 equal to — 1.3 (approximately) and read
the roots of the resulting equation from the graph. Explain.

14. Set the function 2* — 52 + 3 equal to — 4 and read the
roots of the resulting equation from the graph. Explain.

15. Set 2® — 52 4+ 3 equal to 8 and read the roots of the
resulting equation from the graph. Explain.

16. Set f(x) equal to 9 and read the roots of the resulting
equation from the graph. Explain.

17. («) Is a rational function always integral? () Is an
integral function always rational ? (¢) Write an example of
each. ’

66. Imaginary roots. To make clearer the point in Exercises
14-16 preceding, we shall graph the function ®— 22 — 4.

When z=|—3|-2}-2]-1| 0 1 2

o
[t
w

f@),ad—2z—4=|—25|—14§| —8|—8|—4|—5| 0 | 63 | 17
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The point A corresponds to — 2}, — 145+ The points correspond-
ing to the next six pairs of numbers given are B, C, D, E, G, and
H in the adjacent figure. The curve
through these points crosses the z-axis [
but once. This shows that the equation
has but one real root, and that the
value of this root is 2. Since the num-
ber of roots of a rational integral equa-
tion is the same as the number which
indicates its degree, we conclude that
the other two roots are imaginary.

Note. It required the genius of Sir
Isaac Newton first to observe from the
graph of a function that two of its roots / ~TTE
become imaginary simultaneously. Ie /
also saw that an equation with two of B8
its roots equal to each other is, in a
certain sense, the limiting case between
equations in which the corresponding
roots appear as two real and distinet
roots, and those in which they appear
as imaginary roots. i

-

B3
6 X EX]

I~~~

1

67. Graphical solution of an equation in one unknown. If the
student has grasped the meaning of the pregeding graphical
work, he will see the correctness of the following rule for solv-
ing graphically any equation in one unknown.

RuLE. An equation in one unknown whose second member is
zero s solved for real roots by graphing the function in the first
member and then obtaining the value of x for the points where
the curve crosses the x-axis.

68. More accurate graphical solutions. By drawing the entire
graph to a larger scale the student can obtain more accurately
the values of the roots. If still more exact results are desired,
he may proceed somewhat as follows:

The graph on page 111 shows that there is a root greater than .6
and less than .7. If we now construct on a large scale that portion
of the curve between D and E (page 111) which is just above and



114 SECOND COURSE IN ALGEBRA

just below the z-axis, we shall get a more precise value for the root.
Substituting .6 and .7 in 2% — 5 2 + 8, we obtain the following table :

When z=| .6 i

f(a),a® =Bz +3=|.216 | - .157

Between 2z =.6 and x =.7 the func-
tion changes from + to —. Ilence we
are certain that the graph crosses the
2-axis between these points. We now
choose a much larger scale than the
one used on page 111. This is indi-
cated by the numbers on the z-axis.
The scale is too large to show the
y-axis in the figure, so the scale for
y is indicated on the line AB. The
point K corresponds to .6, .216, and
the point L to .7, —.157. Since K and
L are comparatively close together,

A
K
\
\
\
\
5 5

L1

B

the portion of the graph between them is nearly a straight line.
Drawing the straight line KL, it is seen to cross the z-axis between
.64 and .66, or about .658. By an algebraic method of solution it
can be shown that the root, correct to three decimals, is .656. Here
the graphical method gives the result to within 3; of one per cent
of the true value.

EXERCISES

Solve graphically :

(Obtain roots in Exercises 2 and 6 correct to two decimals.)

1. ©*4+14 = 8a.

2. *—3x+4=0.

3.

4, 2 — 22> —bx 4 6=0.

2t 4 x = 4.

5. 2® —8x=0.

6. 2 —4x+4+2=0.
7. 2* — 102 +16 = 0.
8. at — 42 +12=0.

By reference to the curve obtained in Exercise 6 solve:
9 (a) B —4x=—5. (b)) *-10=4x. (¢) 2*—4x—2=0.

69. Critical values of the variable. There are many practical
problems involving two variables in which it is necessary to
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determine that value of one variable for which the other has
the greatest (or least) possible value. A great number of these
problems can be solved by means of a graph. The method
of solution can be made clear by reference to the graph of
§65. There f(x) =a®*— 5z + 3. Suppose we wish to know
the value of  which gives a® — 52 + 3 the greatest possible
value. Near C occurs a high point,—a turning point of the
curve,— and there x = — 2 approximately, and f(x) =7.3. This
value of « gives to f(x) a greater value than does any other
value of x between — 2.5 and + 2.6. It is true that on the
portion GH above H greater values of f(x) than 7.3 occur. But
in practical problems similar to those of the next list it will
be found that some condition of the problem will rule out of
consideration any value of x which does not correspond to
the turning point of the curve such as that which occurs near
C or near E.

PROBLEMS

1. A manufacturer has in stock a quantity of strawboard 8
inches by 15 inches, out of which he desires to make open-top
boxes by cutting equal squares out of each corner and folding
up so as to make sides and ends. What must the side of the
square be so as to make a box of the greatest possible volume ?

Hixt. Let 2 equal the side of the square. Then the dimen-
sions of the box in inches are 15 — 22,8 — 2, and 2. Hence the
volume "= 4 23 — 46 22 4+ 120 2 in cubic inches. Construct the graph
of V=428 —46 22+ 120 2 (or that of /4 = 2% — 111 22 4+ 30 2, which
deals with smaller numbers); then an inspection of the turning points
will give the required value of z.

2. Referring to the graph of Exercise 1: («) What value
has the function 4 a® — 46 2* + 120 2 when =13 ? (b) What
other value of = gives the function the same value ? (¢) What
values of a give the function greater values than this? (d)
What condition of the problem rules out these values as sides
of the square ?
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Biographical Note. The notion of a function is one of the most fun-
damental ideas in modern mathematics. Only the simplest examples are
given in this book, but many others involving expressions of the utmost
complexity have been studied by mathematicians for many years. An
important reason for the study of functions is found in the fact that all
kinds of facts and principles which we meet in the study of nature can
be expressed symbolically by means of functions, and the discovery of
the properties of such functions helps us to understand the meaning of
the facts. A complete understanding of the laws of falling bodies, light,
electricity, or sound could never be reached without the study of the
mathematical functions which these phenomena suggest.

One of the foremost living scholars who has discovered many prop-
erties of the most complicated functions is Professor Felix Klein of
Gottingen, Germany. Since the time of Gauss, who was also a professor
at Gottingen, the university there has been one of the leading insti-
tutions of the world in the study of mathematics. It is interesting to
know that Klein’s great achievements in advanced mathematics have
not caused him to forget the difficulties which surround the beginner
in the first years of his study, but that he has had wide influence in
improving mathematical instruction in the schools not only of Germany
but of other countries as well.

3. A piece of tin is 8 inches by 12 inches. From each cor-
ner a square whose side is a inches is cut out. The sides are

then turned up and an open box is formed, which has the
greatest possible volume. Find graphically this value of z.

4. What value of x gives 2 — 4 x 4 6 the least possible value ?

5. An open metal tank having a volume of 4 cubic yards has
vertical sides and a square base. Determine the side of the
base and the altitude of the tank if the inside surface is the
least possible.

IinT. Let 2 equal the side of the base in yards and d the altitude

in yards. Then the volume of the tank, 4 cubic yards, equals dz? and

the surface equals 22 + 4 dz in square yards. From these two state-
16
+

ments we obtain surface S = 22 + —. Plot the function 22 + 1—6 and
z z

the required value of z will be apparent.

6. An open metal tank having a volume of 4 cubic yards is
in the form of a cylinder with a circular base. Determine the
radius of the base and the altitude so that the inside surface
will be the least possible.
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7. The perimeter of a rectangle is 20 rods. Find the length
and the width if the area is the greatest possible.

8. A boatman 6 miles from the nearest point of the beach
(which is straight) wishes to reach in the shortest possible
time a place 8 miles from that point along the shore. He can
row 4 miles per hour and jog-trot 6 miles per hour. Determine
where he must land.

Hint. Draw a right triangle ABC, AC being the shore line, B
the boat, and A4 the point on shore nearest B. Let K on AC be
the point at which he lands, and let KA in miles be 2. Then
BK = V2?4 36 and CK =8 —z. In hours the time required to go

/2 Q@ _
from B to K is »iiﬂ, and that from K to C'is 8 - L. Therefore
—a  VaZ+ 36 . .
the total time equals §—a + —l_‘_—h Plot this function and the

6 4
required value of 2 will be apparent.



CHAPTER VIII
QUADRATIC EQUATIONS

70. Solution by completing the square. Any quadratic equa-
tion in one unknown of the general type ax? 4 bx+c=0 can
be solved as follows :

Example: Solve 32 — Tz — 20 = 0. @
Solution : Transposing, 2% — T =20. 2
2

Dividing (2) by the coefficient of 22, 22 — % = —5—0 3)
Adding (— %)% to each member of (3),

| e G e 1% )
Then (x - 2= ®)
Extracting the square root of each membe1 of (5),

x— =41
Whence z=14+3=4o0r —§.

Check : Substituting 4 for z in (1),
3.42—-7.4—-20=0.
. 48 —28 —20 =0, 0or 0 =0.
Substituting — § for z in (1),
B(— P -T(—§H—20=0.
25 4 85— 20 = 0.
60— 20 =0, 0r 0=0.

A method of solving a quadratic equation of the general
type in « by completing the square is stated in the

RuLe. Transpose so that the terms containing x are in the
Jfirst member and those which do not contain x are in the second.

Divide botlh members of the equation by the coefficient of x*
(unless the coefficient of x* is + I).

Then add to both members the square of one half the coeffi-
ctent of x (in the equation just obtained), thus making the first

member a perfect trinomial square.
' 118
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Rewrite the equation, expressing the first member as the
square of a binomial and the second member in its simplest
Jorm.

Extract the square root of both members of the equation and
write the sign + before the square root of the second member,
thus oltaining two linear equations.

Solve for x the equation in which the second member is taken
awith the sign +, and then solve the equation in which the second
member is talen with the sign —. The two results are the roots
of the quadratic.

CHECK. Substitute each result separately in place of z in the
original equation. If the resulting equations are not obvious
identities, simplify until each becomes one.

Quadratic equations often arise in which the first power of
the unknown is missing. They are of the type ax® =c. Here

x= j:\j It is evident that the solution of such equations

does not require the completion of the square. The student
has solved many equations of this type in Chapter VI.

EXERCISES

Solve by completing the square and check.

(Find the values of the unknown in Exercises 10-12 correct to
four decimals.)

2 382 —0. 2
Lot —de—52=0 9. 2% _ 90 —42 30
2. 22 +5x+3=0. 5
3. 3584+ 8s+4=0. 10. > — 524+ 2=0

2 N Q2

4. 34 52>= 8. 11_%—2n+‘1=f—:'
5. 68 =¢+4 2.

m~2+3 '51.2_24 12. 7%2—12:13—3:0.
6. == s

4 - 13. 2% 3.3 0.

7.12 4+ Tx — 102> = 0. 2

8. 39y — 1452 —10=0.  14. (2z —5)*—(x — 6)* = 80
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1 1 3 m 2m 9
15 ter2~ 1 18'm+1_m+2+§—o'
1 1 2 8§ -3z 22 _x+5
16'w—|—_7_w——3_5 8 — 2—x 3—=x
2 4 3 2
o B2 B g gy W#o1od £o9

2¢—1 x—5 65—32—9—s+3.

After a student has mastered the solution of quadratics by factor-
ing and completing the square, he should learn the formula method
(§ 71) and should use thereafter the one of the three methods which
is best adapted to the problem in hand.

o, 4 @3 o 42V 2 1
z—4 2*—5x+4 . N ,._\/5
2(x*+ 8 2—1 19

22. ;+2)_w_1=Z' 24.x3+7x%—8=0,

The equation 2 + 7 2 —8=0isnota quadratic equation, but it
is of the general type az?® 4 b2 + ¢ = 0. Here z occurs in but two
terms and its exponent in one term is twice the exponent in the

other. All equations of this form can be solved by completing the
square.

Solution : z3+7z’§+:‘z9-=8 + 40 =81,
8
22+ I =43

22 =1or —8.
‘Whence z=1or4.

Check : Substituting 1 for z in 23 + Tt — 8= 0,
1+47—-8=0,0r0=0.

Substituting 4 for z, 64 4+ 56 — 8 = 0.

But 112 % 0.

Hence the equation has only one root, 1.

25. o* —102f —11=0. 30. 4x2+52_%:0.
26. x* — 262% + 25 = 0. “ .

7. o —TaP— 8 =0. 8L 2z — 3% = 2.

28. x + a2t — 6 =0. 3. 3x*—11224+6=0.

29, 4% —7a®=15. 33. 9a* — 2222+ 8=0.



34.

35
36
37

In
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3at + 52t +2=0. 38. 272 + 16271 — 17 = 0.
.22t —9Vz +4=0. 39. 4 — 10y~ + 9 =0.
.3z —11at —20=0. 40. z~1 — 132" = 36.
.62t —132 4+ 6=0. 41. 2> +4 — 52 = 0.

42. (* =22 —T(2*? — 22)=—12.
Solution : Let a?—2z=y.
Substituting y for 2% — 2 z, we obtain
y¥r—Ty=—12.
Solving, y=3or4.
Then 2?2 — 2z = 8.
‘Whence z=3or —2.
Also 22— 2z =4.
‘Whence =14 \/5
Exercises 43-48 do not expand or transpose and square.

Solve as in Exercise 42.

43

44.

45,
46.
47.
48.
49,
50.
51.
52.

59.

. 3@ + 82)? — T(a? + 3a) — 20 = 0.

2
<w—1>+4<x—1>=8};.
X x
4y +5)+2(4y + b} =15.
224+ bx+3Val45x —54=0.

a*—2x —5Vat— 22 —4+2=0.
2yCy+1)+3V8y +12y +5=25—4y.
22 + ax — 6a?=0. 53. ax®+ bx 4+ ¢ = 0.
Qa2 — 2cx ="TCc 54. 12fx — 47> — 522 = 0.
2a® — 17T bx? + 8% = 0. 55._2_m_+§_@_x20.
Ta%? — dax —11=0. 3 9=
56. *(x — d)? — d*(c —x)* = 0.
57. mx* —x(m? +1)=— m. .
58. (x—r)? 4+ (S —x)’=r"4 $%
m__m=z_ g 0. T=¢__° _3.

m—x m ¢ rt—c¢ 2



x> — 3mx ne 2+ 2ax r a
61 m—n +2m= —m 62 a—0b 20 b
6. 2s+x ,5s~x_s<:u+.92) 0.

x4+ s x— S $—x

64. 20> +bx=cx?+ 3cx + 3.

IiNT. 2—¢)2?+ (5 —8c)x=3.

5—3¢ 3

xr = .
2—c¢ 2—c¢

5—3cx+ 5—3c\?_ 3 25 —30c+9¢c?

$—2¢) 2-¢ 16—16c+4c

< 5—30)2 49 —42c¢ + 9 ¢? <7——30>2
z + = = .

x? +

4—2¢) 16—16c+42 \4—2¢
5—3¢ 7—3c¢
a.+4_20:;|:4_20,etc.
65. x>+ 2 2 = 2sx 4+ 22, : b 5
x+ 28+ s s + 70'a+'c+ + @ o

66. 2 — 2x +1 = ax — ax’ btz ata 2

67. 2+ 22 +1 = ha’ + L. ax +b emx —mn

71.

68.

69.

4+ 3 =22+ 2cx — 2.
@ 4 1 _ 2¢ _
rt4+a x+bb x+e¢

0.

bx +a nx —m

ax® +bx+c ¢
N —V—=--
b —mx+n n

71. Solution by formula. The standard form of the general

adratic is
quadratic 1 ax® 4+ br 4 ¢ — 0.

The student solved this equation (see Exercise 53, page 121)
and found

—b*x Vb —4ac
*= 2a ’ &)

The value (F) is a general result and may be used as a for-
mula to solve any quadratic equation. The solution of a quad-
ratic by formula requires less labor than by any other method,
except for such equations as can be solved by factoring at
sight. Those who have considerable experienice in algebra sel-
dom solve a quadratic by any other method than by formula.
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EXAMPLES
Solve by formula and check :
1. 32> —bax=38.
Solution: Writing in standard form,
322—-52z—-8=0.

Then 8 corresponds to @, —5 to b, and — 8 to ¢ in the general
quadratic az? + bz 4+ ¢ = 0. Substituting these values in (F'), where

_=bt Vi —da
- 2a ’
—(— 25 — 4.3 (—

gives z == 5):12\9.‘; +-3(=8)
_5:I:V25+96_5:|:11_80r 1
- 6 T T3 T

Check as usual.

2. 2L%* = kx + 1.

Solution : Writing in standard form,
2% —lx—1=0.

Thena=2%%0=—Fk and ¢c =—1.

Substituting these values in the formula (F),

fo o (B EVE 2R 1)

2.3 17
_kx VP8R _kx3k_1 1
412 4k 2%
Check as usual.
EXERCISES
' “Solve for by formula and check :
1. 222 —Tx+3=0. 6. 6> —Trx+ 272=0.
2. 322 —ax—2=0. 7. 322 —6ax + 2a®*= 0.
3. 11 hx + 20 A% = 32 8. 3m?+4mx—Ta*=0.
4. 52>+ 2cx=16c% 9. 4dax —10a%?* 4+ 3 = 0.
5. 222 = 3mx + 7T m 10. 12v* 4+ T’ — 1022 = 0.
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11. 2> + 32 = max + 3m.
Hixt. 224+ (3 —m)z—8m=0. Thena=1,6=8 —m,andc=38m.

Substituting these values in (F'),
v —(3 ———m):l:\/(3—m)2—4-1(—3m),

B) ete.
12. 2% + nx = cx + cn. 15. a%® — 2ax = 0%® — 1.
13. 32> — 6ex + 2¢ = 2. 16. m*® 4+ ma* + 2x = 4.

14. max® + kmx = ke + cx. 17. 2%* + 2 nx = 5 n’x + 10.
18. Akx® — Mk = WP + D2
19. 222+ 5z =ha*+ 3 hax + 3.
20. %+ hae +4x =6+ 2 hat
1. ca® + emax + 5 = cx + 5 (x + m).
22. ¥ +3nx + 2x =nx®+ 2n + 3n2
23. m*® +4dmx + hmx +3he =92* +12x — 4 A,

PROBLEMS

1. Separate 20 into two parts, such that the first shall be
the square of the second.

2. One leg of a right triangle is 8 feet and the hypotenuse
is 2 feet longer than the other leg. Find the other leg, the
hypotenuse, and the area.

3. The hypotenuse of a right triangle is 18 feet longer
than one leg and 16 feet longer than the other. Find the
three sides.

4. The number of hours required to make a trip of 112
miles was 6 more than the rate in miles per hour. Find the
rate and the time. )

5. The sum of the reciprocals of two consecutive numbers
is . Find the numbers.

6. The altitude of a triangle is 4 feet less than the base.

The area of the triangle is 48 square feet. Find the base and
the altitude.
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7. One leg of a right triangle is 7 feet shorter than the
other and the area is 30 square feet. Find the three sides of
the triangle.

8. The area of a triangle is 40 square yards and the base
is 2 feet more than seven times the altitude. Find the base and
the altitude.

9. The area of a trapezoid is 60 square feet. One base is
2 feet more than the altitude and the other base is twice the
altitude. Find the bases and the altitude.

10. One base of a trapezoid exceeds the other by 16 feet, the
altitude is 2 feet more than one third of the shorter base, and
the area is 116} square yards. TFind the bases and the altitude.’

'11. A requires 4 more days than B to do a piece of work.
If in working together they require 8% days, find the number
of days each requires alone.

12. One diagonal of a rhombus exceeds the other by 4 inches.
Find each if the area of the rhombus is 198 square inches.

13. The radius of a circle is 21 inches. How much must it
be shortened so as to decrease the area of the circle 770 square
inches ? (Use m = 22. ’ '

14. In selling an article at 18 dollars a merchant gained a
per cent 5 greater than the number of dollars the article cost.
Find the cost in dollars and the gain per cent.

15. From a cask full of wine 5 gallons are drawn off. The
cask is then filled by adding water, and again 5 gallons are
drvawn off. If, after refilling with water, 36 per cent of the
mixture is water, how many gallons does the cask contain ?

16. A printed page has 15 more lines than the average num-
ber of letters per line. If the number of lines is increased by
15, the number of letters per line must be decreased by 10 in
order that the amount of matter on the two pages may be the
same. How many letters are there on the page?
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17. A sum of $5000 is put at interest. At the end of each
year the yearly interest and $300 are added to the investment.
If at the beginning of the third year the investment amounts
to $6236, find the rate of interest that the investment bears.

18. The cost of an outing was $36. If there had been 2
more in the party, each would have been required to pay $3
less. TFind the number in the party.

19. Two bodies, A and B, move on the sides of a right trian-
gle. A is now 123 feet from the vertex and is moving away
from it at the rate of 239 feet per second. B is 239 feet from
the vertex and moves toward it at the rate of 123 feet per sec-
ond. At what time (past or future) are they 850 feet apart ?

20. The dimensions of a rectangular box in inches are ex-
pressed by three consecutive numbers. The surface of the box
is 292 square inches. Find the dimensions.

21. A three-inch square is cut from each corner of a square
piece of tin. The sides are then turned up and an open box is
formed, the volume of which is 300 cubic inches. Find in
inches the side of the piece of tin.

22. A piece of tin is 10 inches by 12 inches. From each
corner a square is cut whose side is z inches. The sides are
turned up and an open box is formed. Show that its volume
is 42° — 44 2% + 120 2. '

23. Now a certain value of z gives for the box in Exercise
22 the greatest possible volume. That value is one root of the
equation 122* — 88z + 120 = 0. Find the value of z.

24. A rectangular box is 8 inches long. Its volume is 192
cubic inches and the area of its six faces is 208 square inches.
Find the three dimensions. )

25. A messenger leaves the rear of an army 28 miles long as
it begins its day’s march. He goes to the front and at once
returns, reaching the rear as the army camps for the night.
How far did he travel if the army went 28 miles during the
day ?
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26. If AB in the adjacent figure is a tangent to the circle
and BD is any secant, AB® = BC.-BD.*Find BC if AB=12
and CD = 20.

27. How high is a mountain = B
which can just be seen from a point
on the surface of the sea 80 miles
distant ? (Use 3960 miles for the
radius of the earth.)

28. Find the distance a man can
see in a straight line over a smooth
lake, if his eye is 6 feet above the D
level of the water.

29. Two lighthouses on opposite shores of a bay are 150 and
250 feet respectively above the water. If the light from one
can just be seen from the other, find the distance in miles
between them.

30. A ship is 31 miles from a lighthouse which is 250 feet
above the water. How high above the water is the ship’s flag
if it can just be seen from the lighthouse ?

31. A stone dropped from a balloon which was passing over
a river struck the water 12 seconds later. How high was the
balloon at the time the stone was dropped ?

Hixt. The distance S through which a body falls from rest in ¢

2
seconds is given by the equation S = % (g =32 feet, approximately).

32. A man drops a stone over a cliff and hears it strike the
ground below 13 seconds later. If sound travels 1120 feet per
second, find the height of the cliff.

*If BC is small compared to DC, we may use AB?=BC.CD as a close
approximation. Thus if BC is a mountain two miles high and DC is the
* diameter of the earth, the equation BC'= AB>+ C'D would give the height of
the mountain within one four-thousandth of the correct value.



CHAPTER IX
IRRATIONAL EQUATIONS

72. Definitions and typical solutions. An irrational or radical
equation in one unknown is an equation in which the unknown
letter occurs in a radicand.

Thus 3x+2\/—:16, V1i—z+ Vz+38=2, and '\/Bzz-— =0

are irrational equations. Also any equation in which the unknown
occurs with a fractional exponent is irrational.

The following examples illustrate the method of solution for
some of the more simple irrational equations.

EXAMPLES

1. Solve V22 —5 -3 =0.

Solution : Transposing, V2z—5 =3.
Squaring both members, 2z—5=09.

Solving, z="1.

Check : Substituting 7 for z in the original equation,
V14 —-5-38=0.

‘Whence 3—3=0.

In irrational equations it is understood that each radical
expression, not preceded by the sign =%, is to have one sign and
only one ; therefore each radical will have one value and only
one. That value is the principal root of the radical. This fact
is of importance in checking.

3! 19 22
2. Solve 2 8w8+—2——2x—2=2z—1. 1)

3 2
Solution : Transposing, 2 4/8 2% + 1921 =4z +1. @)

128
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Cubing each member of (2),
6423+ 7622=064234+ 4822+ 1224+ 1. (3)
Transposing and collecting,
2822 —122—-1=0.
Factoring, @Cr—14z+1)=0.
Therefore x=%tor — .
Check : Substituting 1 for z in (1),
2vVI+3p—1-2=1-1.
2.8 -3=0.
2
3—-3=0.
Substituting — 4 for z in (1),
AISECRE TQEUIRS St e
. . 5
Simplying, 2<+ Ol 7S =
It is easily possible to write a statement involving radical expres-
sions which has the jform of an equation, but is not one. Thus
Vz+1+Vz+3+1=0 looks like an equation, but no value of
z can satisfy it. A little closer inspection shows that the statement
asserts that the sum of three positive numbers is zero, a condition
clearly impossible. Statements like the one given are often called
“impossible equations,” though, strictly speaking, they are not equa-
tions at all. In the attempt to solve an apparent equation one may
resort to the usual methods of solution and obtain a result which
will not satisfy the original statement. Not until one tries to verify
the result is the falsity of the original statement discovered.

—&_=8

3. Solve 1 + Va + 2 =Va. 1)
Solution: Transposing, 1— Vr=—+7+ 2. )]
Squaring (2), 1-2Vz+z=z+2 . 3)
Transposing and collecting,

—2+Va=1 €))
Squaring (4), 4r=1,orz=1 ®)

Check : Substituting 1 for z in (1),

1+Vi+2=++Vi

143 =44}, or§ =1, which is false.

It is fairly certain that the student did not see that the state-
ment (1) is false until the attempt was made to verify the result.
It appears, then, that the method of solution may give a result
which is not a root.
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4. Solve Ve —1+V3z+1—2=0.

Solution: Transposing, V3z+1=2— Va—1.

Squaring both members of (2),

3z+1=4—-4~or—1+2—1.

Transposing and collecting,

97— =—4~/z—1

Il

Dividing (4) by 2, z—1
Squaring both members of (5),
2—2x+1=42—4.

Transposing, 22—6x+5=0.
Factoring, (z—=1)(x—5)=0.
Therefore z=1orb.

Check : Substituting 1 for z in (1),
Vi-l+~/3+1—2=0.
0+2—2=0.
Therefore 1 is a root of (1).
Substituting 5 for z in (1),
V5—1+~15+1—2=0.

24+4-2=0,

or 4=0; but 4 #0.

-2z —1.

Therefore 5 is not a root of (1). It was introduced by the process
of squaring each member of equation (5). This process does not
necessarily introduce a root. Thus 1 is a root of each of the equations

(1) to (7), and while 5 is a root of (6) and

(7), it is not a root of (5), as may be veri-

fied by substitution. Further, (5) was ob-

tained by squaring (2), yet neitherthe root 1

nor the root 5 was introduced at that point.

» Just what did happen in the course

of the preceding solution is shown in

the adjacent figure, where equations

(1), (5), and (7) are solved graphically.

The graph shows the changes in the

O] TN~y

=]

that the root 1 is common to (1), (5),

and (7), while the root 5 is extraneous

to (1) and (5).
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As we have seen, the solution of (1) leads to the quadratic
22— 62+ 5 =0. Since (1) and (5) have the root 1 but not 5, it is
obvious that with some radical equations one may resort to squaring
once without introdueing an extraneous root.

Equation (1) is typical of many radical equations which, when
solved by rationalizing, give the roots not only of the original equa-
tion, but also of such equations as may be derived from it by giving
each radical therein the sign +.

It will be seen from the next example, also, that the process of
rationalization does not necessarily introduce extraneous roots.

5. Solve 'Va:+2+V3—-.7c:3. @

Solution : Transposing, V3—z=3—-z+2 )
Squaring (2), 3—2z=9—-6Vr+24+z+2. 3)
Transposing and collecting, — 22 — 8 =— 6 Va + 2. @
“4)+-2, z+4=3Va+2 ®) .
Squaring (5), 224+ 82 +16=92+18. (6)
Transposing and collecting, 22—z —2 = 0. (M
Factoring, (x—=2)(@+1)=0.

Therefore r=2or —1.

Check : Substituting 2 for z in (1),
V2+24+V3—-2=3,0or2+4+1=3.
Substituting — 1 for z in (1),

V=1+2+V3+1=3,0or1+2=8.

Therefore equation (1) has two roots, 2 and — 1.

The graphical solution
of (1), (5), and (7) gives
curves I, IT, and III re-
spectively of the adjacent
figure. These graphs show
the change in the function 0\ I /
with each resort to squar-
ing. Curves I, IT, and III LA 9 2
intersect the x-axis at the AL /
same points, showing that
the roots 2 and —1 are
commonto (1),(5),and (7). £’

——
Lt
X)

—

]

7\
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It should be clear from the preceding examples that we cannot
determine the number of roots of a given radical equation without
solving it; nor can we predict whether the given statement involv-
ing radicals is an equation. Results obtained are roots if they satisfy
the original statement, and not otherwise.

The method of solving a radical equation may be stated
in the

RuLE. Transpose the terms so that one radical expression
(the least. simple one) is the only term in ome member of the
equation.

Next raise both members of the resulting equation to the same
power as the index of this radical.

If radical expressions still remain, repeat the two preced-
tng operations until an equation is obtained which is free from
radicals. Then solve this equation.

CHECK. Substitute the values found in the original equa-
tion and reduce the resulting radicals to their simplest form.
Whenever the radicals are rational simplify by extracting the
roots indicated. Never simplify by raising both members of
the equation to any power, for extraneous roots introduced by
that process would not then be detected.

Finally, reject all extraneous roots.

EXERCISES
Solve, check results, and reject all extraneous roots :
1. Ve +3=8. ’ 8. (9"”)1}:7;%"’4'
2. V2z—64+4="1. 9. V5n 419 +n=".
3.3vV2z—8—7=17. 10. Ge—Ht+@z+3)t=0
4. V3% —4 =2 11. 4 VP —v —4 4 3 =15.
5. (Te+ 15} +18=17. 12 Vo +4=~2" —b5a + 6.
6. 2V3n—25+3="7. 18 Votl=+z+l

7. 32V3r=18V2Tx. 14 (s—2)F = 4 2%
15. 3Vr +1—-2Vr4+3=V2r+4 —Vr43+2Vr+1.
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16. V22 —3+3Ve—5=+V3z—8+2Vx —5.
17. Vizr —124+V52z —2+V9z —14 = 0.
18. Vizr —12 — V52 —2 —V92 —14 = 0.
19. \/439——12—{—\/5790—2—\/99;—‘14:0.
20. Viz —12 — V52 —24+V9z — 14 = 0.
TVn+10 og Y2 +16 Vi-z 5
Vin—2 " Vi—=z Vz+16 2
2vVa - N2axtda 25. 5r —13+% 4 6= 0.
V22 —a 3V 2. T —3xf —2a% = 0.
3 5_nt . E\E . %
o3 M=3_B=ml o gy RO (43T 2
n¥ 4 (r+3 @+5F V3
28. VT+42+3V22 +52+7—3=0.

29. V17 +2V3 + s+ s +7—5=0.
30. 422 =102 +10 — 2V4a* — 10z — 2.
31. 3m2 = 6V3m?: — m — 6 + m + 22.
32. Vo +15+Vz — 24 — Vo — 13 = Va.

2
33. Solve for land g, t = W\Jé 34. Solve for ¢, s = %
g

21.

22.

1>

R .
35. If o = b} V2 and K = 2 1, express K in terms of a.

2 R .
3‘) V3 and a = 0l V/3, express K in terms of a.
37. f K=2”2V2and a = ‘72 2 + V2, express K in terms
of «.

38. If K=37*and a = % V2 + V3, express K in terms of a.

39. The perimeter and the area of a certain square exceed
the perimeter and area of a second square by 72 feet and 900
square feet respectively. Find the side of each square.

36. If K =
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40. If a bullet is fired vertically upward, the least velocity
V which it may have so that it will never return to the earth
is given by the equation V= V2gR. (g = 32 feet per second,
R = 4000 miles.) Find the velocity in miles per second to the
nearest whole number.

41. The greatest distance « (in feet) that a ball can be thrown
with velocity v (in feet per second) across a level field is given
by one root of the equation .976 v’z — ga* = 0. (g = 32.) Under
the conditions just stated a ball is thrown with a velocity of
100 feet per second. How far from the thrower does it strike
the ground ?

42. The greatest distance a baseball has been thrown is
426 feet 6% inches (Sheldon Lejeune, October 10, 1910). With
what velocity did it leave the thrower’s hand ? (This velocity
is called the initial veloeity.)

43. Determine the initial velocity from the data: (e¢) A La-
crosse ball has been thrown 497 feet 74 inches (B. Quinn,
1902). (b) The record distance for the 16-pound shot is 51 feet
(Ralph Rose, 1909). (¢) The 16-pound hammer has been thrown
184 feet 4 inches (John Flanagan, 1910). (d) A football has

“ been kicked a distance of 200 feet (W. P. Chadwick, 1887).



CHAPTER X
GRAPHS OF QUADRATIC EQUATIONS IN TWO VARIABLES

73. Graph of a quadratic equation in two variables. Before solv-
ing graphically a quadratic system, the method of graphing one
quadratic equation in Zwo variables must be clearly understood.

EXAMPLES

1. Construct the graph of x> = 3 y.

Solution : Solving the equation for z in terms of y, z =+ V38 .
We now assign values to y and then compute the approximate
corresponding values of 2. Tabulating the results gives:

y= 9 4 3 2 1 0 -1 Any negative value

x= =519 | £346| *=3 |[+244 =173 0 =V -3 Imaginary

Using an z-axis and a y-axis
as in graphing linear equations,
plotting the points correspond-
ing to the real numbers in the PARABOLA
table, and drawing the curve 1\ GRAPH | /
determined by these points, we \ x%"gv /
obtain the graph of the adja- i
cent figure. Since 7 is a func- \ /
tion of z, the y-axis corresponds
to the function axis. The curve N
is a'parabola. A similar curve
was always obtained in Chapter &)
VII for the graph of a quadratic J
function of one variable.

[T W
N

~

The graph of any equation of the form y? = ax is a parabola.
135
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2. Graph the equation zy 4 8 = 0.

Solution : Solving for y in terms of z, y = — 8.
z

Assigning values to x as indicated in the following table, we then
compute the corresponding values of y.

ks
<
[}
e 2]

z=|-6|-5|-4|-3|-2|-1|-4| 3 |1]2]|3 |4

e
(S

= 8 8 21 32| -8~
y= || 8| 2| §|¢]|8 |5 %8¢

oo
1

N HYPERBOLA
4 3
L1 1
- I
0 P
T
GRARH OF )
xy+ 8=0

’

Proceeding as before with the numbers in the table, we obtain the
two-branched curve of the above figure, which does not touch either
axis. The curve is called an hyperbola.

The graph of any equation of the form xy = K is an Zyper-
bola. The curve for xy = K (K = any constant) is always in
the same general position. That is, if K is positive, one
branch of the curve lies in the first quadrant and the other
branch in the third. If K is negative, one branch lies in the
second quadrant and the other in the fourth.
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3. Graph the equation a? 4 »* = 16.

Solution : Solving for y in terms of z, ¥ = &+ V16 — z%

Assigning values to z as indicated in the following table, we com-
pute the corresponding approximate values of .

r= 5 ~4‘ -3 -2 ’ -1 ' 0 1 2 3 4 5

y= £3vV—-1] 0 li‘l.(‘v«l 13.40‘;&3.87‘ +4 | +£3.87 | £346 | £2.64| 0 |+3v/—1

For values of x numerically greater than 4, y is imaginary. The
points corresponding to the pairs of real numbers in the table lie on
the circle in the adjacent figure.

The center of the circle is at
the origin and the radius is 4.

Further, the graph of any e T 1, \\\
equation of the form // i = I Lok L[_\\

P4yt=r RN .
k K o ]

is a cirele whose radius is 7. \GRAPH OF /
This can be proved from the \"*' =\ A
right triangle PKO. If Prep- N /
resents any point on the circle, v
OK equals the a-distance of |

P, KP equals the y-distance,

and OP equals the radius. Now OK® + KP® = OP?; that is,
a? 4+ »? =2 It follows, then, that the graphs of a? + 42 =9
and «? + »> = 8 are circles whose centers are at the origin
and whose radii are 3 and V8 respectively. Hereafter, when
it is required to graph an equation of the form a? 4 32 = 22
the student may use compasses, and, with the origin as the
center and the proper radius (the square root of the constant
term), describe the circle at once.

In all of the graphical work which follows it is expected
that the student will save time by obtaining from the curve on
page 85, or from the table on page 262, the square roots or
cube roots which he may need.
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4. Graph the equation 16 2% 4+ 9 y* = 144,
Solution : Solving for y in terms of x, y =4 4 V9 — 22

Assigning values to z as indicated in the following table, we com-
pute the corresponding approximate values of y.

= -4 -3 -2 -1 0 +1 +2 +3 +4

y= i%'\/—ﬂ 0 +£298 | £3.77 | £4 | £3.77 | £2.98 0

H
W

ﬁ

~

For values of 2 numerically
greater than 8, y is imaginary. The
points corresponding to the real

numbers in the table lie on the
graph of the adjacent figure. The
curve is called an ellipse. /

oY

T~
G)
.
>
et

ARHIOF 1,

The graph of any equation TOxir Oyl 44
of the form of ax®+4 by?=c, 0
in which e and b are unequal \ ELiRsE [/
and of the same sign as ¢, is \

x
x

an ellipse.

Note. These three curves, the
ellipse, the hyperbola, and the pa-
rabola, were first studied by the
Greeks, who proved that they are the sections which one obtains
by cutting a cone by a plane. Not for hundreds of years after-
wards did any one imagine that these curves actually appear in
nature, for the Greeks regarded them merely as geometrical figures,
and not at all as curves that have anything to do with our every-
day life. One of the most important discoveries of astronomy was
made by Kepler (1571-1630), who showed that the earth revolves
around the sun in an’ellipse, and stated the laws which govern the
motion. Those comets that return to our field of vision periodically
also have elliptic orbits, while those that appear once, never to be
seen again, describe parabolic or hyperbolic paths.

The path of a ball thrown through the air in any direction, except
vertically upward or downward, is a parabola.+ The approximate pa-
rabola which a projectile actually describes depends on the elevation
of the gun (the angle with the horizontal), the quality of the powder,
the amount of the charge, the direction of the wind, and various other
conditions. This makes gunnery a complex problem.
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EXERCISES

Construet the graphs of the following equations and state
the name of each curve obtained :

1. 2>=2y. 6. xy =8.

2. 2+ 2x=0. 7. xy =—12.

3. x* +y% = 36. 8. 927 + 162 =144.
4. 2* + 2 =12. 9. 16x* — 9¢* = 144.
5. a? — 3? = 25. 10. 2527 4+ 93 = 225.

74. Graphical solution of a quadratic system in two variables.
That we may solve a system of two quadratic equations by a
method similar to that employed in § 38 for linear equations
appears from the following

EXAMPLES
i 2e+y=1, )
1. Solve graphically { P+ 4w =17 )

Solution: Constructing the graphs of (1) and (2), we obtain the
straight line and the parabola shown in the adjacent figure. There
are two sets of roots corresponding ;
to the two points of intersection,
which are: <\

z==2, . (z=2 AN
A{z/=5, L{y=—3- N

Note. If the straight line in the
adjacent figure were moved to the |,
right in such a way that it always 0
remained parallel to its present
position, the points 4 and 3 would
approach each other and finally prdl\\(
coincide. The line would then be |
tangent to the parabola at the point
z=4,y=1.

‘Were the straight line moved still farther, it would neither touch
nor intersect the parabola and there would be no graphical solution.

An illustration of these two conditions is given by the graphical
solution of Exercises 8 and 9, page 142.

5

\(2

'y

’
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2 —yt =4, @
y¥—x—6=0. 2)

Solution: Constructing the graphs of (1) and (2), we obtain the
hyperbola and the parabola of the following figure. There are four

2. Solve graphically {

-~

()

) \w S N
\
N

’

sets of roots corresponding to the four points of intersection, which

are approximately

z = 3.7, r=—27, x=— 27, x=3.7,

4 y=3.1. B{y:l.S. C{y:—l.S. D{y:—3.1.
22+ =09, €))
x*— =16, - 2

Solution : The graphs (1) and (2) are the circle and hyperbola of
the figure on page 141. These curves have no real points of inter-
section. There are, however, four sets of imaginary roots. Sub-
tracting equation (2) from (1) gives 2 32 = — 7, whence y = £ V— 1,
an imaginary expression. Adding (1) and (2) gives 2 22 = 25, whence
z=4 Sj,\/§, a real expression. Using the double sign before each
radical gives the four sets of imaginary roots:

{x:% 2,  +5V2 —§+V2, —5V2

3. Solve graphically {

y:V_%’ —V—%’ '—V_7; +V_‘;"
It can be shown that these sets of imaginary roots correspond to
the intersections of what may be termed the imaginary branches of the
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curves. These branches may be represented as lines not in the same
plane as the real branches but in a plane passing through the z-axis
perpendicular to the plane determined by the z-axis and the y-axis.

N /
N(2) (A
\\ /

()
AL, N
7 TN
% o]
I\ 7
. N 4
// \\
)4 N
Vv N

Though the subject is not difficult, even a simple presentation of this
method of constructing imaginary graphs is wholly beyond the scope
of this book. The essential point to be grasped now is that real
roots correspond to real intersections, and imaginary roots correspond
to no intersections of real graphs.

Note. In equation (1), page 140, a greater number in place of 9
would give a larger circle than the one in the figure, and it would be
easy to find a number to replace 9 such that the resulting circle
would just towch the hyperbola. Were a still greater number used,
the circle obtained would intersect the other curve. These varying
conditions would result, respectively, in («) no set of real roots,
(b) two sets of real roots, (c¢) four sets of real roots.

Examples 1, 2, and 3 partially illustrate the truth of the
following statement :

If in a system of two equations in two variables one equa-
tion is of the mth degree and one of the nth, there are usually
mn sets of roots (real or imaginary) and never more than mn
such sets. '



142 SECOND COURSE IN ALGEBRA

EXERCISES

If possible, solve graphically each of the following systems :

1 =4y, 4 o + % =4, y y=4z,
x4+ 3y=>5. T4+ y=28 TP+ 9y2=09.
9 x4 o = 25, 5 a? 4 y* = 25, 8 P+ 4z =17,
x—2y=10. T at— gy =16. 22 +y=09.
3 x? + 3* =16, 6 x* + y? =16, 0 y¥+4e=17,
Tt yt=09. Ta?— =25, "2z 4y =12.
x? + y* =16, 1 y—2V8=0,

1
10. 24— 2x=8. y¥r=a®— 9.



CHAPTER XI
SYSTEMS SOLVABLE BY QUADRATICS

75. Introduction. The general equation of the second degree
in two variables is ax?® + 0y + cxy + dx + ey + f = 0. To solve
a pair of such equations requires the solution of an equation
of the fourth degree. Even the solution of 2?4 y =5 and
y? +a = 3 requires the solution of a biquadratic equation.
In fact, only a limited number of systems of the second degree
in two variables are solvable by quadratics. The student
should note that he can solve graphically for real roots any
system of quadratic equations, provided the terms have nu-
merical coefficients. The algebraic solution of such systems
will be possible for him only after further study of algebra.

- 76. Linear and quadratic. Every system of equations in two
variables in which one equation is linear and the other quadratic
can be solved by the method of substitution.

EXAMPLE
2 25

Solve the system { ty ’ @

lxe—y=1 2)
Solution: Solving (2) for z in termsof y, z=1+4. 3)
Substituting 1 + y for z in (1), (1 4 )2+ y2 = 5. 4)
From (4), ¥+y—2=0. 6)
Solving (5), y=1or —2.
Substituting 1 for y in (3), r=1+1=2.
Substituting — 2 for y in (3), r=1-2=-1.

The two sets of roots arex=2,y=landoe=—1,y=—2.

S . 1), 44+1=5,
Check: Substituting 2 for z and 1 for y m{EQ;, 9_1=1
Substituting — 1 for z and — 2 for y in (1), 1+4=5

(2)7_ 1 + 2 = 1.
143
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EXERCISES

Solve the following systems, pair results, and check each
set of roots:
z+ y = 6, . 3R, +4R,=5,

L. x? + y* = 20. "2RR,—G6R =—3.

9 4m + n =28, 8 20y +9y*—20=0,
" 2m? + 3mn = 98. T ay +40=0.
3 m? + 2n? = 44, 9 "+ 12+ 21 = 40,
"m—2nV5=0. "h4k+2=0.
4 4s+t=6, 10 m? + 3 mn 4 n® = 88,
© st =—10. " 2m=n.
5 xy + 36 = 0, 1 24y 4z 4+ 6y =40,
"4z —y=30. fz—10=y.

xV3+ 5y =—712, y+xV15 =0,
6. 12.

ay =—15V3. ¥+ ax?=162.

If the equations of a system are not one /inear and the other
quadratic, an attempt to solve it by substitution usually gives
an equation of the third or fourth degree at least. In most
cases such an equation could not be solved by factoring, and at
the present time its solution by any other method is beyond
the student. The various devices explained in the following
pages are for the purpose of avoiding the necessity of solving
an equation of a higher degree than the second.

77. Homogeneous equations. An equation is homogeneous if, on
being written so that one member is zero, the terms in the other
member are of the same degree with respect to the variables.

Thus 2?4 y? = ay and a® — 3xy + y* = 0 are homogeneous
equations of the second degree; 2a° + y® =a?y — 3xy® is a
homogeneous equation of the third degree.

* 78. Both equations quadratic. Ifthe system is of either type de-
seribed in the following examples, it can be solved by quadratics.

The first example illustrates the type when one equation,
but not necessarily both of them, is homogeneous.
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EXAMPLES

3a? + 4y* = 8y, @
1. Solve the system { Vb2 Bx =3 @)

Solution : First we solve the homogeneous equation (1) for z in
terms of y.

Transposing in (1), 322 — 8xy + 432 =0. 3)
_8y i\/641/ — 487

Solving (38) by formula, )]
2 u
Whence z=2yor 5 ®)
- Substituting 2 y for z in (2),
P+4yP—10y=3. (6)
Solving (6), y=1+2~VI10. )
By (5), z = 2J; then from (7), z =2 £V10. (8)
Subst1tutmg Y for z in @),
492 10y
—_——— = ), 9
Tt =3 ®
Solving (9), y=38or — & (10)
By (6), 2 = ? then from (10), z=2or — . 11)

I’airing results,
Q}A r=—{ }B z=2+4+V10 c, z=2—-%$~V10|
cy=14+2~V10 y=1—2~10
Check :
3(2)2+4(3)2=8-2-3, or 48 =48.
32422-5.2=3,0r3 =3.
3(— )+ 4(= 19)? =8 (= ) (— %) or 13§ = 8%
(— P+ () =5 (—fp) =3, 008 =3,
3(2+4V10)*+4(1+3+10)*=8(2+4V10)(1 + § V10).
(1:|:2\/ 0)* + (2:!:4\/ 10)* - (2:1:4\/ 0)=3.
Taking both values in C and D with the sign + or both with
the sign —,
12+ 48 V10 + 98 +4 + 18 V10 + 32 =16 & & V10 + 128,
1:|:4\/ +84+4+£18V10+32-10F4+10=3.
If each equation of a system in two variables is quadratic and

both are homogeneous with the exception of a constant term (not
zero), the system is solved much like the preceding one.
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xy + 3y* =6, (1)
x>+ =10. @)

Hint. First we combine the two equations to obtain a homo-
geneous equation in which the constant term is zero.

2. Solve {

(1)-5, 5y + 15 52 = 30. 3)
(2)-3, 322 4+ 8 »% = 30. “)
B)— 1), —3224+5xy+124%2=0. )
Solving (5) for z in terms of y, x =8 y or — 43—1/ . (6)

‘We can now substitute from (6) in (2) and proceed precisely as in
the last example. The student should complete the work and obtain

e=3, =3, +4V10, —4-/10.
y=1, -1, —2~10, +%10.

EXERCISES

Solve, pair results, and check each set of real roots:

1 2 + xy =3, . 4 xy + P =4,

¥ —xy = 10. o — 2y =12.
2 x2+?/2:10y ", 902+90y=2y2,
"3yt +ay=6. 28+ x =2+ 92
3 w4+ 2uv =0, 8‘m2+2xg/—g/2=32,
"2+ 3uv =—16. 22 —3ay+94P=0.
4 s —3st =4, o 20 —xy + 22 =12,
T3P+ 3s8=12 T2 4wy + 242 =8.
5 xz (x4 2y) =16, 10. @ —axy — 5y =15,
Tyly—x)=3. ??— 6y =1

Up to this point the systems considered have been solved by a
method partially described by the word * substitution.” The essential
step in this method is to solve one of the original equations (or one
derived from the original system) for one variable in terms of the
other, and substitute the value found in the other equation (or in
either of the original equations). This method is applicable more
frequently than those which are given later. Consequently it is
much more important for the student to master the method of sub-
stitution than it is for him to master any other method.
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79. Equivalent systems. " Equivalent systems of equations are
systems which have the same set or sets of roots.

The graphs of equivalent systems have common points of
intersection.

If we solve graphically the two systems

{ac“’— =12, (1) and B{m—y: 2, (3)

x+y=6. (2) x4+ y=0. (4

we obtain the graphs of the adjacent figure. The hyperbola
(1) and the straight line (2) intersect at only one point (4, 2).
The straight lines (2) and
(8) intersect at this very
point. Hence the systems 0]
A and B are equivalent. N\ /

[

80. Special devices. Sys-
tems of equations are i 2
often met which can be N
solved by substitution, 3 (1
but which are more con-
veniently solved as in the
following illustrations. It should be observed that in every
case the aim of the device is to replace the given system by
an equivalent system of linear equations, or by a system in
which one equation is quadratic and the other linear,

x

~p—t
ol —
-

Y

EXAMPLES
1. Solve the system { +y=T M
. xy = 6. 2
Solution: Squaring (1), 224 22y + y% =49. ®3)
2)-4, 4zy = 24. @)
3)— (), 2% — 2zy + y% = 25. ®)
From (5), z—y==b5. 6)

From (6) and (1),A{§jzzgj gg B{;izzio 8

FprA,x:G,y:l; and for B,z =1, y = 6.



148 - SECOND COURSE IN ALGEBRA

The derived systems 4 and B are equivalent to the original sys-
tem (1), (2). The graphs of the adjacent figure show that the straight

7/
8
s (8)
/7
7
AT\
v N
= 3
s 5 y)1%
el N\ [(2)
|
V3 4 /7 X
X
N ’I . O ,/
%
P ™~ ,/ (l)
7
d (2) v
4
7/
7/
7/
’/
4
7
’
Y!

line (1) and the hyperbola (2) have the same points of intersection
as the three straight lines (1), (7), and (8) of systems 4 and B.

A method similar to that of the preceding solution can be applied
to the following system :

2. Solve{x‘*—y‘:?’" (€Y)
xy = 6. 2
Solution: (2)-2, 2y =12. 3)
O+ 3), 22 4+ 2xy + y? = 49. (€]
From (4), r+y=+T7. ®)
-3, 22— 22y + y* = 25. 6)
From (6), x—y=d=435. ©)
(5) and (7) combined give four systems of eqtmtions:
4 .Z‘+j_7, (®) rx+J— , (11)
=5 (9) Ne—y=5 (9
B{x+J—7, () rz+J——7, (11)
z—y=—5 (10) Ple—y="1s. (10

The solution of 4, B, C, and D is left to the student.
In the figure on page 149 the graphs of (1) and (2) are the circle
and the hyperbola respectively, the two curves having four points of
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intersection. The graphs of the four equations in the systems A4,
B, C, and D are the four straight lines. These four straight lines
intersect in the four points in which the hyperbola and the circle

\,
\
Nz
L~ AN
N
A A NN N
)4 / A
/ A ASA
o
7 < “\ 7
7 . NN
2 {

UBRN d 4 N\, \.
~J7 Ol 7 N
/I \\\ ,,

\\ I, /
4
N . , )
4
NI L P
N P L~
N
[
I
I r

intersect. This shows that the four sets of roots belonging to the
system (1), (2) are identical with the four sets belonging to the
four systems A4, B, C, and D; that is, the one system, (1) (2), is

equivalent to the jfour systems A, B, C, and D. ‘

EXERCISES

Solve in a manner similar to that of the two preceding
examples, pair results, and check each set of real roots :

1 x—y=4, 5 4da? — 6xy + 042 = 24,
T ay = 5. Tay—20=0.

9 z+2y=38, 6 42° + y* = 25,

Tay 4+ 6=0. TAxt+ 4y + oF =49,
3 x? 4+ 442 =101, v 2+ 42 =15
“xy+5=0. "x+ 2y =33

'4- Cx —y = 24, 8 a? — 2xy = 16,

3642 + 42 = 288. - Yo _ay=—8.
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. .’L'2+3/2—13, 11. 92+ 18ay + 942 = 1.
1 1 1
2y =" 2T =%
12.1 1
i—l+1:7 ——I——-:5.
0. % w ¥ A
11 o, @ =g
x y Tdxy=4d

81. Use of division in equations. Sometimes an equation sim-
pler than either of those given can be derived from a system
by dividing the left and right members of the first equation by
the corresponding members of the second. Then the equation
so obtained taken with one of the first two gives a derived
system more simple than the original one but not always
equivalent to it. The conditions under which the two are
equivalent, however, is easily stated and explained.

TueorEM. Let U, V, K, and R be rational integral expres-
stons in two unknowns, x and y. Then the system

UK =VR, 1)
u=v ®)
is equivalent to the two systems
K =R, 3) and U=0, @
v=v, 2 V=o0. (5)
Proof. Substituting U for V" in (1), transposing, and factoring, gives
UK—-R)=0. (6)
From (2), U-V=0. )

But the system (6), (7) is equivalent to the two systems (3), (2)
and (4), (). This is at once apparent since it can be seen from
inspection that any set of roots which satisfies (3), (2) or (4), (3)
will satisfy (6), (7); and conversely.

Now if U or Vis an arithmetical number (not zero), the system
(8), (2) alone is equivalent to the original one, since either (4)
or (5) would not in that case involve any unknown.

-
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Therefore in a system of the form of (1), (2) we may use
division and thereby obtain one simpler equivalent system ¢f
U or Vis an arithmetical number. In any other case we can
at once write down the two systems which are equivalent to
the original one. Either of these courses makes it easier to
obtain all the sets of roots which satisfy the original system.

EXAMPLES

In Examples 1, 2, and 3 division gives in each case the one
equivalent system on the right.

1 2 —yt =12, x —y =2, (See graph, p.147.)
"z +y=0. x +y=06. (One set of roots.)

9 2?—y=404+6y—8 xt+y=2x+3y—4,
Te—y=2 x —y=2. (One set of roots.)

3 z® + 9* = 28, x* —ay 4+ y* =T, (See graph, p.152.)
T4 y=4 z+y=4. (Two sets of roots.)

' — P =6x+3y—18,
x—y=2x+y— 6.
{w2+wy—l—y2=3, and (z—y=0,

x4+ 2y=06, 12x+y+6=0. (Three sets of roots.)

4. Division gives the ¢wo systems:

The first system in Example 3 has two sets of roots, that in
Example 4 has ¢hree. Hence the use of division without a
correct use of the theorem on page 150 would frequently
result in an incomplete solution. If time permits, the student
should graph the equations of Example 4.

EXERCISES

Solve (using division where possible), pair results, and check
each set of real roots:

42 — 9y? =16, 1 1

) = =15
2a;+g/=8. 3 a2 :1/2

R — 75 =0, 1.1 g,

" Rh =15. z oy
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9 2%k — 100 = 0, 42 +T=8ay + 517

4. 31%%h + 80 = 0. 1. 4> =1+ 92
5. P(1+7)*= 22472, 12 B+yPf=4x—6y—38,
P+PT=212. .96+jl/=2-’11433/—4-
9a?y® + 6 =15 xy, 5 .
b 3ay+4=6. 13. 7 _3/_‘369”’
at =9yt + 48 roy=es
)
v 1'2:3'?/2+2. 14. $3+7_/3:28,
gt zx+y=4.
o5 = = 3.2. 2 2
8. 5 16, gt = 8. s W ay =T,
9. 1—a=y1—a=y. Bt P = 28,
10 x® — 2xy — 24 4 = 32, 16 z+y=4,
Tz —06y=2. -y +yr=T.

In the following figure I, IT, and ITI are the graphs of 2% + 3% = 28,
22— zy+ y2 =7, and z + y = 4 respectively. These equations are
taken from the systems in Exercises 14, 15, and 16 which contain

Ins

\\\
o \
\
|
N 4 /! "
- / O /B
T e N
N \ AN
ES ALl
N

’

Y
1

but three different equations paired in three ways. Since the two
sets of roots for each is the same, we know that the three systems
are equivalent. The equivalence of the three systems is also shown
in the preceding figure.
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MISCELLANEOUS EXERCISES

Solve by any method, pair results, and check each set of
real roots:

(If any system cannot be solved algebraically by the methods
previously given, solve it graphically.)

1 2a% + y* =33, 5 x? =y,

a4 297 =54, T xy = 8.

9 30?2 — 8% =40, 6 x—axy=>5,
'5/L2+k2=81. "2y +axy=6.

3 2+3#‘E)122,2, 7 x® — 1* =19,

"12RE 4 R} = 3l "o y=1.

4 my+x:18, 8 2 —yf =19,

“xy +y = 20. T2t ay 492 =19,

9 2 + xy + 3y =19,

.m_

=1

10. Show that the systems (7), (8), and (9) are equivalent by
graphing the three equations of these exercises.

L 3¢ —28=0, @ty +a=0,

. 582_3t2: 'w2+x'z/—|—2$:0~
2 lrd 2

12.4n+;)m~ 19, O, T =0,
20 — 5 =mA @ t+ayt+z=0

3 5WE— 6.8W2= 99.55, l 1_ =13,
TWE—WE=20. 20. @y

L 2P =2, iyt
"3ay+ b5y =2 !

15 @+ 2xy + 2y =10, 13—13=77
'3x2_wy_:]/2:51. 21_ x ?/

16, V=T sy~
.1'2+?/:11' N Y

g, B+ =T, 0g, T 22y + 2y —y =0,

x? + 42 =10.

20* — 3wy —y*+2y=0
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23.

24.

25.

26.

27.

28.

29.

30.

31.

SECOND COURSE IN ALGEBRA

2?4 27 = 34,
x® + y* = 25,
P+ 2 =41,

3ay = x*y* — 88,

x—y=6.

x® = 4 37,
oty = xy® + 12.
4 13 9
S——+—=5=9
xr oxy oy
1_1_

zy ¥
x*=8x+ 6y,
y¥=6x+4 8.
2 — P =2x+y—4,
r+2y=4.
Yy = ¢
x—{—y:a.

@~ —y ?=6,
x4y 1=2.

z —y =16,
x’}—y‘}zz

32.

33.

34.

35.

36.
37.
38.

39.

PROBLEMS

1 1 3
x—2"y—2 4
1 _1_1
x oy 12
x* + 622 = 361,
Sxy — a* = 36.

@ —y Vo =24,

x* + zy* = 320.

x—1

1>

Y+y+1_ 13,

22 —x+1 43

12y,

x xy

542

@ wy oy

Jr+y=18=ay

posd gL
y 5 ¥y

24y —(y —x)=12,

2 —ay = 0.

(Reject all results which do not satisfy the conditions of the
problems.)

1. Find two numbers whose difference is 4 and the differ-
ence of whose squares is 88.

2. The sum of two numbers is 21 and the sum of their

squares is 281. Find the numbers.

3. Find two numbers whose product is 192 and whose quo-
tient is 2.
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4. The area of a right triangle is 150 square feet and its
hypotenuse is 25 feet. Find the legs.

5. A rectangular field is 8 rods longer than it is wide and
the area of the field is 8 acres. Find the length and the width.

6. The difference of the areas of two squares is 252 square
feet, and the difference of their perimeters is 24 feet. Find a
side of each square.

7. The area of a rectangular field is 32 acres and one diago-
nal is 60 rods. Find the perimeter of the field.

8. The perimeter of a rectangle is 112 feet and its area is
768 square feet. Find the length and the width.

9. A mean proportional between two numbers is 2 V14, and
the sum of their squares is 113. Find the numbers.

10. The value of a certain fraction is 3. If the fraction is
squared and 44 is subtracted from both the numerator and
the denominator of this result, the value of the fraction thus
formed is 4%. Find the original fraction.

.11. The base of a triangle is 6 inches longer than its alti-
tude, and the area is 3 square feet. Find the base and altitude
of the triangle.

12. The volumes of two cubes differ by 1413 cubic inches
and their edges differ by 3 inches. Find the edge of each.

13. The sum of the radii of two circles is 25 inches and
the difference of their areas is 125 7 square inches. Find the
radii.

14. The perimeter of a rectangle is 5 C and its area is C%
Find its dimensions.

15. The area of a right triangle is 8a% — 80% and its hy-
potenuse is 4 V2a® + 2% Find the legs.

16. The perimeter of a right triangle is 56 feet and its area
is 84 square feet. Find the legs and the hypotenuse.
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17. If a 2-digit number be multiplied by the sum of its
digits, the product is 824; and if three times the sum of its
digits be added to the number, the result is expressed by
the digits in reverse order. Find the number.

18. The yearly interest on a certain sum of money is $42.
If the sum were $200 more and the interest 19, less, the
annual income would be $6 more. Find the principal and the
rate. ‘

19. A wheelman leaves A and travels north. At the same
time a second wheelman leaves a point 3 miles east of A and
travels east. One and one-third hours after starting, the
shortest distance between them is 17 miles; and 3% hours
later the distance is 53 miles. Find the rate of each.

20. The circumference of the fore wheel of a carriage is
1 foot less and that of its rear wheel 3 feet less than the
circumferences of the corresponding wheels of a farm wagon.
In going 1 mile the fore wheel of the carriage makes 40 revo-
lutions more than its rear wheel, and the fore wheel of the
wagon makes 88 more than its rear wheel. Find the circum-
ferences of the carriage wheels.

21. A starts out from P to Q at the same time B leaves Q
for P. When they meet, A has gone 40 miles more than B.
A then finishes the journey to Q in 2 hours and B the journey
to P in 8 hours. Find the rates of A and B, and the distance
from P to Q.

22. A leaves P going to Q at the same time that B leaves
Q on his way to P. TFrom the time the two meet, it requires
6% hours for A to reach Q, and 15 hours for B to reach P.
Find the rate of each, if the distance from P to Q is 300 miles.

23. A man has a rectangular plot of ground whose area is
1250 square feet. Its length is twice its breadth. He wishes
to divide the plot into a rectangular flower bed, surrounded by
a path of uniform breadth, so that the bed and the path may
have equal areas. Find the width of the path.
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GEOMETRICAL PROBLEMS

1. The sides of a triangle are 6, 8, and 10. TFind the alti-
tude on the side 10.

ITinT. From the adjacent figure we
easily obtain the system :

a? + y? = 36, y
(10 — 2)? + y? = 64.

2. The sides of a triangle are 8§,
15, and 17. Find the altitude on
the side 17 and the area of the
triangle.

3. The sides of a triangle are 13, 20, and 21. Find the alti-
tude on the side 20 and the area of the triangle.

4. The sides of a triangle are 7, 15, and 20. TFind the alti-
tude on the side 7 and the area of the triangle.

5. The sides of a triangle are 10, 17, and 21. Find the
altitude on the side 10 and the area of the triangle.

6. Tind correct to two decimals the altitude on the side 16
of a triangle whose sides are 12, 16, and 18 respectively.

7. The parallel sides of a trapezoid are 14 and 26 respec-
tively, and the two nonparallel sides are 10 each. Find the
altitude of the trapezoid. '

IiNT. Let ABCD be the trapezoid. Draw CE parallel to DA and
CF perpendicular to 4 B.

8

10— X

Then EC =10, AL =14, D 14 (o4
and EB = 26 — 14, or 12. %
/7

It we let EF =2, I'D 10 10// 57 o
must equal 12 — z; then J :-/
we can obtain the system 4 e/ F B
of equations: I

22 + 32 =100, 14 m—>L-12-z—>|

(12 — z)2 4 y? =100.
8. The two nonparallel sides of a trapezoid are 12 and 17

respectively, and the two bases are 5 and 13 respectively.
Find the altitude of the trapezoid.
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9. The bases of a trapezoid are 15 and 20 respectively, and
the two nonparallel sides are 29 and 30. Find the altitude of
the trapezoid and the area.

10. The sides of a trapezoid are 12, 20, 17, and 45. The
sides 20 and 45 are the bases. Find the altitude and the area.

11. The sides of a trapezoid are 21, 27, 40, and 30. The
sides 21 and 40 are parallel. Find the altitude and the area
of the trapezoid.

12. The sides of a trapezoid are 23, 85, 100, and z. The
sides 23 and 100 are the bases, and each is perpendicular to
the side «. Find 2 and the area of the trapezoid.

13. The parallel sides of a trapezoid are 42 and 250. The
other sides are 123 and 325. Find the altitude and the area
of the trapezoid.

14. The area of a triangle is 1 square foot. The altitude
on the first side is 16 inches. The second side is 14 inches
longer than the third. Find the three sides.



CHAPTER XII
PROGRESSIONS

82. Definitions. In all fields of mathematics we frequently
encounter groups of three or more numbers, selected according
to some law and arranged in a definite order, whose relations
to each other and to other numbers we wish to study.

The individual numbers or expressions are called zerms.

In the following examples the law of formation and the
order of the terms are so obvious that the student can write
down many additional terms.

EXERCISES

Write three more terms in each of the following:

1.1,2,3,4,5, - 5.1, 8% 52, ...
2.2,4,6,8, . 6. V1, V2, V3, ....
3.9,87,6, - 7.2,4,8 16, ...
4. —1, -3, —5,—T,---. 8. 1,4, 1, %

1 1 1 1

9.1

’1’1.2’1.2.83'1.2.3.4" "
10. 1,1+V2, 1422, ...

There is an unlimited variety of such groups or successions
of numbers. Only two simple types will be considered here.

83. Arithmetical progression. An arithmetical progression is a
succession of terms in which each term after the first, minus
the preceding one gives the same number.

This same number is called the common difference and may
be any positive or negative number.

159
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The numbers 3, 7,11, 15, - - - form an arithmetical progression,
since any term after the first,minus the preceding one gives 4.
Similarly, 12, 6, 0, — 6, — 12, ... is an arithmetical progression,
since any term minus the preceding one gives the common
difference — 6. In like manner, %, 5, 64, --- is an arithmetical
progression whose common difference is 1}.

EXERCISES

From the following select the arithmetical progressions, and
in each of them find the common difference :

1. 4,20, 91, .. 6. 18,8, — 2, ....
2. 10,16}, 23, ---. - 7.5a+2,3a+1,a,- .
3.2,4,8,---. - 8.3xz—5,2x4+8,x—17,---.
4.9,123,15,---. 9 6
5. 25,21, 17, - -. 9'%’7@’\@""'
10, \/5—2’2(\/5—1)’ o
3 3 3

84. The last or nth term of an arithmetical progression. If a
denotes the first term and d the common difference, any arith-
metical progression is represented by

a,a+d,a+2d,a+3d, a+4d, ete.
Here one observes that the coefficient of d in each term is one
less than the number of the term. Hence the nth or general
term is @ + (n —1)d. If I denotes the nth term, we have

l=a+(n—1)d. 4)

EXERCISES
. Find the 12th term of the progression 1, 5, 9, 13, ...
Find the 23d term of the progression —18, —15, —12,...,
Find the 15th term of the progression 13, 7,1, — 5, .- ..
Find the 19th term of the progression a, 3a, 54, ---
Find the 7th and 12th terms of the progression %,1%,1,--..

A
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6. Find the 5th and 20th terms of the progression 1, @ + 1,
1+2a,---.
7. Find the 10th term of the progression 7V2, 52,
3V2, ...
8. Find the 9th term of the progression 5
3= .\/g, e
5 .
9. Find the (n —1)st term of the progression a, « + d,
a+2d,---. :
10. Find the (n — 2)d term of the progression «, a 4+ d,
a—+2d,---.
11. Find the (n — 3)d term of the progression V5 —1,
2V5—2 3(V5—1), -

12. Find the nth term of the progression o

n—1 3
y 2— =5 e,
n

13. The first and second terms of an arithmetical progres-
sion are % and % respectively. Find the third term and the
nth term.

14. The first and third terms of an arithmetical progression
are  and k. Find the nth term.

15. A body falls 16 feet the first second, 48 the next, 80 the
next, and so on. How far does it fall during the 10th second ?
during the nth second ?

' 85. Arithmetical means. The arithmetical means between two
numbers are numbers which form, with the two given ones as
the first and the last terms, an arithmetical progression.

The insertion of one or more arithmetical means between
two given numbers is performed as in the following:

Example: Insert three arithmetical means between 5 and 69.

Solution: [ =a + (n —1)d.

There will be five terms in all.

Therefore 69=54+(B-1)d

Solving, d =16.

The required arithmetical progression is 5, 21, 37, 53, 69.



162 SECOND COURSE IN ALGEBRA

EXERCISES

Insert the arithmetical mean between 3 and 15.

Insert the arithmetical mean between /. and 4 k.

Insert two arithmetical means between 2 and 17.

Insert two arithmetical means between a and 0.

Insert three arithmetical means between — 4 and 16.
Insert three arithmetical means between m and n.
Insert six arithmetical means between 3 and 45.

Insert nine arithmetical means between 3 and 1#.
Insert four arithmetical means between — V2 and 9 V2.
10. Insert five arithmetical means between 7Tx — 3« and

132 4+ 9a.
o . 5 155
11. Insert six arithmetical means between P and 5
5

2V

© ® e oR WD

12. Insert two arithmetical means between and

2
Va(1—2v3). V2 -1
13. What is the arithmetical mean between any two numbers ?

14. In going a distance of 1 mile an engine increased its
speed uniformly from 20 miles per hour to 30 miles per hour.
What was the mean or average velocity in miles per hour
during that time ? How long did it require to run the mile ?

15. The velocity of a falling body increases uniformly. At the
beginning of the third second its velocity is 64 feet per second,
and at the end of the third second it is 96 feet per second.
(«) What is its mean or average velocity in feet per second dur-
ing the third second ? (¢) How many feet does it fall during
the third second ?

16. The velocity of a body falling from rest is 32 feet per
second at the end of the first second. What is the mean or
average velocity in feet per second during the first second ?
How many feet does the body fall during the first second ?
the second second ?
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17. Find the mean or average length of 25 lines whose lengths
in inches are the first 25 even numbers.

18. Find the mean length of 17 lines whose lengths in inches
are given by the consecutive odd numbers beginning with 11.

19. With the conditions of Problem 15 determine the average
velocity per second of a body which has fallen for 10 seconds.

20. A certain distance is separated into 8 intervals, the
- lengths of which are in arithmetical progression. If the shortest
interval is 1 inch and the longest 22 inches, find the others.

86. Sum of a series. The indicated sum of several terms of
an arithmetical progression is called an arithmetical series. The
formula for the sum of » terms of an arithmetical series may
be obtained as follows :

S=a+@+d)+@+2d)++U—-2d)+U—d)+ 1 (1)
Reversing the order of the terms in the second member of (1),
S=l+(l—d)+(@—-2d)+ -+ (a+2d) +(a + d)+ a. (2)
Adding (1) and (2),
28=(@+H+@+D+@+)+--+(@+D)+(a+))+ (a+1)
=n(e + ).
n

Therefore S= é(a +1). (B)
Substituting for ¢ from (4), page 160,

§=3 (@ +[a+(n—1)d)).

S=g[2a+(n—1)d]. (©)

EXAMPLE

Required the sum of the integers from 11 to 99 inclusive.
Solution: n =89, a =11, 7= 99.

T _n . _89(11+99)
Substituting in (B), S = 5 (a+ 1) gives S = — =

4895.
Therefore the sum of the integers from 11 to 99 is 4895.
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EXERCISES

1. Find the sum of 10 terms of the series 2+ 5+ 8 +--..

2. Find the sum of 18 terms of the series 10 48 4 6 +-.-.

3. Find the sum of 10 terms of the arithmetical progression
8, 4}, 47, .-+

4. Find the sum of 12 terms of the arithmetical progression
18, 144,11, ---.
. Find the sum of the first one hundred integers.

ot

6. Find the sum of the first one hundred even numbers.
7. Find the sum of the first one hundred odd numbers.
8. Find the sum of the even numbers between 187 and 433.
9. Find the sum of the first » odd numbers.
10. Find the sum of the first » even numbers.

11. How many of the natural numbers beginning with 1
are required to make their sum 903 ?

Hixt. Substitute in formula (C) preceding.

12. How many terms must constitute the series 5 49 +
13 ++. - in order that it may amount to 275?

13. Beginning with 80 in the progression 78, 80, 82, how
many terms are required to give a sum of 510? Explain.

14. The second term of an arithmetical progression is — 7
and the seventh term is 18. Find the eleventh term.
15. Find the sum of ¢ terms of the arithmetical progression
t—1

¢
16. If =29, a = 2, and d = 3, find »n and s.
17. If a = 3, d = 4, and s = 300, find » and Z
18, If d = —11, =13, and s = 0, find @ and Z
19. The first and second terms of an arithmetical progres-
sion are % and % respectively. Find the sum of n terms of
the progression.

& =

I} 9 e,
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20. If s=—-33,ca=5x+ 2,and n =11, find 7 and d.
21. If s =40V?2, a =— 5V?2,and d = 22, find n and 7.

. 22. A clock strikes the hours but not the half hours. How
many times does it strike in a day ?

23. A car running 30 miles an hour is started up an incline,
which decreases its velocity 2 feet a second. (2) In how many
seconds will it stop ? () How far will it go up the incline ?

24. A car starts down a grade and moves 4 inches the
first second, 12 inches the second second, 20 inches the third
second, and so on. (a) How fast does it move in feet per
second at the end of the twenty-first second ? (0) How far
has it moved in the twenty-one seconds ?

25. An elastic ball falls from a height of 20 inches. On each
rebound it comes to a point % inch below the height reached the
time before. How often will it drop before coming to rest?
Find the total distance through which it has moved.

26. The digits of a 3-digit number are in arithmetical pro-
gression. The first digit is 2'and the number is 17} times the
sum of its digits. Find the number.

27. A clerk received $75 a month for the first year and a
yearly increase of $50 for the next ten years. Find his salary
for the eleventh year and the total amount received.

28. Fifty dollars was deposited in a bank every first of
March from February 28, 1893, to March 2, 1904. If the
money drew simple interest at 39, find the amount due the
.depositor on March 1, 1905.

29. Assuming that a ball is not retarded by the air, deter-
mine the number of seconds it will take to reach the ground if
dropped from the top of the Washington Monument, which is
555 feet high. With what velocity will it strike the ground ?

30. A ball thrown vertically upward rose to a height of
256 feet. In how many seconds did it begin to fall? With
what velocity was it thrown ?
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31. A ball thrown vertically upward returned to the ground

7 seconds later. How high did it rise ? With what velocity

was it thrown ?

32. A pyramid of billiard balls stands on an equilateral
triangle, 10 balls on a side. How many balls are there in the
bottom layer ? in the whole pyramid ?

33. A and B start from the same place at the same time
and travel in the same direction. A travels 12 miles daily.
B goes 7 miles the first day, 74 miles the second, 8 miles the
third, and so on. When are they together ?

34. A leaves P and travels south 2 miles the first day, 4
the second, 6 the third, and so on. Five days later B leaves
P and travels south at the uniform rate of 28 miles a day.
When are they together ?

Note. In the earliest mathematical work known a problem ‘is -
found which involves the idea of an arithmetical progression. In
the papyrus of the Egyptian priest Ahmes, who lived nearly two
thousand years before Christ, we read in essence, “ Divide 40 loaves
among 5 persons so that the numbers of loaves that they receive
form an arithmetical progression, and so that the two who receive
the least bread, together have one seventh as much as the others.”
From that time to this, the subject has been a favorite one with
mathematical writers, and has been extended so widely that it
would require several volumes to record all of the discoveries
regarding the various kinds of series.

87. Geometrical progression. A geometrical progression is a
succession of terms in which each term after the first, divided
by the preceding one always gives the same number.

The constant quotient is called the ratio.

The numbers 2,10, 50, 250, - - -, form a geometrical progression,
since any term after the first, divided by the preceding one
gives the same number 5. Similarly, the numbers 3, — 3 V2,
6, —6V2,..., form a geometrical progression, since any term
after the first,divided by the preceding one gives the common

ratio — V2.
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EXERCISES

Determine which of the following are geometrical progres-
sions and find in each case the corresponding ratio:

1. 2618, ... 8. V2, V6, V54, ...
2. 15,5, 1, ---. 1 V2

9. ——=) ——=,2, ...
3.18, — 3,1, VA 2
4.2, 4,16, ... 10. Ta, 3542 17548, .- ..
5.8, —4V2, 4, ... 11. 85, — 25, V5, -
6. V2, V1, 1V, ... 12. 5a? 10a%y, 202%P, - --
7.1,3,9,81, ... 13. 3%“7/%, 12%%’1,487%,

14. Find the condition under which a, 6, and ¢ form a geo-
metrical progression.

88. The nth term of a geometrical progression. If a denotes
the first term and » the ratio, any geometrical progression is
represented by a, ar, ar®, a2®, ---. It is evident that the ex-
ponent of » in any term is one less than the number of the
term. Therefore if ¢, denotes the nth or general term of any

geometrical progression,
t,=ar"" % 4)

EXERCISES
1. Find the fifth term of 4, 12, 36.

Solution: Here a =4,7r=3,n—1=4.
Substituting these values in the formula ¢, = arn—1,
t,=4.34 =324,
2. Find the tenth term of 3, 6, 12, .- ..
3. Find the eighth term of 2, 3, &, ---.
4. Find the twelfth term of 5, — 10, 20, - ...
5. Find #, of the geometrical progression $100, $106,
$112.36, .. ..
6. Find ¢, of the geometrical progression 18, — 6, 4 2, ...,
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7. Find ¢,, of the geometrical progression12a, 9 «, 2—23 PR
. . . —2¢ —3
8. Find ¢, of the geometrical progression 5 1, 5,0
¢
9. Find ¢, of the geometrical progression 4 V2, 4, 2V2.
10. Find ¢, of the geometrical progression -2—157 :(1—5; % :
11. Find ¢, of the geometrical progression QL\/Q, 1, 2—;/2 .

12. The nth term of a geometrical progression is a»*~1. What
is the (n—1)st term? the (n —2)d? the (n —3)d? the
(n+1)st? the (n 4 2)d?

13. The first and second terms of a geometrical progression
are /» and % respectively. Find the next two terms.

89. Geometrical means. Geometrical means between two num-
bers are numbers which form, with the two given ones as the
first and the last terms, a geometrical progression.

EXERCISES

1. Insert two geometrical means between 9 and 72.

Solution: There are four terms in the geometrical progression,
a=9,n=4,and t,=1t,="T72.
Substituting these valuesin ¢, = ar*—1,
' 72=97% .
‘Whence r=2.
The required geometrical progression is 9, 18, 36, 72.

Insert two geometrical means between 6 and 48.
Insert three geometrical means between 6 and 4.86.

Insert one geometrical mean between 4 and 9.

Insert one geometrical mean between «'° and «*.

A

Insert three geometrical means between — 144 and — 9.
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7. The fifth term of a geometrical progression is 32, the
ninth term is 512. Find the eleventh term.

8. The second term of a geometrical progression is 3 V2,
the fifth term is . Find the first term and the ratio.

9. Show that the geometrical means between %2 and % are
+ Vik.

10. The first and fourth terms of a geometrical progression
are & and k. Find the second and third terms.

11. Insert three geometrical means between a and c.

12. The sum of the first and third terms of a geometrical
progression is 13 and the second term is 6. Find each term.

13. In the adjacent figure ABC is

aright triangle and 4 D is perpendic- yS

ular to the hypotenuse BC. Under

these conditions the length of 4D

is always a geometric mean between = .

the lengths of BD and DC.

(a) If BD =4 and DC =19, find 4D.
(b) If BC =26 and 4D =12, find BD and DC.

14. In the adjacent figure A D
touches and 4D cuts the circle.
Under such conditions the
length of AB is always a geo-
metric mean between the lengths
of AC and AD.

(«) If AD =16
and AC =9, find 4B.
(0) If DC =24 and AB =16, find AC and 4D.

B

90. Geometrical series. Let S, denote the indicated sum of »
terms of a geometrical progression. This indicated sum is
called a geometrical series. Obtaining in its simplest form the
expression for this sum is often called finding the sum of
the series.
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The expression for the sum is derived as follows :
S,=a+4ar+ar?+- - a4 a2 f a1, @
@)ry, rS,=ar+af far’ 4 4 a4 @ 4 (2)
The terms ar, ar? ete., up to ar"~!in the right member of
(1), occur in the right member of (2). Hence if (2) be sub-
tracted from (1), all these terms vanish, leaving only @ and ar".
1D —(2), S, — S, =a — ar".
‘Whence S,1—ry=a— ",

a—ar®
T (B)

and S, =

EXERCISES
1. Find the sum of the first ten terms of 5, —10, 20, --..

a— art
1—7
By the conditions, ¢ =5, r=—2, and n =10.

5 —5(—2)10 -
=—"2=1705.
1—(=3 1705

Solution : S, =

Substituting, Sio

Find the sum of 1, 5, 25, - -- to seven terms.
Find 8, for the progression — 2, 4, —8,....
Find 8, for the progression 50, 10, 2, ...

Find 8, for the progression 180, — 90, 45, - ...
Find S, for the progression %, 1, §,---.

Find §, for the progression ¢’ ¢% ¢/, - .

Find S, for the progression 3 V2,6,6V2, .
Find S, for the progression 81, — 27 V3, 27,
Find S8, for the progression 3, 15, 75, .- ..

R T R

-
= o

. Find S,_, for the progression 2z, 4z 827, ....

a — 7l

1—7r
13. What will $100 amount to in three years, interest 49,

compounded annually ? compounded semiannually ?

12. Show that for a geometrical progression S, =
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14. A rubber ball falls from a height of 40 inches and on
each rebound rises 409, of the previous height. How far does
it fall on its sixth descent? Through what distance has it
moved at the end of the sixth descent ?

15. A vessel containing wine was emptied of one third of its
contents and then filled with water. This was done six times.
What portion of the original contents was then in the vessel ?

16. At each stroke an air pump withdraws 40 cubic inches
of the contents of a bell jar whose capacity is 400 cubic inches.
After every stroke the air remaining in the jar expands and
completely fills it. What portion of the original quantity of air
remains in the jar at the end of the tenth stroke ?

91. Infinite geometrical series. If the number of terms of a
geometrical series is unlimited, it is called an infinite geomet-
rical series.

In the progression 2, 4, 8, - .- the ratio is positive and greater
than 1, and each term is greater than the term preceding it.
Such a progression is said to be increasing. Obviously the sum
of an unlimited number of terms of an increasing geometrical
progression is unlimited. In other words, by taking enough
terms the sum can be made as large as we please.

In the progression 3, 3, 2, --- the ratio is positive and less
than 1, and each term is less than the term preceding it. Such
a progression is said to be decreasing. Though the number of
terms of such a geometrical progression be unlimited, the sum
is limited ; that is, the sum of as many terms as we choose to
take is always less than some definite number. The sum of the
first 3 terms of the series 4 +2 4144 +14---is 7; of 4 terms
is 74; of 5 terms is 7T4; of 6 terms is 7F; of 7 terms is T14.
Here, for any number of terms, the sum is always less than 8.

Ca— art

The formula S, = 1, : @

may be written S,=T——7T" 2
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For the series 3+ 3 4+ 23 +---,
S__3__3_(’ITX. (3)

1) 13

Now =% 3)*=4 3=+ ®)° =45 Consequently
()" becomes very small if n is taken very great. Therefore
3(¥)", the numerator of the last fraction in (3), decreases and
approaches zero as n increases without limit. And hence as the
denominator of the fraction remains 4 while the numerator
approaches zero, the value of the fraction decreases and ap-
proaches zero as n increases. Then if S, denotes S,, where n
has increased without limit, we may write

S approaches - or 6.

1—4

This means that, though n be very large, the sum of the
series 3 + § + 3 + --- is always slightly less than 6.

The following is a geometrical illustration of the preceding series:

In the adjacent figure triangles 4 BC, DIIF, GII1, etc., are equi-
lateral. DI is formed by joining the middle points of the sides of
ABC, etc. Imagine this process
continued until an unlimited
number of triangles is so
formed. Now [I'LL is } of AB,
GH is 1 of L, ML is § of
GH,etc. Therefore,if AB=1,
FE =1, GH =%, VL =1, ete.
Hence the perimeter of A BC is
3; of DEF, &: of GHI, $; ete.
Thus the perimeters of the
successive triangles form the
progression 3, §, , - .., the limit
of whose sum was found to be 6.

C

In the general case, if » is numerically less than 1, the

numerical value of fraction

ar : .
1 approaches zero as 7 in-
—_—7r

creases without limit. Under such conditions the formula

a ar® a
S, =-——— —— becomes S =

1—r 1—7 1—»
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This means that for » numerically less than 1, S, approaches
a

5 but for any definite value of = it is always numeri-

éally less than this number.
Hence whenever we speak of the sum of such a series we mean
the limi¢ which the sum approaches as » increases indefinitely.

EXERCISES

Find the number which the sum of the first » terms of each
of the following approaches as n increases without limit:

13,1,

Solution : S = —2
1—7r
Substituting, Sw = 1 i 1 =41.
L s R TIET
3.2, —1,1, 5.2, V2,1, 4 16
7. 1, x, x <1 1 1
b b b ’( ) .1, =, 7,".’(x>1)‘
8. 3,3, 1, x oz
10. .515151 ... Hunrt. 515151 = &% + 1o + 1ovsoos + -
11. .666---. 13. .3939.--. 15. .72121....

12. .272727.... 14. 25.3636---. 16. .3091091-...

17. A flywheel whose perimeter is 5 feet makes 80 revolu-
tions per second. If it makes 999 as many revolutions each
second thereafter as it did the preceding second, how far will a
point on its rim have moved by the time it is about to stop ?

18. The area of the triangle 4BC (page 172) is 2 V3; of tri-
angle DEF, & V3 ; of triangle GHI, £; V3, ete. Find the sum
of the areas of all the triangles drawn as there supposed.
19. The square EFHG is formed by joining the middle points
of the adjacent sides of the square ABCD on page 174.
If an unlimited number of squares is so formed, the perime-
ters of the squares will form a geometrical progression the first
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three terms of which may be obtained as follows: Let AB = 2;
then EB = BF =1. EF canthen be found from right triangle
EBF; EL is $of EF,
and EK = EL. Then
KL can be found from
the right triangle
KEL. The perimeters
of the first three
squares can then be
found. H F

(¢) Show that the '
limit of the sum of
the perimeters of all K L
of the squares is

16 4+ 8 V2.

(0) Show that the 4 E B
limit of the sum of the areas of all the squares is 8 square units.

D G (o4

20. A loan of S dollars is to be repaid in four equal annual
payments of p dollars each. Find p if money is worth »9%.

Solution: The sum due at beginning of second year

c=8SA+r)—p. @
The sum due at beginning of third year
=[SA+n)—p]A+r—p @
The sum due at beginning of fourth year
={[S(1+ r—p](1+ 7')—])}(1+ r)—p. 3)

The sum due at beginning. of fifth year
=[S +n=-plA+D=ptA+n)=p]A+n—p. )
By the conditions of the problem, (4) = 0, for all the debt has then
been paid. Setting (4) equal to zero and simplifying,
SA+D)*—pA+r)—pA+nr)i—pA+r)—p=0. ®)
Solving (5) for p,

S+ r)t
g (L)

A+ + A+ +Q+n+1 ®
But the denominator in (6) is a geometrical series whose sum
a1+nrt—1
-

by formula (B), page 170, is
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' . 4
Substituting this last in (6), p = ('f’_&;)ti)l . Q)
In the general case, if we have n annual payments, the exponent
Sr(l+ )"

4 in (7) would be replaced by n, and then p = at+)—1

21. A loan of $1000 is to be repaid in three equal annual
payments, interest at 59,. Find the payment.

22. A loan of $5000 bearing interest at 6¢ is to be repaid
in five equal annual payments. Find the payment.

Note. In the study of geometrical progressions we have seen that
the sum of the infinite series 1+ 224 2%+ 2%+ ... is a definite
number when z has any value less than one. But it has no finite
value when 2 is equal to or greater than one; that is, we have an
expression which we cannot use arithmetically unless z has a prop-
erly chosen value. If we were studying some problem which in-
volved such a series, it would be a matter of the most vital impor-
tance to know whether the values of x under discussion were such
as to make the series meaningless.

This question of distinguishing between expressions the sum of
whose terms approach a limit or converge, and those which do not,
has an interesting history. Newton and his followers in the seven-
teenth century dealt with infinite series and always assumed that
they converged, as, in fact, most of them did. But as more compli-
cated series came into use it became more difficult to tell from in-
spection whether they meant anything or not for a given value of
the variable.

It was not until the beginning of the nineteenth century that
Gauss, Abel, and Cauchy, in Germany, Norway, and France, re-
spectively began to study this subject effectively, and to devise far-
reaching tests to determine the values of z for which certain series
converge to a finite limit. It is said that on hearing a discussion
by Cauchy in regard to series which do not always converge, the
astronomer La Place became greatly alarmed lest he had made use
of some such series in his great work on Celestial Mechanics. He
hwrried home and denied himself to all distractions until he had
examined every series in his book. To his intense satisfaction they
all converged. In fact, it has often been observed that a genius can
safely take chances in the use of delicate processes, which seem very
foolish and unsafe to a man of ordinary ability.



CHAPTER XIII
LIMITS AND INFINITY

92. Limits. The numerical value V of the recurring decimal
.666 - .. is a variable depending on the number of 6’s annexed
on the right. Every 6 thus repeated increases 7, and the num-
ber of 6’s which may be so repeated is unlimited. Still V always
remains less than %, though constantly approaching nearer and
nearer to that value. Here the fraction % is called the limit of
the variable V.

93. Definition of a limit. Ifa variable 7 takes on successively
a series of values that approach nearer and nearer to a fixed
number L in such a manner that the numerical value of v — L
becomes and remains as small as we please, then ¥ is said to
approach the limit L.

This may be written limit of V = L.

The symbol = gives us the equivalent notation ¥ = L, which
is read V approac‘hes L as a limit.

94. Infinity. If a variable n» takes on in succession all the
values 1, 2, 3, 4, ---, we can conceive of no final value for =,
since the system of natural numbers is unlimited. Here we
may say n increases without limit, or n becomes infinite.

95. Definition of the term ¢¢infinite.”” If a variable » becomes
and remains greater than any positive number %, however great,
we say n increases without limit, or n becomes infinite.

The usual symbol for a variable which has become infinite
is the sign oo, read infinity.

Infinity is not a number in the sense in which 2, V6, and
— 7 are numbers. It is greater than any number. For present

176
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purposes it must be regarded as a manner of speech rather
than as a number that can be added, subtracted, multiplied, or
divided, as ordinary numbers are. In fact, we cannot operate
with the symbol o as we can with numbers.

Note. Some idea of the reason why we cannot regard o as a num-
ber, and operate with it as we do with ordinary numbers, may be
seen if we consider all even numbers, 2, 4, 6, 8, 10, -... Evidently
they may be continued as far as we wish, but the number of them
all cannot be expressed by any integer, for it is greater than any
number; that is, it is infinite. But the number of all integers, both
odd and even, was also called infinite, and we symbolize both infini-
ties by the same sign, . We have, then, two infinities which are
equal, or at least they are represented by the same symbol, but one
contains the other. This is contrary to the axiom which we always
assume for finite numbers; namely, that the whole is greater than
any of its parts. Surely it is not strange that we cannot operate
freely with a symbol which violates this fundamental principle.

We may have a negative infinity as well as a positive one.
In order to indicate the
range of values which both +20
x and y may take in graphi-
cal work, the axes are often
marked as in the adjacent
figure. : -—co +oo—]

2 1 [0
A constant number, how- !
0.

ever large, is never spoken
of as infinite. -

If the variable » in — takes

" 1

on in succession the values 1, 2, 3, 4, .-, no final value of —

. . . . o1 n

can be imagined. But as n increases without limit — becomes
n

very small and approaches nearer and nearer to zero without
actually becoming zero. :
. . .o,
In general, if @ in the fraction — is any constant not zero,
n

. . . . L@
and » a variable increasing without limit, — approaches zero as
n

a limit. Unfortunately, in elementary mathematics there is
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not in general use a symbol for a variable whose limit is zero,
though such a symbol would be a great convenience.

The student will frequently meet the statement % equals

zero. This statement is, of course, meaningless until it has
been defined, but it may properly be regarded as a way of

. « . .. .
saying that — approaches zero as a limit when #» is indefinitely
. n

increased.

a N .
96. Interpretation of o Division by zero is excluded from

mathematics for two reasons: («) It is never necessary. (b)
It would give rise to endless ambiguities and difficulties.

a .
Results of the form o’ where a is a constant not zero, fre-
quently arise. According to the rules of computation, however,

a
0
is not a definite number, results of this form may sometimes
admit of interpretation.

As an illustration of this, consider the following

such an expression has no meaning. Though it is true that

EXAMPLE
. —2y=1 1
Solve by determinants the system x y= @)
tz—y=2 @
1 =2
: _12 -1 -144_3
Solutmn.azc_1 5= 1-1 0
3 -1
11
1r 9 Q9 __ "
and y=132_"1_= §_15

0 0 0

The graphs of (1) and (2) are parallel lines. For such lines
there is no point of intersection and consequently the sys-
tem has no set of roots. Now as the results for z and ¥ are

of the form %, the attempt at solution by determinants fails
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Therefore the interpretation of these results is that no set of
roots exists for the system (1), (2).
In general, if for any system of linear equations the results

obtained are of the form 9, the system has no set of roots;
0 Yy H

that is, the system is inconsistent.
If the student meets the statement :—)l = o, he should regard it as a

loose use of the statement that < becomes infinite as n approaches 0.
n

x— 2 0
R becomes 0 when

«=2. For any value of = other than the critical value 2, the
fraction equals a definite number. Usually we are concerned
with the limit of such expressions as the variable approaches

97. Interpretation of g . The fraction

a critical value. The limit for the fraction :;— 1

found. We assign to « successively the values 1.9,1.99, 1.999,
1.9999, ete. The corresponding values of the fractions are 19,
149, 1000 10000 ete. Obviously these numbers approach the
limit 1.

We may arrive at this result more easily as follows: For all

is easily

values of x except 2 the terms of the fraction :;——% may be

L. .. 1
divided by = — 2, obtaining e
ever little # may differ from 2. Now if, without giving « the

This result is true, how-

value 2, we make it approach 2 as a limit, xl? will approach

% as a limit, and this is the limit of the original fraction ZT_——%
as well.

By either of the preceding methods it can be shown that
2 p—
z 97 which becomes 0 for # = 3, has 6 as its limit. These

x — 0
two fractions are simple illustrations of the important fact that

the symbol g is not a definite number. The truth of this can

be seen more clearly from a study of the graph on the fol-
lowing page. '
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2

22 —9

Let y=-"3 @
Then y@x—38)=(x+3)(x —3). )
y(@—38)—(z+3)(z—3)=0. (3)
(y—2-3)(—3)=0. (4)

Therefore x—3 =0, ®)
and y—x—3=0. (6)

The graphs of (5) and (6) are given in the following figure. To
understand what follows, it must be remembered that y and the
22—

. 9 Lo
fraction — are identical, and

that the graphs (5) and (6) are
the complete graph of the equa-
tion (1).

For every value of x except 3
there is always one value of y,

and that value is the y-distance X (5)
of some point on line (6). For ,
z = 8, however, the value of ¥ X = — v

is the y-distance of any point on

line (3). Ilence the fraction
2_

z 9 is indeterminate for z =3.

T 7

It is worth noting that the

9
xre —

9.
limiting value of the fraction is seen from the graph to be 6,

the y-value of the point of intersection of lines (5) and (6).

Note. The study of the limiting value of the ratio of two funec-

tions which for certain values of the variable takes on the indeter-
minate form 0/0 was undertaken by the Frenchman, L’Iospital, in
1696, and was carried further by John Bernouilli a few years later.
A complete comprehension of the difficulties which surround this
subject has been very slowly gained by mathematical writers, and
even to-day it is possible to find books in which grave errors are
made regarding the meaning of these expressions.
+ The questions involved are closely related to those regarding
the nature of the infinite in mathematics. The penetration of this
mystery is one of the great achievements of the latter half of the
nineteenth century, and to-day well-informed mathematicidns have
as clear and satisfactory ideas about infinite numbers as they do
about ordinary integers.
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As a final illustration that g may have any value, consider
the following

EXAMPLE
Solve by determinants the system { 90_—3;_/ : 2}5’3/ __3 E;i
N i 3—3 '
Solution: z = ‘ i
=
=3 —=3]_-3+3_o0
L (R

Now the graphs of equations (1) and (2) are coincident lines.
Therefore any set of values of x and y which satisfies (1) will also

satisfy (2), a condition indicated by the indeterminate result g for
the unknowns,

In general, if the solution of a system of linear equations in

two or more unknowns gives ~ as values of the unknowns, the

0
system has an infinite number of sets of roots; that is, the
system is indeterminate.

The symbol g then is a symbol of indetermination.

EXERCISES

Solve by determinants and interpret results :

x—y=1, z—y=0,

. 2y —2x=—2. 2'y—x=3.
c+y+2=0, r+y+z=1,

3. x—2y+4+3z=1, 4. x—y—22=2,
20—y +42=1. Ox+0y+4+0z=0.

5. From the results obtained in Exercise 4 what conclusion
is warranted regarding the number of sets of roots belonging to
a system of zwo linear equations in ¢hree variables ?
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6. c+y+2=20x4+0y+02=0,0x+0y+02=0.
7. What do the results obtained in Exercise 6 show in regard
to the number of sets of roots belonging to one equation in ¢hree
variables ?
What limit does each of the following expressions approach
as n becomes oo ? )

8. L. 10. 2. 12. ——. 1 &
n n n+ 2 1
: n
0. 2. 1. —2—. 13, 21
n n+1 n
15. n(nn—zl-l) 16. n(n+1n23(n+2!'

‘What limit does each of the following expressions approach
asn=07?

17, L. 18. % 19. 5. 20. 272 21. %
n 1 1 n*
n n
Find the limit of :
1—a ) 2 -5z +6
22.masw—1. 23. P as x = 2.
24. z—2 as x = 2.

x— 8



CHAPTER XIV
LOGARITHMS

98. Introduction. Logarithms were invented to shorten the
work of extended numerical computations which involve one
or more operationé of multiplication, division, involution, and
evolution. They have decreased the labor of computing to
such an extent that many calculations which would require
hours without logarithms can be performed by their aid in
one tenth of that time.

A logarithm is an exponent. A table of common logarithms
is a table of exponents of the number 10. The greater portion
of these exponents are approximate values of irrational num-
bers. It follows, then, that computation by means of loga-
rithms gives only approximate results. Tables exist, however,
in which each logarithm is given to twenty or more decimals
hence practically any desired degree of accuracy can be obtained
by using the proper table.

It can be proved that the laws given on pages 89-90, govern-
ing the use of rational exponents, hold for irrational exponents.
In the work on logarithms this fact will be assumed.

99. Graphical explanation of logarithms. The theory of com-
putation by logarithms is simple, yet considerable time is
needed to master its practical details. These details and the
fact that a logarithm is an exponent will be grasped more
readily if the student gets from a graph a first view of the
meaning and use of logarithms. For this we shall construct
the graph of the logarithmic or exponential equation,

N=10L.
183
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In this equation N represents any positive number, and L,
the exponent of 10, is its common logarithm.

It will be more convenient to assign values to L and com-
pute the corresponding values of N, than to use the reverse
process. Moreover, we shall restrict Z to values from +1
to — 1 inclusive, and to such fractional values that N can be
obtained by the use of square root.

First, 10 =10, 10° =1, and 10-' = .1,

and 10% = /10 = 3.16227 +.
Also 10% = (10%) = V' V/10 = /3.16227 = 1.778 +. -
" Similarly, 10% = (108} = V10 = V1778 = 1.33 4.
Now 10% = (10%) (10%) = (3.16227) (1.778) = 5.62 +.

Again,  10% = (10%) (10%) = (1.778) (1.33) = 2.37 +.
In like manner,
10¥ = (10%) (10%) = 4.21 +.
Lastly,  10% = (10%) (10%) =7.49 +.
Tabulating the values of N and L just obtained, gives

1 1 3 1 5 38 7
L 0 B 1T k) 2 8 k3 B 1

N 1 | 133|178 | 237|316 | 4.21 | 5.62 | 749 | 10

1
Since 10— L= 1—0L )
3 3
the value of 10b= L o100 100 a9
108 10%.10% 10
1
o -3 1 _ 10 o
Similarly, 10 ot~ 10 1778,

In this manner we obtain from the preceding table the
following one for negative values of L between 0 and — 1.

Lo —%| -t %3 | -%|-%|-%|-1
N | 749 | 562 | 421 | 316 | 287 | 178 | 133 | .1
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From the values of L and IV in the foregoing tables the
logarithmic (or exponential) curve on the preceding page is
constructed. As only positive values of N are considered, the
curve never reaches the L-axis. The approximate values of
L for numbers from .1 to 10 are measured from ON to the
curve.

From the curve, log2 =.3; thatis, 2 =10%

Then 20=10-2=10'-10% =102,

Thus the logarithm of 20 is 1 greater than the logarithm of 2.
Similarly, the logarithm of 30 is 1 greater than the logarithm
of 3, and so on.

Therefore, if line O'N' be drawn one unit below ON, the
logarithms of numbers from 10 to 100 are the values of
distances to the curve from points on O'N' which correspond
to these numbers. This practically gives us a considerable
portion of the curve beyond point 1.

EXERCISES

Find from the curve the logarithm of:

1. 2. 6. 7.4 11. .5, 16. 96.
2. 3. 7. 9.6. 12. .9. 17. 100.
3. 4. 8. 11. 13. 25. 18. 10.
4. 5. 9. 15. 14. 50. 19. 1.

5. 6.2. 10. .2. 15. 64. 20. 32.
Find from the curve the number whose logarithm is:

21. .3. 25. .95, 29. — .25, 33. 1.8.
22. 4. 26. —.1. 30. 1.3. 34. 2.

23. .6. 27. — 4. 31. 1.7. 35. .84.
24. 7. 28. —.5. 32. 1.6. 36. 1.2.

The preceding exercises should familiarize the student with
the meaning of the curve. We shall now use it to explain
logarithmic multiplication, division, raising to a power, and
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extracting a root. It must be remembered that the curve is on
too small a scale to give very close approximations. To draw
a logarithmic curve which would give results sufficiently accu-
rate for most practical purposes would require a piece of cross-
ruled paper about two feet square.

100. Logarithmic multiplication. Multiplication by means of
the logarithmic curve is illustrated in the
Example : Multiply 3 by 2.

Solution: From the curve, log3 = .47; hence 3 = 10-4.

From the curve, log 2 =.3; hence 2 =104,
Then 3.2 =104.108 =10,
From the curve, 1077 = 6.

EXERCISES

Compute as in the preceding example :

1. 2.5. 4. .8-8. 7. .5.80. 10. .6-80.
2. 3-3. 5. 30-2. 8. 22.4.8. 11. .7-97.
3. 4-4. 6. 25-4. 9. 14.6. 12. 1.5.7.2.

101. Logarithmic division. Division by means of the logarith-
mie curve is illustrated in the

Example: Divide 40 by 8.
Solution : From the curve, log 40 = 1.6; hence 40 = 101,

From the curve, log 8 =.9; hence 8 = 10-.
Then 40 - 8 =106 =109 =10".
From the curve, 107 = 5.

EXERCISES

Compute as in the preceding example:

1. 8+ 2. 5. 16 =+ .8. 4.6
2. 6= 3. 6. 48 = 6. S 3
3. 40 <+ 5. 7. 22 +11. 80 - 40

4. 18 = 8. 8. 56+ 8. 10. =55
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102. Logarithmic involution. A number is raised to a power
by means of the logarithmic curve, as in the

Example: Find 22
Solution: From the curve, log2 =.3; hence 2 =103,

Therefore 23 = (108)% =10+,
From the curve, 109 = 8.
EXERCISES

Compute as in the preceding example :

1. 3. 4 0 o 28
2. 52 52.10% 6
3. 3% T 7. 4739,

103. Logarithmic evolution. Roots are extracted by means of
the logarithmic curve, as in the

Example: Find ~/40.

Solution : From the curve, Jog40 =1.6; hence 40 = 1016,
Therefore ~V/30 = (40)} = (1018)} = 1053,

From the curve, 10-%3 = 8.45, which is approximately ~10.

EXERCISES

Compute as in the preceding example:

1. V3. 3. V8L 5. 3. g V2
9. V1. 4. 6% 6. 52./3. l

From the foregoing work the student should see that a
logarithm is an exponent, and that by the use of logarithms
multiplication is effected by addition, division by subtraction,
involution by a single multiplication, and evolution by a single
division. The values of N and L, which up to this time have
been taken from the curve, will hereafter be obtained much
more accurately from the table on pages 200-201.
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104. Steps preceding computation. Before computation by
means of the table can be taken up, two processes requiring
considerable explanation and practice must be mastered.

1. To find from the table the logarithm of a given number.

I1. To find from the table the number corresponding to a given
logarithm.

105. Base. If N = 07, the logarithm of N to the base & is L.
This last is expressed by the equation log, NV = L. Therefore
N = 0% and log, N = L are two ways of expressing the same fact.

Consequently 2 = 10-%°1 and log;,2 = .301 are equivalent statements.

The base of the common or Briggs system of logarithms is 10.
The base 10 is often omitted. Thus log 2 means log, 2. This
system is used in numerical work to the exclusion of all others.

The base of the natural system of logarithms is the irrational
number 2.7182 4, which is usually denoted by e.

The natural system of logarithms is used for theoretical
purposes only.

EXERCISES

‘Write in the notation of logarithms:

1. 300 =102+ 3. 4 =10%. 5. .10 =10"1
2. 65 =104, 4. 1=10° 6. 1730 =103%%,
7. 173 = 10%2%, 9. 173 =10-1+23%,
8. 1.73 = 102%, 10. .0173 = 10—2+-2%,
Write as powers of 10:
11. log 3 = .47. 14. log 490 = 2.69.
12. log 20 = 1.301. " 15. log.0049 = — 3 4 .69.
13. log 4.9 = .69. 16. log 381 = 2.58.

106. Characteristic and mantissa. Unless a number is an
exact power of 10, its logarithm consists of an nteger and a
decimal.

The integral part of a logarithm is called its characteristic.

The decimal part of a logarithm is called its mantissa.
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The word *“mantissa” means an addition; that is, a decimal por-
tion which is added on to the integral part, or characteristic, of the
logarithm. This term was used at one time to indicate the decimal
part of any number, but for over a century it has been applied almost
exclusively to logarithms.

Log 200 = 2.301. Here 2 is the characteristic and .301 is
the mantissa.

\

Biographical Note. Jounx Narier. Although many scientists have
been honored with titles on account of their discoveries, very few of
the titled aristocracy have become distinguished for their mathematical
achievements. A notable exception to this rule is found in John Napier,
Lord of Merchiston (1550-1617), who devoted most of his life to the prob-
lem of simplifying arithmetical operations.

Napier was a man of wide intellectual interests and great activity.
In connection with the management of his estate he applied himself
most seriously to the study of agriculture, and experimented with various
kinds of fertilizer in a somewhat scientific manner, in order to find the
most effective means of reclaiming soil. He spent several years in theo-
logical writing. When the danger of an invasion by Philip of Spain was
imminent he invented several devices of war. Among these were power-
ful burning mirrors, and a sort of round musket-proof chariot, the motion
of which was controlled by those within, and from which guns could be
discharged through little portholes.

-But by far the most serious activity of Napier’s life was the effort to
shorten the more tedious arithmetical processes. He invented the first
approximation to a computing machine, and also devised a set of rods,
often called Napier's bones, which were of assistance in multiplication.
His crowning achievement, however, was the invention of logarithms, to
which he devoted fully twenty years of his life.

No éharacteristics are given in the table on pages 200-201.
The characteristic of any number is obtained from an inspec-
tion of the number itself according to rules which will now be

derived. .
10* = 10000; that is, the log 10000 = 4.

10®=1000; that is, the log 1000 = 3.
10?=100; that is, the log 100 = 2.

10' = 10; that is, the log 10 =1.
1071 =.1; that is, the log.1 =—1.
10-2=.01;  that is, the log.01 =—2.

10-3=.001; that is, the log.001 =—3.
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The preceding table indicates between what two integers
the logarithm of a given number lies. This determines the
characteristic.

Since 542 lies between 10? and 10% log 542 =2 plus a
decimal.

And since .0045 lies between 10-2 and 102, log .0045 = — 3
plus a positive decimal (or — 2 plus a negative decimal).

For the determination of the characteristic of a positive
number we have the rules

L. The characteristic of a number greater than 1 is one less
than the number of digits to the left of the decimal point.
II. The characteristic of a number less than 1 is negative and
numerically one greager:than the number of zeros between the
decimal point and the first significant figure. ’

Accordingly the characteristic of 25 is1; of 2536 is 3; of 6 is 0;
of 4is—1; of .032 is — 2; of .00036 is — 4.

. The table on pages 200201 gives the mantissas of numbers
from 10 to 999. Before each mantissa a decimal point is under-
stood. )

The numbers 5420, 542, 5.42, .0542, and .000542 are spoken
of as composed of the same significant digits in the same order.
They differ only in the position of the decimal point, and con-
sequently their logarithms will differ only in their character-
istics. If the base of the system is 10, however, such numbers
will have the same mantissa.

The last two points are easily illustrated by any two num-
bers which have the same significant digits in the same order.

Log 5.42 = .734, or 5.42 = 10-734,
5.42.102 = 542=1073.102 = 102734,

Therefore log 542 = 2. 734.

The property just explained does not belong to a system of loga-
rithms in which the base is any number other than 10. It is a very
convenient property, as tables of a given accuracy are far shorter

when the base is 10 than they would be with any other base. For
example, the table on pages 200-201 gives the wnantissas of all -
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numbers from 1 to 999. But these mantissas are just the same as
the mantissas of the three-figure decimals from .001 to .999, or another
set of a thousand numbers. Were the base any number other than
10, the mantissas of the numbers from 1 to 999 would be different
from those of the numbers from .001 to .999. Four pages or more
would then be required to print a table equivalent to the one which
is here put on two.

107. Use of the tables. To obtain the logarithm of a number
of three or fewer significant figures from the tables, we have the

RuLe. Determine the characteristic by inspection.

Find in column N the first two significant figures. In the
row with these and in the column headed by the third figure
of the given number find the required mantissa.

EXERCISES
Find the logarithm of :
1. 271. 4. 65. 7. 2.7. 10. 6.
2. 344. 5. 650. 8. 2700. 11. 932.
3. 982. 6. 27. 9. 3 12.,.932.

Solution: The characteristic of .932 is —1 and the mantissa is
9694. Ience log.932 = —1 + .9694. This is usually written in the
abbreviated form I1.0694. The mantissa is always kept positive in
order to avoid the addition and subtraction of both positive and neg-
ative decimals, which in ordinary practice contain from three to five
figures. Negative characteristics, being integers, are comparatively
easy to take care of. (The student should note that log .982 is really
negative, being —1 4 .9694, or — .0306.)

13. .643. 15. .00267. 17. .0101.
14. .0532. 16. .00579. 18. 825000.

108. Interpolation. The process of finding the logarithm of
a number not found in the table, from the logarithms of two
numbers which are found there, or the reverse of this process,
is called interpolation.

If we desire the logarithm of a number not in the table, say
7635, we know that it lies between the logarithms of 7630
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and 7640, which are given in the table. Since 7635 is halfway
between 7630 and 7640, we assume, though it is not strictly
true, that the required logarithm is halfway between their
logarithms, 3.8825 and 3.8831. To find log.7635 we first look
up log 7630 and log 7640 and then take half (or .5) their differ-
ence (this difference may be taken from the column headed D)
and add it to log 7630. This gives

log 7635 = 3.8825 + .5 x .0006 = 3.8828.

Were we finding log 7638, we should take .8 of the differ-
ence between log 7630 and log 7640 and add it to log 7630.
The preceding solution illustrates the general

Ruie. Prefix the proper characteristic to the mantissa of the
JSirst three significant figures.

Then multiply the difference between this mantissa and the
next greater mantissa in the table (called the tabular difference,
column D of the table) by the remaining figures of the number
preceded by a decimal point.

Add the product to the logarithm of the first three figures
and reject all decimals beyond the fourth place.

In this method of interpolation we have assumed that the increase
in the logarithm is directly proportional to the increase in the num-
ber. As has been said, this is not strictly true, yet the results here
obtained are nearly always correct to the fourth decimal place.

EXERCISES L
Find the logarithm of: o
1. 4625. 6. 72.543. 11. .00386.
2. 364.7. 7. 10.101. 12. .0007777.
3. 42.73. 8. 700.35. ’ 13. 3.1416.
4. 32.75. 9. 505.50. 14. 2.71828.
5. 546.8. 10. 2.0075. 15. .023456.

109. Antilogarithms. An antilogarithm is the number corre-
sponding to a given logarithm. Thus antilog 2 equals 100.
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I1f we desire the antilogarithm of a given logarithm, say
4.7308, we proceed as follows: The mantissa .7308 is found in
the row which has 53 in column N, and in the column which
has 8 at the top. Hence the first three significant figures of
the antilogarithm are 538. Since the characteristic is 4, the
number must have five digits to the left of the decimal point.

Thus antilog 4.7308 = 53,800. Therefore if the mantissa of
a given logarithm is found in the table, its antilogarithm is
obtained by the ‘

RuLEe. Find the row and the column in which the given man-
tissa lies.

In the row found, take the two figures which are in column
N for the first two significant figures of the antilogarithm, and
Jfor the third figure the number at the top of the column in which
the mantissa stands.

Place the dectmal point as indicated by the characteristic.

EXERCISES

Find the antilogarithm of: A
. 3.9309. 6. 8.5740 — 10. 10. 4.6345.

1
9. 1.8162. Hixt. 8.5740 — 10 = 2.5740.  11. 6.9232.
3. .6284. 7. 9.7292 — 10. 12. 8.2148.
4. 1.3541. 8. 4.8136 — 10. 13. 5.7832 — 6.
5. 2.5740. 9. 0.4533. 14. 5.9996.

If the mantissa of a given logarithm, as 2.5271, is not in
the table, the antilogarithm is obtained by interpolation as
follows :

The mantissa 5271 lies just between

‘ .5263, the mantissa of 336,
and .5276, the mantissa of 337.

Therefore the antilogarithm of 1.5271 lies between 33.6 and
33.7. Since the tabular difference is 13 and the ditference be-
tween .5263 and .5271 is 8, the mantissa .5271 lies f; of the
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way from .5263 to .5276. Therefore the required antilogarithm
lies & of the way from 33.6 to 33.7.
Then antilog 1.6271 = 33.6 4+ #; x .1.
33.6 4 .061 = 33.66.

Therefore when the mantissa is not found in the table, we
have the

Rure. Write the number of three figures corresponding to the
lesser of the two mantissas between which the given mantissa
Ues. .

Subtract the lesser mantissa from the given mantissa and
divide the remainder by the tabular difference to one decimal
place.

Annex this figure to the three already found and place the
decimal point where indicated by the characteristic.

EXERCISES
Find the antilogarithms of :

1. 1.5728. 5. 1.2586. 9. 9.2654 — 10.
2. 2.3921. 6. 7.3472 —10. 10. .7829.

3. 0.6690. 7. 9.8527 — 10. 11. 7.1050 — 10.
4. 2.5728. 8. 5.9616 — 8. 12. 6.2308 — 10.

110. Multiplication and division. Multiplication by logarithms
depends on the

TaEOREM. The logarithm of the product of two numbers is
the sum of the logarithms of the numbers.

Proof. Let © log, N, =1, @
and log, N, =L, (2)
From (1), N, =04 3)
From (2), N, = b : 4)
(3 x 4, NN, = b+t ®

Therefore log, N\N, =1, + I,
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Division by logarithms depends on the

TrEOREM. The logarithm of the quotient of two numbers is
the logarithm of the dividend minus the logarithm of the divisor.

Proof. Let log, N, =1, @)
and log, N, =1, @)

From (1), N, = b4 3
From (2), N, = b “

N.
(8)+(4); ¥ =

]\T
Therefore log,—t=1 —1,.

N2

EXERCISES

Perform the indicated operation by logarithms :
1. 18.25.

Solution : log 18 = 1.2553

log 25 = 1.3979
Adding, log 18 - 25 = 2.6532
Antilog 2.6532 = 450.
2. 37-23. 6. 386-27. 10. 2870 3654.
3. 28.8. 7. 432 -361. 11. 286.7.2.341.
4. 9.8.5. 8. 589.734. 12. 3.412.2.596.
5. 42.2.2. 9. 4326 -638. 13. 432..574.
Solution : log 432 = 2.6355 = 2.6355

log .574 = 1.7589 = 9.7589 — 10
Adding, log 432 ..574 = 2.3944 = 12.3944 — 10
Antilog 2.3944 = 247.9.

Since the mantissa is always positive, any number carried over from
the tenth’s column to the. units column is positive. This occurs in
the preceding solution where .6 + .7 = 1.3, giving + 1 to be added
to the sum of the characteristics + 2 and — 1, in the units column.
Mistakes in such cases will be few if the logarithms with negative
characteristics be written as in the 9 — 10 notation on the right.
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In the preceding example and in others which follow, two methods
are given for writing the logarithms which have negative character-
istics. This is done to illustrate those cases in which the second of
the two ways is preferable. It should be understood that in practice
one, but not necessarily both, of these methods is to be used.

14. 385-.617. 17. .0876..673. 20. 675..0236.
15. 541..073. 18. .07325-6.384. 21. .437-.0076.
16. 37.6-.00835. 19. .6381..01897. 22. 891 +27.
Solution : log 891 = 2.9499

log27 = 1.4314
Subtracting, log (891 = 27) = 1.5185

Antilog 1.5185 = 33.

23. 96 +12. 26. 489 = 27.1. 29. 9876 + 56.78.
24. 888 =+ 37. 27. 3460 + 4.32. 30. 6432 = 7.81.
25. 976 + 321. 28. 4697 =+ 281. 31. 3.26 =+ .0482.
Solution : log 3.26 = 0.5132 = 10.5132 — 10

log .0482 = 2.6830 = 8.6830 — 10
Subtracting, log (326 + .0482) = 1.8302 = 1.8302— 0

Antilog 1.8302 = 67.64.
32. 2.35 +.0673. 37. .07382+068.72. = 463.2.4.78
33. 4.86 +.721. 256.372 © — 683
34. 0635 = .287. 58 T 138 9.63..0872
¥ 4. 50635

1 85. .2674 + 3.86. 39 347 . (— 625) .
36. 7635 =+ 8692. 346 T 42, .078 + 4.267.

111. Involution and evolution. Involution by logarithms de-
pends on the
TureoreMm. The logarithm of the mth power of a number is
m times the logarithm of the number.
‘ Proof. Let log, N=1." ) @
Theén N=1. 2
Raising both members of (2) to the mth power,

N = pmi,
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Therefore log, N = ml.
Evolution by means of logarithms depends on the

TueoreM. The logarithm of the real mth root of @ number is
the logarithm of the number divided by m.

Proof. Let log, N = 1. @
Then N=10. &)
Extractmg the mth root of the members of 2),
1
(N)m — (bl>'" — bm (3)
Therefore log (N)’" = E, “
EXERCISES

Compute, using logarithms:

1. (2.73)%

Solution : log 2.73 = .4362.
Multiplying by 3, log(2.73)% = 1.3086.
Antilog 1.3086 = 20.35.

2. (6.32)% 3. (34.26)% 4. (6.715)% 5. (.425)%
Solution : log 425 = 1.6284 = (9.6284 — 10).
Multiplying by 8, log (.425)% = 2.8852 = (28.8852 — 30).
Antilog 2.8852 =.07676.

Since the mantissa is always positive, we have in the preceding
solution + 1 (from 3..6) to unite with — 3 (from 3.I). No con-
fusion of positive and negative parts need arise, if the logarithms
are written as indicated in the parenthesis.

3

6. (.352)% 7. (067T2)% 8. (.003567)%. 9. ~/3T6.

Solution : log 376 = 2.5752.

Dividing by 8, log /376 = .8584.

Antilog 8584 = 7.218 = ~/376.

10. V/583. 11. V1235. 12. V.000639.

Solution : log .000639 = 4.8055.

If one divided 4.8035 as it stands by 8, he would be almost certain
to confuse the negative characteristic and the positive mantissa. This
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‘ ~
and other difficulties may easily be avoided by adding to the charac-
teristic and subtracting from the resulting logarithin any integral
multiple of the index of the root which will make the characteristic

positive.

' Thus log. 000639 = 2.8055 — 6.
| Dividing by 3, log~/-000639 =.9351 — 2.
. Antilog 3.9351 = .08612 = ~/.000639.
|
“ 13. /.0786. 15. V.002679. 17. (4.965)%,
" 14. ¥/.0007324. 16. (38.4)% 18. (— 6.387)%.

g L [P83LeT 21. ¥209.
| * N7 (8.423)° —
| O 22. V87 —V163.
) . !" - T7.384 . 5
20. (4.623)7 23. 27\ V/8T2.

I
\

| Note. The following four-place table will usually give results cor-

rect to one half of one per cent. Five-place tables give the mantissa

to five decimal places of the numbers from 1 to 9999, and, by inter-

polation, the mantissa of numbers from 1 to 99999. Five-place tables

give results correct to one twentieth of one per cent, an accuracy which

is sufficient for most engineering work.

- Six-place tables give the mantissa to six decimals for the same
range of numbers as a five-place table. The labor of using a six-place
ftable is about fifty per cent more than that of using a five-place one.
|For this reason and for other reasons a six-place table is of small
‘ practical value.

Seven-place tables give the mantissas of the numbers from 1 to
99999, and by interpolation give the mantissa of numbers from 1
‘to 999999. ~Seven-place tables are seldom needed in engineering, but
|are of constant use in astronomy.
~ In place of a table of logarithms engineers often use an instru-
ment called a “slide rule.” This is really a mechanical table of loga-
rithms arranged ingeniously for rapid practical use. Results can be
| obtained with such an instrument far more quickly than with an
ordinary table of logarithms, and that without recording or even
. thinking of a single logarithm. A *slide rule ” ten inches long gives
' results correct to three figures. In work requiring greater accuracy
| a larger and more elaborate instrument which gives a five-figure
‘ accuracy is used.

f
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N 0 1 2 3 4 5 6 7 8 9 D

10 | 0000 0043 0086 0128 0170 | 0212 0253 0204 0334 0374 | 42
11 | 0414 0453 0492 0531 0569 | 0607 0645 0682 0719 0755 | 38
12 | 0792 0828 0864 0899 0934 | 0969 1004 1038 1072 1106 | 35
13 | 1139 1173 1206 1239 1271 | 1303 1335 1367 1399 1430 | 32
14 | 1461 1492 1523 15653 1584 | 1614 1644 1673 1703 1732 | 30

15 | 1761 1790 1818 1847 1875 | 1003 1931 1959 1987 2014 | 28
16 | 2041 2068 2095 2122 2148 | 2175 2201 2227 2253 2279 | 26
17 | 2304 2330 2355 2380 2406 | 2430 2455 2480 2504 2529 | 25
18 | 2563 2577 2601 2625 20648 | 2672 2695 2718 2742 2765 | 24
19 | 2788 2810 2833 2856 2878 | 2000 2923 2945 2967 2989 | 22

20 | 3010 3032 3054 3075 3096 | 3118 38139 3160 3181 3201 | 21
21 | 3222 3243 3203 3284 3304 | 3324 3345 33065 3385 3404 | 20
22 | 3424 3444 34064 3483 3502 | 3522 8541 3560 3579 3508 | 19
23 | 8617 3636 3655 8674 30692 | 3711 38729 3747 3766 38784 | 18
24 | 3802 3820 3838 8856 3874 | 3892 3909 3927 3945 3962 | 18

25 | 3979 3997 4014 4031 4048 | 4065 4082 4099 4116 4133 | 17
26 | 4150 4166 4183 4200 4216 | 4232 4249 4265 4281 4298 | 16
27 | 4314 4330 43406 4362 4378 | 4393 4409 4425 4440 4456 | 16
28 | 4472 4487 4502 4518 4533 | 4548 4564 4579 4594 4609 | 15
20 | 4624 4639 4654 4669 4683 | 4698 4713 4728 4742 4757 | 15

30 | 4771 4786 4800 4814 4829 | 4843 4857 4871 4886 4900 | 14
31 | 4914 4028 4942 4955 4969 | 4983 4997 5011 5024 5038 | 14
32 | 5061 50656 65079 5092 5105 | 5119 5132 5145 5159 5172 | 13
33 | 5185 5198 5211 5224 5237 | 5250 5263 5276 5289 5302 | 13
34 | 5315 5328 5340 5353 5366 | 5378 5391 5403 5416 5428 | 13

35 | 5441 5453 65465 5478 5490 | 5502 5514 5527 5539 5551 | 12
36 | 6563 55676 5687 5599 5611 | 5623 5635 5647 5658 5670 | 12
37 | 5682 5694 5705 5717 5720 | 5740 5752 5763 5775 5786 | 12
38 | 5798 5809 5821 5832 5843 | 5855 5866 5877 5888 5899 | 11
39 | 5911 5922 5933 5944 5955 | 5966 5977 5988 5999 6010 | 11

40 | 6021 60381 6042 6053 6064 | 6075 6085 6096 6107 6117 | 11
41 | 6128 6138 6149 6160 6170 | 6180 6191 6201 6212 6222 | 10
42 | 6232 6243 062563 6263 6274 | 6284 6294 6304 6314 6325 | 10
43 | 6335 (345 6355 (365 6375 | 6385 6395 6405 6415 6425 | 10
44 | 6435 06444 06454 06464 06474 | 6484 6493 6503 6513 6522 | 10

45 | 65632 6542 6551 6561 6571 | 6580 6590 6599 6609 6618
46 | 6628 6637 6646 6656 6665 | 6G75 6684 6693 6702 6712
47 | 6721 6730 6739 6749 6758 | 6767 6776 6785 6794 6803
48 | 6812 6821 6830 (839 6848 | 6857 6866 6875 (884 6893
49 | 6902 6911 6920 6928 6937 | 6946 695656 6964 6972 6981

50 | 6990 6998 7007 7016 7024 | 7033 7042 7050 7059 7067
51 | 7076 7084 7093 7101 7110 | 7118 7126 7135 7143 7152
62 | 7160 7168 7177 7185 7193 | 7202 7210 7218 7226 7235
53 | 7243 7251 7259 7267 7275 | 7284 7292 7300 7308 7316
54 | 7324 7332 7340 7348 7356 | 7364 7372 7380 7388 7396

_
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N 0 1 2 3 4 5 6 7 8 9 D

55 | 7404 7412 7419 7427 7435 | 7443 7451 7459 7466 17474
56 | 7482 7490 7497 7506 7513 | 7520 7528 7536 7543 7551
57 | 7559 7566 7574 7582 7589 | 7597 7604 7612 7619 7627
58 | 7634 7642 7649 7657 7664 | 7672 7679 7686 7694 7701
59 | 77090 7716 7723 7731 7738 | 7745 7752 7160 7767 71774

60 | 7782 7789 7796 7803 7810 | 7818 7825 7832 7839 7846
61 | 7853 7860 7868 7875 7882 | 7889 7896 7903 7910 7917
62 | 7924 7931 7938 7945 7952 | 7959 7966 TO73 7980 7987
63 | 7993 8000 8007 8014 8021 | 8028 8035 8041 8048 8055
64 | 8062 8069 8075 8082 8089 | 8096 8102 8109 8116 8122

65 | 8129 8136 8142 8149 8156 | 8162 8169 8176 8182 8189
66 | 8195 8202 8209 8215 8222 | 8228 8235 8241 8248 8254
67 | 8261 8267 8274 8280 8287 | 8293 8299 8306 8312 8319
68 | 8325 8331 8338 8344 8351 | 8357 8363 8370 8376 8382
69 | 8388 8395 8401 8407 8414 | 8420 8426 8432 8439 8445

70 | 8451 8457 8463 8470 8476 | 8482 8488 8494 8500 8506
71 | 8513 8519 8525 8531 8537 | 8543 8549 85565 8561 8567
72 | 8573 8579 8585 8591 8597 | 8603 8609 8615 8621 8627
73 | 8633 8639 8645 8651 8657 | 8663 8669 8675 8681 8686
74 | 8692 8698 8704 8710 8716 | 8722 8727 8733 8739 8745

75 | 8761 8756 8762 8768 8774 | 8779 8785 8791 8797 8802
76 | 8808 8814 8820 8825 8831 | 8837 8842 8848 8854 8859
77 | 8865 8871 8876 8882 8887 | 8893 8899 8904 8910 8915
78 | 8921 8927 8932 8938 8943 | 8949 8954 8960 8965 8971
79 | 8976 8982 8987 8993 8998 | 9004 9009 9015 9020 9025

80 | 9031 9036 9042 9047 9053 | 9058 9063 9069 9074 9079
81 | 9085 9090 9096 9101 9106 | 9112 9117 9122 9128 9133
82 | 9138 9143 9149 9154 9159 | 9165 9170 91756 9180 9186
83 | 9191 9196 9201 9206 9212 | 9217 9222 9227 9282 9288
84 | 9243 9248 9253 9258 9263 | 9269 9274 9279 9284 9289

85 | 9294 9299 9304 9309 9315 | 0320 9325 9330 9335 9340
86 | 9345 9350 9355 9360 9365 | 9370 9375 9380 9385 9390
87 | 9395 9400 9405 9410 9415 | 9420 9425 9430 9485 9440
88 | 9445 9450 9455 9460 9465 | 9469 9474 9479 9484 9489
89 | 9494 9499 9504 9509 9513 | 9518 9523 9528 9533 9538

90 | 9542 9547 9552 9557 9562 | 9566 9571 9576 9581 9586
91 | 9590 9595 9600 9605 9609 | 9614 9619 9624 9628 9633
92 | 9638 9643 9647 9652 9657 | 9661 9666 9671 9675 9680
93 | 9685 9689 9694 9699 9703 | 9708 9713 9717 9722 9727
94 | 9731 9736 9741 9745 9750 | 9754 9759 9763 9768 9773

95 | 9777 9782 9786 9791 9795 | 9800 9805 9809 9814 9818
<96 | 9823 9827 9832 0836 9841 | 9845 9850 9854 9859 9863
97 | 9868 9872 9877 9881 9886 | 9890 9894 9899 9903 9908
98 | 9912 9917 9921 9926 9930 | 9934 9939 9943 9948 9952
99 | 9956 9961 9965 9969 9974 | 9978 9983 9987 9991 9996

BRROIR NRANN TRRAN NATTAR NSRDD GHRDHD DR ~T~1 ~TJ~1~T~3 ~3=3000 0

‘ ﬁ 8- .
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PROBLEMS IN MENSURATION

Solve, using logarithms (obtain results to four figures):

1. The circumference of a circle is 27R. (7w = 3.1416,
R = radius.)

(¢) Find the circumference of a circle whose radius is 42
inches.

(6) TFind the radius of a circle whose circumference is 6843
centimeters. ’

2. The area of a circle is wR%

(@) Find the area of a circle whose radius is 3.672 feet.

(b) Find the radius of a circle whose area is 64.37 feet.

3. The area of the surface of a sphere is 4 mR2%

(@) The radius of the earth is 3958.79 miles. TFind its
surface.

(¢) Find the length of the equator.

RS

4. The volume of a sphere is im

(«) Find the radius of a sphere whose volume is 25 cubic feet.

(0) Find the diameter of a sphere whose volume is 85 cubic
inches.

5. If the hypotenuse and one leg of a
right triangle are given, the other leg
can always be computed by logarithms.

In the adjacent figure let a and ¢ be
given and x required.

Then # = V@ — a® = \/(c + a)(¢c — a).

Whence log 2 = % log (¢ + a) + % log (¢ — a).

(@) The hypotenuse of a right triangle is 377 and one leg
is 288. Find the other leg.

() The hypotenuse of a right triangle is 1493 and one leg
is 532. Find the other leg.

2
6. The area of an equilateral triangle whose side is s is SZ V3.

a

(e) Find in squai‘e feet the area of an equilateral triangle
whose side is 11.47 inches.
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(o) Find the side of an equilateral triangle whose area is
60 square centimeters.

7. The area of a triangle = Vs(s — a)(s — 0)(s — ¢). Here
a-+b4c¢
—

(¢) Find the area of a triangle whose sides are 12 inches,
15 inches, and 19 inches respectively.

(0) Find the area of a triangle whose sides are 557, 840,
and 1009.

a, b, and ¢ are the sides of the triangle and s =

112. Exponential equations. An exponential equation is an
equation in which the unknown occurs as an exponent or in
an exponent.

Many exponential equations are readily solved by means
of logarithms, since loga®= xloga. Thus let «® =e¢. Then
z log @ =loge. Whence x =logc = loga.

MISCELLANEQOUS EXERCISES

Solve for x:

1. 8= 324.

Solution : log 8 =log 324,

or z-log 8 = log 824.
2 .510¢

Whence z= ——1‘15584 =2 =25+
2. 3% = 25. 7. 2° = 64.
3. 64 =4. 8. 4%=+1 — 84,
4. 16°=1024. t 221
5. (— 2)* = 64. 9‘3%——1=27 T
6. 3 = (1.04)=. 10. 37 = 5=,

11. In how many years will one dollar double itself at 39,
interest compounded annually ? '
Solution: At the end of one year the amount of $1 at 3% is $1.03;
at the end of two years it is $ (1.08) (1.08) or $(1.03)2; at the end of
three years it is $ (1.03)3; and at the end of z years it is $ (1.03)=

If # is the number of years required, (1.03)* = 2.
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Taking the logarithms of both members of the equation,

z log 1.03 = log 2.

‘)
Solving, 2= &— = ﬂ —935+.

12. In how many years will $1 double itself at 59, interest
compounded annually ?

13. In how many years will any sum of money treble itself
at 49, interest compounded annually ?

14. In how many years will $265 double itself at 339,
interest compounded annually ?

15. In how many years will $4000 amount to $7360.80 at
59,, interest compounded annually ?

16. About 300 years ago the Dutch paid $24 for the island
of Manhattan. At 49, compound interest, what would this
payment amount to at the present time ?

17. In how many years will $12 double itself at 49, interest
compounded semiannually ?

18. Show that the amount of P dollars in ¢ years at »¢,
interest compounded annually, is P (1 4 7)*; compounded semi-

2t 2

annually is P<1 + > ; compounded quarterly is P <1 + >
12¢
and compounded monthly is P<1 + 7) .

19. Find the amount of $5000 at the end of four years,
interest at 8¢, compounded («) annually; (b) semiannually;
(¢) quarterly.

20. A man borrows $6000 to build a house, agreeing to pay
$50 monthly until the principal and interest at 69 is pald
Find the number of full payments required.

21. If each payment in Exercise 20 is at once lent at 69,
compounded annually, what will they all amount to by the
time the final payment of $50 is made ?
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22. From Exercises 20 and 21 determine the total interest
received by the money lender up to the time of the last pay-
ment. What rate per cent on the original $6000 is this ?

Find the number of digits in:

23. (@) 2°-3%- 575 (D) 3%; (c) 2%

24. Can the base of a system of logarithms be negative ?
Explain.

Find (without reference to the table) the numerical values of :

25. log, 9. 29. log,, 9.
26. log, 8. 30. log, 8 4 log 4.
27. log, 2. 31. log, 81 — log, 27.
28. log, 27. 32. log, 125 + log, 25 — log,, 5.
33. log, (%) — log, (¢) + log,, 9.
Simplify :
34. log § + log 2¢. 36. log 25 + log 2§ — log 3.
35. log 475 — log 25. 37. 21og3 + 3log2.
38. 3log4 + 4log 3 — 21log 6.

Solve for «:
39. a*=c¢"". 43. " =¢ 7,
40. a1 =¢"2 44. o=+l =¥ - 7L,
41, o= 1. 0 = *=. 45. a*® 4+ 8 a®* = 6 a3~
42. 3°. 9 — 6. 46. &’ + @' = 6 a** — 6 a’",
Solve for  and ¥:

2® =3, 8. 5 = 50
47. 31 =4v. 50. 26=. 3% — ?:28.

20 —y=25 3F—6"=0
48 ge gov_ gu. 5L gess _ge g,
49, 37+ Y =9 5. ¥ Y =0

27. 820 = 410, y—a=0.
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Note. It is not a little remarkable that just at the time when
Galileo and Kepler were turning their attention to the laborious
computation of the orbits of planets, Napier should be devising a
method which simplifies these processes. It was said a hundred
years ago, before astronomical computations became so complex as
they now are, that the invention of logarithms, by shortening the
labors, doubled the effective life of the astronomer. To-day the
remark is well inside the truth.

In the presentation of the subject in modern textbooks a logarithm
is defined as an exponent. But it was not from this point of view
that they were first considered by Napier. In fact it was not till long
after his time that the theory of exponents was understood clearly
enough to admit of such application. This relation was noticed by the
mathematician Euler, about one hundred fifty years after logarithms
were invented.

It was by a comparison of the terms of certain arithmetical and
geometrical progressions that Napier derived his logarithms. They
were not exactly like those used commonly to-day, for the base
which Napier used was not 10. Soon after the publication (1614) of
Napier’s work, Henry Briggs, an English professor, was so much
impressed with its importance that he journeyed to Scotland to con-
fer with Napier about the discovery. It is probable that they both
saw the necessity of constructing a table for the base 10, and to this
enormous task Briggs applied himself. With the exception of one
gap, which was filled in by another computer, Briggs’s tables form
the basis for all the common logarithms which have appeared from
that day to this.



CHAPTER XV
RATIO, PROPORTION, AND VARIATION

113. Ratio. The ratio of one number a to a second num-
ber & is the quotient obtained by dividing the first by the

a
second, or 7

The ratio of a to b is also written : b.
It follows from the above that all ratios of numbers are
fractions and all fractions may be regarded as ratios.

b}
Thus ?—), £, a_—l—b, and V2 are ratios.
222 a—10 {/5

The dividend, or numerator, in a ratio is called the antece-
dent, and the divisor, or denominator, is called the consequent.

114. Proportion. Four numbers, a, b, ¢, and d, are in propor-
tion if the ratio of the first pair equals the ratio of the second
pair. a ¢

This proportion is written a: b=c: d, or =3

Note. By the earlier mathematicians ratios were not treated as if
they were numbers, and the equality of two ratios which we know
as a proportion was not denoted by the same symbol as other kinds
of equality. The usual sign of equality for ratios was : :, a notation
which was introduced by the Englishman, Oughtred, in 1631, and
brought into common use by John Wallis about 1686. The sign =
was used in this connection by Leibnitz (1646-1716) in Germany,
and by the continental writers generally, while the English clung to
Oughtred’s notation.

The first and fourth terms (a, d) are called the extremes, and

the second and third terms (0, ¢) are called the means.
A mean proportional between two numbers, ¢ and b, is the num-

ber m, if % = % This means that m? = ab, or m ==+ Vab.

207
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A third proportional to two numbers, @ and b, is the number

soa b
t, if Z = ;'

A fourth proportional to three numbers, @, b, and ¢, is the
number f; if % =;-

Since a proportion is an equation, the axioms, subject to
the limitations explained on pages 43-44, apply to any pro-
portion.

Then in the proportion 2

7 :2 both members may be multi-

plied by &d, giving ad = be.

Therefore, In any proportion the product of the means equals
the product of the extremes.

If ps = gr is divided by g¢s, we obtain

pE_qr . P_T. @
q%  4s q s
Also ps = ¢r divided by rs gives
pP_17
B @

And ¢r = ps divided by pr gives
2_5.
=2 ®)
Therefore, If the product of any two nymbers (ps) equals the
product of two other numbers (gr), one pair may be made the
means and the other pair the extremes of a proportion.
a ¢ a b a b, .
If 73’ then from (1) and (2), ==3 Here S8 said
to be obtained from %' = :—l by alternation.
a c b d b d . .
If 3= then from (1) and (3), P Here L=, s said

to be obtained from %: o_cl by inversion.
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EXERCISES

Simplify the following ratios by writing them as fractions
and reducing the fractions to lowest terms:

1. 42:28. (1_i> <1_g)

2. 24 a®:56d% a’ @

8. @ —y):(x—y)- ( 16> <24 10 1)
6. ([a—=):(FG+5+=

4. B+ 8 :(x + 2y). a) \at o  a?

7. () 4 weeks : 12 hours; () 480 square inches : 2 square -

yards.
8. 1 mile: 1 kilometer. (1 meter = 39.37 inches.)
9. Separate 150 into three parts in the ratio 4:6: 2.
10. If « is a positive number, Which is the greater ratio:
54+3a 54+4a T—3a
<“)5:[4a °"5i5a? (1) 3a 7 da’
(¢) If a positive number is added to or subtracted from both
terms of a proper fraction, what change is produced in the
numerical value of the fraction ?
If @:0 = c:d, prove the following and state the correspond-
ing theorem in words :

11. a:c=10:d. 15. (a+0):0=(c+ d):d.
12. b:a=d:ec. 16. (e +0):a=(c+d):c.
13, «a*: 0" =¢* : d™ 17. (@ —0):b=(¢c — d) : d.

S

14. Va: Vo= Ve: V. 18. (¢ —b):a=(c—d):
19. (a4 0):(a —0)=(c+ d): (c — d).

The results in Exercises 15, 17, and 19 are said to be derived
from a:b=c:d by addition, subtraction, and addition and sub-
traction respectively.

20. If a:0=c:d=e:f, prove that (a +c+e): (0 +d+))
= @ : b and state the theorem in words.

21. Find a mean proportional between 1.44 and .0256.

22. Find a third proportional to 15 and 125.

23. Find a fourth proportional to 16}, 8%, and 624.
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24. Write 5:15 = 8:24 by addition, subtraction, addition
and subtraction, alternation, and inversion.

Solve :
5. 8:12=(3 —x):7. 28. 8:2=12:(10 — 2).
26. 4:2x=x:169. 29. 3:5=(x—3): (22 +18).
27.3:5:}0:2. 30. 20:z=2:(10 — x).
31. The surface of a sphere is 4 7R% Prove that for any
§ 2 2
two spheres S R,_, Dy —L1, S denoting the surface and D the
S, RZ D}

diameter.

. 4

32. The volume of a sphere is
R} D
V2 TR D}

R®
7?: - Prove that for any

two spheres —
diameter.

» V denoting the volume and D the

33. Find the ratio of the surfaces of the earth and the moon,
their diameters being 7920 miles and 2160 miles respectively.

34. Find the ratio of the volumes of the earth and the moon.

35. If ABC is any triangle, and KR is a line parallel to BC

meeting 4B at K and AC at R, 4
then the area of ABC is to the
area of AKR as AB": AK’, or as /\
AC*: AR or as BC': KR" E, R
If in the adjacent figure the area / \

of ABC is 100 square inches, that ¢

of AKR is 25 square inches, and 4B equals 10 inches, find 4K.
36. If in the figure of Exercise 35 4B =12, and triangle
AKR is % triangle 4BC, find 4K.
37. If in Exercise 35 the trapezoid KRCB is eight times as
large as triangle AKR, and AC = 40, find 4AR.

38. If 4B equals 32, and two parallels to BC' separate tri-
angle ABC into three parts of equal area, find to two decimals
the lengths of the three parts into which 4B is divided.
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39. If a plane be passed parallel to the base of a pyramid
(or cone) cutting it in KRL, then pyramid D—ABC : pyramid
D-KRL = DH': DS’ ete.

If in the adjacent figure the
volumes of the pyramids are
4 and 32 cubic inches respec-
tively, and the altitude DH
equals 18 inches, find DS.

40. If DH is 12 inches and
the volume of one pyramid is
one half the volume of the other,
find DS to two decimals.

41. If the volume of the frus-
tum is ;% of the whole pyramid,
and DH equals 36, find DS.

42. If two planes parallel to the base divide the whole pyra-
mid into three parts having equal volumes, and DIl = 100, find,
using page 262, the parts into which the planes divide DH.

Ifa:0=c:d, prove:

a+3b c+3d 5a3—7)3_5(:3—d“.

B T34 46. — a
4 a2+2b2_02+2di' 47 @+ P+ d
’ a? - ¢* *8a% +3al? 3c*d + Sed?
2 2 2 2 2 2 2 2
45.a+b _¢ —I—d. 48.“ ‘ab—l—b _¢ ‘cd—l—d.
2 ab 2cd 3ab 3ced

49. In a right triangle % is the hypotenuse and @ and b are
the legs. The corresponding sides of another right triangle are
HyAyand B. If h: H=a:4,prove a: 4 =b:B. Are the tri-
angles similar ?

115. Variation. The word quantity denotes anything which
is measurable, such as distance, rate, and area.

Many operations and problems in mathematics deal with
numerical measures of quantities, some of which are fixed and
others constantly changing.
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An abstract number, or the numerical measure of a fixed
quantity, is called a constant.

Thus the abstract numbers 1, 3, and — £ are constants. Any
definite quantities, as the area of a square whose side is 2, the cir-
cumference of a circle divided by its diameter (3.1416 nearly), the
time of one revolution of the earth on its axis (23%, 56™, 4.09¢), and
the velocity of light through space (186,330 miles per second) are
constants.

The numerical measure of a changing quantity is called a
variable.

For example, the distance (measured in any unit of length) be-
tween a passenger on a moving car and a point on the track either
ahead of or behind him is a variable, decreasing in the first instance,
increasing in the second. Other examples of variables are one’s
weight, the height of the ‘mereury in the thermometer, and the dis-
tance to the sun.

The equation z =3y may refer to no physical quantities
whatever, yet it is possible to imagine # as taking on in suc-
cession every possible numerical value, and the value of = as
accompanying every change, and’ consequently always being
three times as great as the corresponding value of 3. In this
sense, which is strictly mathematical,  and y are variables.

Problems in variation deal with at least two variables so
related that any change in one is accompanied by a change in
the other. Frequently one variable depends on several others.

For instance, the number of lines of printing on a page depends
on the distance between the lines, the size of the type, and one
dimension of the page.

The symbol for variation is o, and x «c y is read x varies directly
as Y, or x varies as y.

116. Direct variation. One hundred feet of copper wire of a
certain size weighs 32 pounds. Obviously a piece of the same
kind 200 feet long would weigh 64 pounds; a piece 300 feet
long would weigh 96 pounds, and so on.

Here we have two variables W (weight) and L (length) so
related that the value of W depends on the value of L, and in
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such a way that T increases proportionately as L increases.
That is, W is directly proportional, or merely proportional, to
L. Hence, if W, and W, are any two weights corresponding
to the lengths L, and L, respectively,
W, :W,=1L,:L, @
In the form of a variation (1) becomes
W e L.

In general, if x ¢y, and  and y denote any two correspond-
ing values of the variables, and «, and y, a particular pair of
corresponding values,

x_ ¥
—_=2. 2
xl yl )
From (2), x= <$§> Y. 3)
1

But :ﬂ is a constant, being the quotient of two definite numbers.
1
Call this constant K and (3) may be written
x=Ky.

That s, if one variable varies as a second, the first equals
the second multiplied by a constant.

Thus for the copper wire just mentioned, W = 33 L, or
o= L. Here, though W varies as L varies, W is always equal
to L multiplied by the constant ;.

The phrase varies with is often incorrectly used in place of
varies as. The latter should be used to denote a proportional
change in one variable with respect to a second; the former
should not be so used. A boy’s height varies wits his age, but
does not vary as his age. At 3 years the average boy is about
3 feet tall; at 12 years he is about 5 feet. At the latter time,
if his height varied as his age from 3 years up to 12 years, he
would be 12 feet tall.

117. Inverse variation. If a tank full of water is emptied in
24 minutes through a “smooth” outlet in which the area of
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the opening, A4, is 1 square inch, an outlet in which 4 is
2 square inches would empty the tank twice as quickly, or
in 12 minutes. And an outlet in which 4 is 3 square inches
would empty the tank in 8 minutes.

Suppose it possible to increase or decrease 4 at will. We
then have in ¢, the time required to empty the tank, and in A,
the area of the opening, two related variables such that if 4
increases, ¢ will decrease proportionally; while if 4 decreases,
¢ will increase proportionally. That is, ¢ and 4 are inversely
proportional. This means that when 4 is doubled, ¢ is halved ;
when 4 is trebled, ¢ is divided by 3, and so on. The relation
existing between the numerical values of 4 and ¢ given in the
preceding paragraph illustrates the truth of the last statement
and of (1) which follows.

Now let ¢, and ¢, be any two times corresponding to the
areas 4, and 4, respectively; then

tit,=A,: 4. @

The letters and the subscripts in (1) say: Zhe first time is

to the second time as the second area is to the first area.

The proportion (1) may be put in another form.

First, t- A =1, 4, 2)
Dividing (2) by 4,4,, =2 ﬁ 3)
: 2
1 1
: Gy
‘Whence bty = ;1— A— (5)

Here the subscripts on the #’s and those on the 4’s come in
the same order. 1
In the form of a variation (5) becomes ¢ o 1

In general x varies inversely as y when x varies as the recip-

rocal of ; that is, 1

Xoc—- (6)
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And if x and y denote any two corresponding values of the
variable, and «, and y, a particular pair of corresponding values,

11
X, = ; : ;1 . (7)
z_% . -
‘Whence n or XY = LY. ®

But xy, is a constant, being the product of two definite
numbers. Call this constant K.

Then (8) becomes xy=K.

That is, if one variable varies inversely as another, the prod-
uct of the two is a constant.

118. Joint variation. If the base of a triangle remains con-
stant while the altitude varies, the area will vary as the alti-
tude. Similarly, if the base varies while the altitude remains
constant, the area will vary as the base. If both base and alti-
tude vary, the area varies as the product of the two; that is,
the area of the triangle varies jointly as the base and altitude.
Further, if at any time 4, denotes the area of a variable tri-
angle, and %, and 4, the corresponding altitude and base, and
if 4, denotes the area at any other time, and %, and b, the
corresponding altitude and base, then 4,: 4, = A, : A0,

In the form of a variation this last becomes

A .

In general, any variable = varies jointly as two others, y and
% if XK YZee @

If x varies jointly as y and #, and if @, ¥, and z denote any
corresponding values of the variables, while x,, ¥,, and #, de-
note a particular set of such values, then

X Yz
r_4, 2
xl ylzl ( )
From (2), x= <;—;> yz. 3)
171
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But in (8) the fraction —-is a constant, since 2, Yy and 2,

Y&
are particular values of the variables z, y, and #. Calling this
constant K, we may write x oc y2z as the equation

x=Kyz.

One variable may vary directly as one variable (or several vari-
ables) and inversely as another (or several others). Also one variable
may vary as the square, or the cube, or the square root, or the recip-
rocal, or as any algebraic expression whatever involving the other
variable (or variables).

The theory of variation is really involved in proportion, but
this fact is not obvious to the beginner. Hence it is necessary
to make clear the meaning of the terms used in variation, and
to show how proportion is applied to the solution of problems
in variation. It is doubly necessary that the student himself
make this application in many cases, otherwise he will not
readily grasp numerous relations in physics, in chemistry, and
in astronomy; for many important laws of these sciences are
often stated in the form of a variation. In connection with
these laws many problems arise which require for their solu-
tion clear notions of the principles of variation. With a knowl-
edge of proportion only, the student would often find the laws
vague and the problems difficult.

PROBLEMS

1. If x c y, and « = 4 when y = 6, find « when y = 8.
[ ]
Solution: The variation is direct. Therefore

Bt L
Zo Yo @
Substituting in (1), 4_6, @)
z, 8
Solving (2), xy =5}

2. If x cy, and @ = 6 when y = 10, find y when « = 15.
3. If x cy, and x = - when y = £, find y when z = m.
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4. If x varies inversely as y, and « = 6 when y =7, find =
when y = 21.

Solution : The variation is inverse. Hence
1

xl:x‘_,:i.y—z' @
Substituting in (1), 6:x, =154 2)
Solving (2), z, = 2.

5 Ifx o 1; and « = 4 when y = 100, find « when y = 10.
Y

6. If y e %; and y = & when z = k, find ¥ when z = m.

7. If x varies jointlyas y and z, and ® = 24 when y = 6 and
z =38, find z when y = 9 and z = 4.

Solution: The variation is joint. Therefore

Ly _ YA, 1
Z, Uy @
21 6.

Substituting in (1), 2t %. @
1‘2 .

Solving (2), z, =18.

8. If o varies jointly as y and 2, and x = 3 when y = 4 and
z =5, find « when y = 20 and z = 2.

9. If z varies directly as y and inversely as z, and « =10
when y =4 and 2 =9, find x when ¥y = 2 and 2z = 6.

Hint. Here T T, = N.%,
2] %

10. If d varies directly as #, and d = 64 when ¢ = 2, find d

. when ¢ = 4.

: : 4 _t,
Hint. Here b
11. If V varies directly as 7 and inversely as P, and ¥ = 80
when P =15 and 7 = 400, find P when 7 = 450 and V = 45.

12. The weight of any object below the surface of the earth
varies directly as its distance from the center of the earth. An
object weighs 100 pounds at the surface of the earth. What
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would be its weight (@) 1000 miles below the surface (radius
of the earth = 4000 miles) ? (4) 2000 miles below the surfaee ?
(¢) at the center of the earth ?

13. If a wagon wheel 4 feet 8 inches in diameter makes
360 revolutions in going a certain distance, how many revolu-
tions will a wheel 5 feet in diameter make in going the same
distance ?

14. The distance which sound travels varies directly as the
time. A man measures with a stop watch the time elapsing
between the sight of the smoke from a hunter’s gun and the
sound of its report. When the hunter was 1 mile distant, the
time was 4% seconds. How far off was the hunter when the ob-
served time was 2 seconds ?

15. When the volume of air in a bicyele pump is 24 cubic
inches, the pressure on the handle is 30 pounds. Later, when
the volume of air is 20 cubic inches, the pressure is 36 pounds.
Assume that a proportion exists here, determine whether it is
direct or inverse, and find the volume of the air when the
pressure is 48 pounds.

16. The distance (in feet) through which a body falls from
rest varies as the square of the time in seconds. If a body falls
16 feet in 1 second, how far will it fall in 6 seconds ?

17. The intensity (brightness) of light varies inversely as
the square of the distance from the source of the light. A
reader holds his book 4 feet from a lamp, and later 6 feet
distant. At which distance does the page appear brighter ?
how many times as bright ?

18. A lamp shines on the page of a book 9 feet distant.
Where must the book be held so that the page will receive
four times as much light ? twice as much light ?

19. The weight of an object above the surface of the earth
varies inversely as the square of its distancé from the center
of the earth. An object weighs 100 pounds at the surface of
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the earth. What would it weigh (¢) 1000 miles above the
surface ? () 2000 miles above the surface ? (¢) 4000 miles ?

20. The area of a circle varies as the square of its radius.
The area of a certain circle is 154 square inches and its radius
is 7 inches. Find the radius of a circle whose area is 594 square
inches.

21. The weight of a sphere of given material varies directly
as the cube of its radius. Two spheres of the same material
have radii 2 inches and 6 inches respectively. The first weighs
6 pounds. Find the weight of the second.

22. The time required by a pendulum to make one vibration
varies directly as the square root of its length. If a pendulum
100 centimeters long vibrates once in 1 second, find the time
of one vibration of a pendulum 64 centimeters long.

23. Find the length of a pendulum which vibrates once in
2 seconds ; once in 5 seconds.

24. The pressure of wind on a plane surface varies jointly
as the area of the surface and the square of the wind’s velocity.
The pressure on 1 square foot is .9 pounds when the rate of
the wind is 15 miles per hour. Find the velocity of the wind
when the pressure on 1 square yard is 18 pounds.

25. The pressure of water on the bottom of a containing
vessel varies jointly with the area of the bottom and the depth
of the water. When the water is 1 foot deep, the pressure
on 1 square foot of the bottom is 62.5 pounds. («) Find the
pressure on the bottom of a tank 12 feet long and 8 feet wide
in which the water is 6 feet deep. (b) Find the total pressure
on one end and on one side.

26. The cost of ties for a railroad varies directly as the
length of the road and inversely as the distance between the
ties. The cost of ties for a certain piece of road, the ties being
2 feet apart, was $1320. Find the cost of ties for a piece twenty
times as long as the first, if the ties are 24 feet apart.
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27. The force of gravitation between the earth and the sun
is 36 x 10V tons. Imagine this force replaced by -a gigantic
cable the ends of which are tied one to the earth and the other
to the sun. Then compute in miles the diameter of the cross
section of the cable which would just stand the strain, knowing
that a cable whose cross section is 1 square inch will support
60,000 pounds without breaking.

28. It has been shown that if one variable varies as-another,
the second multiplied by a constant number equals the first.
It is often desirable to determine this constant. Suppose such
to be the case in Problem 16.

Solution : Since dut? €Y)
then d = K? (K being some constant). &)

But when ¢ = 2 and d = 64, substituting in (2) gives

64 = K(2)2=4 K; whence K = 16.

29. In Problem 21 W oc#®; hence W = K. Find K.

30. In Problem 22 ¢cc VI Find the constant which multi-
plied by V7 gives ¢.

31. In Problem 14 find the constant connecting ¢ and ¢ in
the equation d = K¢ and determine its practical meaning.

32. It has been shown that if one variable varies inversely
as a second, the product of the two is a constant. Find this
constant in Problem 15.

33. The area of a triangle varies jointly as its base and alti-
tude. What is the constant involved ?

34. The area of a circle varies as the square of the diameter.
What is the constant involved ?

35. The volume of a sphere varies as the cube of the diam-
eter. What is the. constant involved ?

86. Give concrete illustrations of direct, inverse, and joint
variation different from those given in this book.

37. If 2® + g2 ca® — ¢ prove x + y cx — Y.
38. If 2® + 1P a® — 9 prove x + y cz — 3.
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39. If & + y ocx — y, prove &* — ay + y* cx® + 2y + 32

40. In the equation x = Ky assign some numerical value to
K and graph the resulting equation.

Direct variation between two variables is represented by what
sort of a curve ?

41. Assign some numerical value to K in z = K and then
graph the resulting equation. y

Inverse variation between two variables is represented by
what sort of a curve ?

42. Construct a graph showing the relation between two
variables one of which varies as the square of the other.

43. Construct a graph showing the relation between two
variables if one varies inversely as the square of the other.

44. The cost of a certain kind of nails is 5 cents per pound.
If ¢ represents the cost of n pounds, what is the equation which
connects ¢ and = ? What is the graph of this equation ?

45. If a quantity of gas is under a changing pressure, the
volume decreases as the pressure increases, and vice versa. Let
P denote the pressure and 7 the volume; then state an equa-
tion expressing the relation between P and 7 and determine
the kind of a curve which will represent this relation.

May negative pressures or negative volumes be considered
hiere ?



CHAPTER XVI
IMAGINARIES

119. Definitions. When the square root of a negative num-
ber arose in our previous work, it was called an imaginary,
and no attempt was then made to use it or to explain its
meaning. The treatment of imaginaries was deferred because
there were so many topics of more importance to the beginner.
It must not be supposed, however, that imaginaries are not of
great value in mathematics. They are also of much use in cer-
tain branches of applied science; and it is unfortunate that
symbols which can be used in numerical computations to.
obtain practical results should ever have been called imagi-
nary. By such a name something unreal and fanciful is sug-
gested. To obviate this it has been proposed to call imaginary
numbers orthotomic numbers, but this name has been little used.

The equation 2® +1=0, or > =—1, asks the question,
“What is the number whose square is —1?” By defining a
new number, V/—1, as a number whose square is — 1, we
obtain one root for the equation #* +1 = 0. Similarly, V—5
is a number whose square is — 5. And, in general, V—n is a
number whose square is — n. Obviously vV — 5 means some-
thing very different from V5.

The positive numbers are all multiples of the unit 4 1, and
the negative numbers are all multiples of the unit — 1. Simi-
larly, pure imaginary numbers are real multiples of the imagi-
nary unit v — 1.

Thus vV—1++vV—=1=2+/—T,and V—1+2+/—1=3~/=1,etc.
Further, V—4=2vV—-1; V—=avV—-1; V=5=vsv—-1.

The imaginary unit V—1 is often denoted by the letter ;
that is, 3V —1= 3.
222



IMAGINARIES 223

If a real number be united to a pure imaginary by a plus
sign or a minus sign, the expression is called a complex number.

Thus —2 ++vV—1and 8 — 2+/— 4 are complex numbers. The gen-
eral form of a complex number is a 4 bi, in which ¢ and b may be
any real numbers.

Note. Up to the time of Gauss (1777-1855) complex numbers
were not clearly understood, and were usually thought of as absurd.
The situation reminds one of the time when negative numbers were
similarly regarded, and the veil was removed from both in about the
same way. It was found that negative numbers really had a signifi-
cance ; that they could be used in problems that involve debt, opposite
directions, and many other everyday relations. The interpretation
of imaginary numbers is not quite so obvious, but none the less actual
and simple. As soon as it was seen that they could be represented
with real numbers as points on a plane (see page 231) the ice was
broken, and it needed only the insight and authority of a man like
Gauss to give them their proper place in mathematics.

120. Addition and subtraction of imaginaries. The fundamental
operations of addition and subtraction are performed on imagi-
nary and complex numbers as they are performed on real num-
bers and ordinary radicals of the same form.

Thus 2\/?1+4\/—_1:6'\/—_1,

and 5vV—-1-38vV—-1=2+/—1.
Also  3+5V—-1+4-2V/—1=7+3V—1.
Similarly, at+bit+ct+di=a+c+ (b+d)i

EXERCISES
Simplify :

. 3V—144V—-1-2V-—-1.
V=44 V=09

. 5V—=362— 2V — 4922
. V—18 + V8.
. V=25 —V—1s. (=12 (=2,
. 5V—14+V—0. L 84+2V—_14+5—-6V—-1.
. V—44+~V_16. 10. 5V —a2>—Ta —3V— 2%
11. 4 — 8V—-1+4+16 —3V— 4.
12. 6 —2V— 642 — 3V — 2547 + 8.

Ou » W O =
© 0 I O
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13. 18 — 3(— 1)} + 6(— 2)t + (— 100y} + 4.

4. 5vV—3+3V—2_-+vV_2T+2V=3.

15. 6V—4a*—Ta>V—94+3V—6—-5V—24
16. (12 — 6 vV—9) — (15 + 2 V— 36).

17. 3a — 22 — (2aV— o’ — 5ra* V—1).

18. (x — iy) — (n — ).

Write as a multiple of vV—1:

19. V—10. 21. 2V/— 3. 23. aV—b.
20. V— 6. 22. V—a. 24, V—a — 0.

121. Multiplication of imaginaries. By the definition of square
root, the square of V—n is — n.

Therefore

(V=1 =—1.
(V=1 =(V=-1)V—-1=—1+V=-1.
(V=1 = (V=1 (V-1 = (D) (- =1.

To multiply V— 2 by V— 3 we write V— 2 as V2. V=1,
and V— 3 as V3. V—1.

Then  V—2.vV—-3=(V2.V=1)(V3.V=1)

=V6.-vV—1.vV—1=—+6.

Similarly, :
2vV=—5(—8vV—-2)=2vV5.V-1(—3v2.V—=1) = 6V10.

In general, if the V— @ and the vV — b are two imaginaries
whose product (or quotient) is desired, they should first be
written in the form Va' vV —1 and V5. V— 1, and the multi-
plication (or division) should then be performed. This method
will prevent many errors.

In this connection it must be clearly understood that one
rule followed in multiplication of radicals (see page 98) does
not apply to imaginary numbers.

Thus V2. V38 =v2.8 = /6.

But v/— 2. +/— 3 does not equal V(= 2)(— 3), which equals V6.
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In multiplying two complex numbers, write each expression
in the form @ + ¢ and proceed as in the following

EXAMPLE :

Multiply 2 + V=3 by 3 — V—1.

Solution :

3—V—7=

24+vV=3=2+V3.v/-1
3—V7-vV/—-1

Multiplying,
Rewriting,

6+3V3vV-1-2V7V-1+~21
6+3vV—-8-2~/—-7+21 :

EXERCISES

Perform the indicated multiplications and simplify results:

1.

7.
8.
9.
10.
11.

AN T ol

(vV=1)".
(vV=1)".
(vV=1).
(V=1)".
2vV—-1.3V—-1.
v—9.Vv-16.
V=5 (—V=6).
V—25./3.
2vV—-3.3V-2.
V=—m-V—n.

4vV—-5(—3vV—6).

12. Va+0-V—a—10

13. (2 +V=1)(2—-+V=1)
1. (3—|—\/—)(3——\/ 2).
15. (4 —2V3i)(4 4+ 234
16. (3+V—1)(6 —vV=2).

17. 4 —29(3— 2\/51).
18. (a + ) (¢ + id).

19. (a + i) (a + ib).

R0. (a + bi)(a — bi).

2l (— 3+ 1 V—=23).

22. (—1—1V=3)

23. (x — ty)* — (x + iy)*
% (—p+iV=3) '~ (-1 -3 V-3)"
25. (¢ 4+ iV1—a?)(a—iV1—2a?).

Note. Long before the time of Gauss mathematicians had performed
the operations of multiplication and division on complex numbers by
the same rules that they used for real numbers. As early as 1545

Cardan stated that the product of 5 + /' — 15 and 5 — Vv — 15 was 40.
However, he was not always equally fortunate in obtaining correct

results, for in another place he sets i <— Al- 1> -1 _1

4 6+ 8
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Even the rather complicated formula for extracting any root of a
complex number was discovered in the early part of the eighteenth
century. But all of these operations were purely formal, and seemed
to most mathematicians a mere juggling with symbols until Gauss
showed clearly the place and usefulness of such numbers.

-122. Division of imaginaries. One complex number is the
conjugate of another if their product is 7eal. Thus a + b¢ and
a — bi are conjugates. Conjugate complex numbers are used
in division of imaginary expressions as conjugate radicals are
used in division of radicals.

Division by an imaginary is performed by writing the dividend
over the divisor as a fraction and then multiplying both numer-
ator and denominator by the simplest imaginary expression
which will make the resulting denominator real and rational.

EXAMPLES
1. V-6 -++V—
Iy I~ _V—6_ V—-6./-2
YT TR Ve v—e
MO NVTINE NI -V e
T V2V o1lAeV—1 -2

3+(2—|—\/——3).

Solution: 3 + (‘2 +vV-—3

Solution:

3 _ 3(2—-+/=3)
+~—3 @++vV-3)2-~-3)
_6—3\/_—‘_6—3\/__

4+3 7
EXERCISES
Perform the indicated division:
1. V=8 +vV—2. 6. (— 25)F + (— s,
2. V—6-+V—3. 7. Var + V- a.
3. 2vV—3+3V—1. 8. V—a+V—10.
4 V-1V 9. (—5ax)t + (— 2a)t.
5. V6 +V—2. 10. [(—a®)t — (—a®)¥]+ (—a)t.



19.
20.
21.
22.
23.
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11 2 +(1—V-1). 16, LF¢
12. 3+(2—V=2). 1—1
13. 2\/—_1+(\/ji+3). 17 _a
14. 3vV—2+(2V=3+2). Ca+bi
15. _i_@ 18. wb_
—1-+V-3 ¢+ id
2+83)+2i—1)(5i—38)=7?

Is V3 —1 a cube root of 8?2

Is 1 — +/— 3 a cube root of — §?

Does 2> —4a +7=0, ifz=2+V—3?

Does z = %\/jﬂ), y=— 3V —10 satisfy the system

2 —axy —1242 =8, 2* + a2y —107 =202

24.

Determine whether the sum and the product of

24+3V—1and 2 —3V—1 are real numbers.

25.

Show that the sum and the product of any two conjugate

complex numbers is real.

26.

Show that the quotient of two conjugate complex num-

bers is complex.

27.

Point out the error in the following:

The equation Va — y =7 Vy — « is an identity. @

Let 2 = a and y = b, and (1) becomes

Va—b=1Vb—a. &)

Now let ® = b and y = «, and (1) becomes

Vo —a=ivVa—b ®)

From (2) and (3),

Va—b-Vo—a=(Vo—a-Va—0). 4)

Whence 1=2? orl=—1.

123. Equations with imaginary roots. The student should

now

nary

be able to solve and check equations which have imagi-
roots.
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EXERCISES

Solve and check the equations which follow :
1. 2’ 4+42x4+12=0. 6. 32> —Tax+6=0.

2. 2 — 6z + 36 = 0. 7. 2’ =1
) : Hint. If 283=1,23—1=0.
3. 2 +5x+7=0. Hence (z —1)(a® + z +1)=0.
Then r—1=0,
4. 2° =32 +10=0. ;4 224+ 2 +1=0, etc.
5. 202 +6x+5=0. 8. 2°=8.
9. z* = 27. 11. «*=1. 13. 2® =1.
10. 2z =—8. 12. z* =16. 14. z° = 64.

15. How many square roots has any real number ? cube
roots ? fourth roots? sixth roots ?

16. What do Exercises 7-14 indicate regarding the number
of nth roots which any real number may have ?

17. 8 — 27 = 0. 22. 4a* 4+ 2024+ 21 =0.

18. 125 2% + 64 = 0. 23. 642t — 122 — 27T = 0.

19. (®*+5) (@ —T)+27=0. 24. 9a* 4 182>+ 8 =0.

20. 2 —2* +22—2=0. 25 50x*+1352*4+36=0.

21. 2 4+Ta2*—8=0. 26. (x*+9) (2*+ 22+ 8)=0-

27. (2* + x)* +13(a* + 2) + 36 = 0.

28. (x* + 5x)® +17(x* + 5x) 4 66 = 0.

29. Solve = + y = 4, > — 3wy — 3* = — 39 and check.
30. Solve 2 +2?2=130,2 + x + 2 Vz + 2 = 2 and check.
31. Solve Exercise 4, page 146, and check.

124. Factors involving imaginaries. After studying radicals
we enlarged our previous notion of a factor, and, with certain
limitations, employed radicals among the terms of a factor.
Now in a similar manner, with like restrictions, we extend our
notion of a factor still farther and use imaginary numbers as
coefficients or as terms in a factor. Consequently «* + 1 may
hereafter be regarded as factorable.
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For 2+l=22— (- =(E+V-1)(-V-1).
Similarly, 422+9=422—(—9)=Qz+3vV-1)(2z—3+V-1),
and 22+ 6 =22—(—6)=(z+V—-06)(z—V-0).

Further,2® —1=(x — 1) («* + 2 +1). Hitherto the trinomial
~#®4x+1 has been regarded as prime ; but the student can easily
prove that * +x +1=(z +$ ++V—3)(z + 4 —3V—3).
Therefore x* — 1 has three factors,x —1, 2 + 4+ + % V= 3,and
z++—3V—3.

If the student is curious as to the way in which the factors
of #* + a +1 were found, he may discover the method for him-
self by studying the results of Exercise 7, page 228.

125. Graphical interpretation of pure imaginaries. In our pre-
vious graphical work a positive number and a numerically
equal negative number, as + 2 and
— 2, were represented by equal G
distances measured in opposite
directions, such as 04 and OB of
the adjacent figure. Now multi-
plying +2 by —1 gives — 2. s
Hence, if we choose to do so, we
may regard —1 as an operator -H
(rotor) which turns O in the
direction of the arrow into the
position OB, or through two right 7

- angles (180 degrees).

To make this point clearer note the two curves of the figure
on page 230. Curve 4BC is the graph of the function z* — 2 — 2.
Curve A'B'C' is the graph of the function 2 + 2 — 2% The
latter function was obtained by multiplying * — 2 — 2 by —1.
The graphical effect of this multiplication is to turn the whole
curve ABC about X'Y as an axis through two right angles to the
position 4'B'C".

The preceding illustrations indicate a method of interpret-
ing the v/ —1, which is in strict conformity with our previous
graphical work.
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First V—1.V—1=—1. Now multiplying a number by —1
produces the same effect as multiplying twice in succession by
v/ —1. Therefore multiply-
B ing by V—1 once may be
regarded as producing a
\ 1 rotation of one right angle
(90 degrees), or one half as
I much rotation as multiplying
\ by —1.

2\ Returning to the figure on
K B \ page 229, 04, or + 2, mul-
- tiplied by vV—1 would be
/ v turned to the position OK.
Iy v’ Hence the point K is said
il to correspond to the number

2vV-1. Similarly, point R
corresponds to V—1 and point G to 3 V—1. And OH being
measured in a direction opposite to OR, OK, and 0G, would
correspond to —V—1. In like manner OL corresponds to
— 2V —1. This last result, however, may be reached differ-
ently. Multiplying 2 by V=1 three times gives — 2+ — 1.
These successive multiplications by vV —1 may be regarded
as producing a counterclockwise rotation through three right
angles which would locate the point corresponding to — 2+v—1
on OI at L as before.

Therefore the graphical representation of a pure imaginary
number & V—1 is by a point on an axis perpendicular (at right
angles) to the axis of real numbers, ) units in the direction of
OG if b is positive, b units in the direction of OI if b is nega-
tive. This new axis will be called the imaginary or Ilaxis.

)
o] T™ ¥
7/

i

126. Graphical representation of a complex number. The com-
plex number x=3 4 2 V/—1 consists of a real part 3 and the
imaginary part 2 vV —1. To represent such a number we meas-
ure in the adjacent figure 3 units along 0X from O to R, and
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then 2 units parallel to the imaginary axis IT' from R. This
gives the point P, which is the graphical representation of the
complex number :

o=3+2V—1 : T
If the student pays proper

attention to signs, he should 3 I"
now see that the point 4 cor- ARG
responds to z = 3 — 2V —1, , 1 N
— -2 - Jo R O
B to m:—2+4i—1, and = VT
Ctox=—4 —~V—1. V15
3VAA

In general, if a is a com-
plex number @ + bi, x is rep-
resented by a point e units
from the imaginary axis and
b units from the real axis, the positive and negative directions
being as indicated in the adjacent figure.

Note. It was the discovery of a graphical interpretation for the
imaginary numbers which did more than anything else to make them
mean something to students of mathematics. Until this discovery
they were tolerated because their appearance as the roots of equa-
tions was a constant reminder of their existence. But they were
usually regarded as meaningless, and the less one had to do with
them the better he liked it. About 1800 a Norwegian by the name
of Wessel, and the Frenchman, Argand, gave practically the same
graphical interpretation as that found in the text, but their work
was little noticed till Gauss adopted the method and, by his influence
and ability, placed the imaginary number on a firm basis.

EXERCISES

Locate the point « if :

Lz=2+1 6. 1=—3—2i 1l.2=24+V—3.
2. =3+ 31 7.2 =4 —1. 12. e =3+3V—-2.
3. x=4—24. 8. x=4+4i 13. 2 =2+ V_11.
4. z=1—34i 9. x=—1—14. 14 z=2—+V—11.
5. 20=—2+44i 10.x=—3—-5i 15 x=+V—12—5,
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The graphical interpretation for the definition of equality of com-
plex numbers is that equal complex numbers are represented by the
same point in the plane.

The student should not conclude from the preceding exercises
that the imaginary axis has merely replaced the y-axis of our pre-
vious graphical work, for such is by no means the case. We have
simply used our device of rectangular axes to represent complex
numbers. The fact that we have previously made use of the same
means to graph a function should not embarrass us any more than it
would disturb us to play croquet on a baseball ground. The fact that
both take place on the same field does not make them the same game.

For some purposes it is convenient to relate the zy-plane, in which
real number relations are represented, and the complex plane more
closely to each other. In fact, we may proceed as if we had merely
added a third axis, the axis of imaginary numbers, to the two axes
of real numbers which we had before. This axis may be regarded
as passing through the origin at right angles to both the z-axis
and the y-axis. By means of it we may locate such a point as y = 8,
z =24 4 v/ —1, or any point, in fact, in which one coérdinate is real
and the other imaginary or complex. Then we may go on and con-
struct the imaginary branches of many of those curves, the real graphs
of which the student has already drawn.

Note on use of imaginaries. We have explained the laws of addi-
tion, subtraction, multiplication, and division for imaginary (and
complex) numbers and have made some useof them. It is largely
because imaginaries obey these laws that we call them numbers, for
it must be admitted that we cannot count objects with imaginary
numbers. Nor can we state by means,of them our age, our weight,
or the area of the earth's surface. It should be remembered, how-
ever, that we can do none of these things with negative numbers. We
may have a group of objects — books, for example — whose number -
is 5; but no group of objects exists whose number is — 5, or — 3, or
any negative number whatever. If it be asked, How, then, can neg-
ative numbers and imaginary numbers have any practical use? the
answer is this: They have a practical use because when they enter
into our calculations and we have performed the necessary opera-
tions upon them and obtained our final result, that result can fre-
quently be interpreted as a concrete number such as is dealt with
in ordinary arithmetic. Moreover, if the result cannot be so inter-
preted, it is, in applied mathematics at least, finally rejected.

"In that part of electrical engineering where the theory and meas-
urement of alternating currents of electricity are treated, complex
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numbers have had extensive use. Their employment in the difficult
problems which there arise has given a briefer, a more direct, and a
more general treatment than the earlier ones where such numbers
are not used.

In theoretical mathematics complex numbers have been of great
value in many ways. For example, numerous important theorems
about functions are more easily proved under the assumption that
the variable is complex. Then, by letting the imaginary part of the
complex number become zero, we obtain the proof of the theorem
for real values of the variable. Indeed, the student need not go very
far beyond this point in his mathematical work to learn that, if e is
2.7182 + (see page 189), ¢ V-lge-V-lig equal to the real number
1.082 +. At the same time he will learn also how such a form arises,
and something of its importance. In a way which we cannot now
explain, even so involved an expression as (a + i)°*™ has in higher
work a meaning and a use. If the student pursues his mathematical
studies far enough, that meaning and use, and a multitude of other
uses for complex numbers, will become familiar to him. But the
numbers which we have learned in this Book to use, namely fractions,
negative numbers, irrational numbers, and complex numbers, com-
plete the number system of ordinary algebra, for it can be proved
that from the fundamental operations no other forms of number
can arise.



CHAPTER XVII
THEORY OF QUADRATIC EQUATIONS

127. Character of the roots of a quadratic equation. It is often
desirable to determine the character of the roots of a quadratic
without actually solving it. To determine the character of the
roots of an equation means to find out whether the roots are
real or imaginary, rational or irrational, equal or unequal.
These properties of the roots of a given quadratic depend on
the three coefficients, which correspond to «, 0, and ¢, in the
general quadratic equation ax® + bx + ¢ = 0. The solution of
this equation gives the roots:

— b+ Vi —4dac
)

=

2a
—b -V —4ac
and T, = o .

This expression * — 4 ac which occurs in each root is called
the discriminant of the quadratic. If a, ), and ¢ are rational
numbers, it is evident from an inspection of the discriminant
where it occurs in the values of », and », that the following
statements are true: ’

I If 0* — 4 ac is positive and not a perfect square, the roots
are real, unequal, and irrational.

II. If 0* — 4 ac is positive and a perfect square, the roots are
real, unequal, and rational.

II1. If 0® — 4 ac is zero, the roots are equal.

In this case there is really but one root, :—b .
P2

IV. If 1* — 4 ac is negative, the roots are imaginary.
234
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EXERCISES

1

o
(a8

Determine the character of the roots of the following equa-

tions by the use of the discriminant:
1. 22>+ 52 —6=0.
Solution: 12— 4 ac = (5)2 — 4-2.(— 6) = 25 + 48 = 73.
Therefore the roots are real, unequal, and irrational.
2. 22 —5x+6=0. 8 42°=9 — 9.
3. x> —11xz+2=0. 9. bz = a4+ 5.
4 4a* — 20z + 25 =0. 10. #* — bz +7=0.
5. Ba? —S8x—3—0. 11. 122> — T2 4+ 6 = 0.

12. x(x — 5) =« — 16.

6. T2 — 22+ 10=0.

7

3 11
2 — G+ 6=0. 18. 5+ =20

14. 5m—£—,_£
7 Tx

Determine the values of K which will make the roots of the
following equations equal. (To say the roots of a quadratic
are equal is the usual mathematical way of stating that the

equation has but one root.)

15. 2> — Kz +16 = 0.

Solution : a=1,0=—-K, c=16.

Hence b?—4ac=K?— 64.

In order that the roots be equal, > — 4 ac must equal zero.
Therefore K2—64=0,

Whence K=4+8.

Check : Substituting 8 for K in the original equation,
22— 8z +16 =0.

‘Whence z =4, only.

Similarly, substituting K = — 8, 22+ 82 4+ 16 = 0.

‘Whence z = — 4, only.

16. 2 — Kx 4 36 = 0. 19. 2 — 10x 4+ K = 0.
17. 2 — 3 Kx + 81 = 0. 20. 224+ 8x 4+ K =0.

18. 22>+ 4 Kz + 98 = 0. 21, 92 +30x+ K+ 9=

0.
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22. 4K’ — 602 +25=0. 24 492> — (K+3)z+4=0.
23. 9K%® —84x449=0. 25 (K*45)a®—30x+25=0.
26. (K’+1T)2?+(BbK—4)x+4=0.
Determine the relation between % and 4 which will make
the roots of the following equations equal :
27. k% +6hx+9=0. 29, ®+4kx+470=0.
28. kx? — 2 a4+ 16 = 0. 30. kx? —2hx 46 =0

Determine the values of a for which the following systems
will have two sets of equal roots :

1 = ax, a3 a? + 1 = a?,
y=x+1. Ty=ax+1.
2 2 2
32, ¥V =2 34, @ty =122,
y=ux+ a. y=x+ a.

128. Relations between the roots and the coefficients. The roots
of ax? 4 bx + ¢ = 0 are

p == ‘2/2_—4“” )
= —b—\2/1: dac @
(1) + (2) gives », + 7, = _2—?’1’ - Zbl 3
) x (2) gives  rp, = bﬁ——(i}:a}éﬂ :2 . , 4)

The general quadratic equation may be written
x2+ém+£=0. ®)
a a
Then for any quadratic in which the coefficient of z*is 1:

L. From (3) and (5) the coefficient of x, é, is the sum of the
roots with the sign changed. '

IL. From (4) and (5) the constant term, c—i’ is the product of
‘the roots.

Iand IT may be used to form a quadratic whose roots are given.
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EXERCISES

Form the quadratic whose roots are:
1. 5, — 3.
Solution: 7, + r, with the sign changed = — 2.
Py X 1y =5(—38)=—15,
Hence the required equation is 2* — 22 —15 = 0.

2.2, 7. 9. —3 + V5. 15. a, c.

3. — 3, 10. 10. 4 + V7. 16 a 1

4, —4, — 5. 11. 3 + 1 V6. " 7a

5. —12, — 1. — 64+ \/— 2a

6. 3, 5. 1. ——— 17. 3, 5=

7. 10, — 1. 13. V5, — 35, 1
8. 24/3,2— V3 11 3_~3 242 BethoT

Solve the following equations and check each by showing
that the sum of the roots with its sign changed is the coefficient
of z, and that the product of the roots is the constant term:

19, 22 — 122 —13 =0. 21 2> + 324+ 3=0.
20. 22 —10x +16 = 0. 22. 2> —bx 4+ 20 =0.
23. *+2x+2=0.
24. One root of 2 — 42 —12=01s — 2. Find the other root.
Solution: Let », be the required root.

Then —(itn)=—(-2+m)=—
Solving, ry = 6.
Check : rry = (—2)(6) = —12.

25. Oneroot of &> +7x —18 = 0is — 9. Find the other root.
Find the value of the literal coefficient in the following:
26. 22 + 2x — ¢ = 0, if one root is 3.

27. a? — x — ¢ = 0, if one root is 10.

28. 2% 4+ 8x — ¢ = 0, if one root is — 2.

29. x> — ex — 70 = 0, if one root is 10.

30. «® 4 20x + 25 = 0, if one root is — 5.
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31. 2> — 3ax — 52 = 0, if one root is 4.

32. 22* —11x 4+ ¢ = 0, if one root is 5.

33. ax® — 20x 4+ 12 = 0, if one root is 2.

34. ax® — 62 — 21 = 0, if one root is — 3.

35. 2> — 82 + ¢ = 0, if one root is three times the other.
36. 22 4+ 7x + ¢ = 0, if one root exceeds the other by 1.

387. #* +11x + b = 0, if the difference between the roots is 9.
38. x> — 5 — ¢ = 0, if the difference between the roots is 7.

39. 2> — bax — a =0, if the difference between the roots is
—13.

129. Number of roots of a quadratic. Up to this we have assumed
that a quadratic equation has but two roots. . This fact can be proved
from the preceding work as follows:

If we write the equation ax? 4+ bz + ¢ =0 in the form 2% + %x + 2 =0
and substitute therein from (3)and (4) on page 236, we get 22— (r; +r,)z+
r,7, = 0. This can be factored and written as (z — r,) (z — r,) = 0.
Now if any value of z different from r, and r,, say r;, be a root of
this equation, such a value when substituted for z must satisfy the
equation (x — 7)) (z — r,) = 0.

Hence (r; — ) (ry —7,) must equal zero. By definition, how-
ever, ry is different from 7, and r,. Consequently neither the factor
(rg — r;) nor (r3 — 7,) can equal zero, and therefore their product can-
not equal zero. This proves that no additional value, ry, can satisfy
the equation 22— (r; +7,)x+ 7, = 0. As this equation is but another
form of ax? + bz + ¢ = 0, the latter has only two roots.

130. Formation of equations with given roots. The method of
forming quadratic equations which was used in the preeceding
exercise applies to equations having two roots only. A reversal
of the method of solving equations by factoring (page 31),
however, enables us to build up an equation with any num-
ber of given roots.

The correctness of the method for three given roots will be
clear from what follows:

Form the equation whose roots are a, 0, and ¢.

Write (x — a) (x — b) (@ — ¢)= 0. @
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Now if @ is put for # in (1), we obtain 0 = 0.

Similarly, if & or ¢ is put for = in (1), the result is 0 = 0.

Therefore (1) is the equation whose roots are «, b, and ¢, and
the expanded form of (1), * — (¢ 40 4 ¢) x>+ (ab + ac + be) x +
abe = 0, is the required equation.

The same reasoning applies if we form in this way an equa-
tion with any number of given roots.

Note. The relations between the roots and the coefficients of an
equation were discovered at about the same time by Vieta in France,
by Girard in Holland, and by Harriot in England. Vieta actually
wrote the cubic equation in about the form given in the text so
as to display these relations. The very important algebraical theo-
ries which result from these properties were developed in detail by
Newton, and have been the subject of study by many of the most
distinguished mathematicians since his time.

EXAMPLES

1. Form the equation whose roots are 3 and — 5.

Solution : By the conditions, z =38 and 2 = — 5.

Therefore z—3=0 and 2+4+5=0. :
Then (x—=3)(x+5)=0. €S)
Expanding, 22+ 22 —-15=0. 2)

Substitution shows that 8 and — 5 are the roots of (1) and (2).

2. Form the equation whose roots are 1, 3, and — 2.

Solution: As before, z—1=0,z—3=0,andz+2=0.
Therefore E—D@E-=3)(x+2)=0. (¢S]
Expanding, 22 —222—524+6=0. (2)

Inspection shows that the given roots 1, 8, and — 2 satisfy the
equations (1) and (2).

EXERCISES
By the method used in the preceding examples form the
equation whose roots are:
1. 3, 7. 4. 2+-5. 6. 3, — 3, 8.
2.4, —5,6. 3+~7 7. 1,3, —2.
3. 143, 1— 3. T 8. 1+3, 3.
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9. a+b,a—0. 13. 7, 7, 7,
0. 1, 54 14. 3,2 + Va.
15. — 5, —7,6,8.
11. 3¢+ V2a. 6 2 ,\/—3,\/—
406.:|: oy 6. 2 +V3,3+ _2.
12. — 2 ) 17. 1, — 2, a + Va.

131. Factors of quadratic expressions. Let r, and 7, be the
voots of ax® 4 bx + ¢ = 0.

Then «? 4+ sx—i- 2 =2 —(r,+rp)r+rr,=@—7r)@®—7r),
or ax’ +bx +c=a(x—r) (@ —71,).

Therefore the three factors a, x — 7, and z —r, of any
quadratic expression can be written if we first set the expres-
sion equal to zero (see § 17) and solve for » and r, the equation
thus formed. Obviously the character of the roots so obtained
will determine the character of the factors. Hence by the use of
the discriminant 0* — 4 ac we can decide whether the factors of a
quadratic expression are real or imaginary, rational or irrational,
without factoring it.

EXERCISES

Determine which of the following expressions have rational
factors :

1. 22 — 3x — 40. 6. bx? 4+ 3z — 20.

2. 2x* 4+ 5x—T1. 7. 3x* —9x 4 28.

3. Ta? — 92 +18. 8. 337* — 2337 — 6.
4, 24 2* — 2 —10. 9. 2* — 2ax + (a® — 7).

5. T22* — 172 + 1. 10. abx® — (V* + a®) = + ad.
Separate into rational, irrational, or imaginary factors :
11. 22+ 5a — 8.
Solution: Let 222+ 5z — 8 =0.
—5+ V25— (—64) _ —5+89
4 4

Solving by formula, 2 =
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Then = ok e e L4 _Z-\/@ and r,=—_Y " 5 —4 \/8_5
Therefore2x2+5a:—8=2[z——_5—;\/8—9][x——5;\/@]
Z%(4x+5—‘\/@)(4x+5+@).

12. 22 — Tx — 30. 21, 2? +Tx 4 8.

13. 2 — 4 — 1. 22. 2+ 1.

14. 2>+ 22+ 2. 23. x® + 1.

15 2* + 42 — 9. 24. «* 4 9.

16. 422 —12x — 9. 25. 2> — 2ax + a® — b.

17. 25 2% 4 20 x 4 4. 26. 22+ 6ax +9a® — 40.

18. 6% + 142 — 40. 27. 42> +4dax+a® —4e
0 19. 10 — 92 — 92> 28, ©® —daxr+4a®+ec

20. 102* +12 — 26 x. 29. ax®+ bx + c.

30. 2 —ay+5x—2y 4 6.
Solution: Let 22 —zy+ 52— 2%+ 6 = 0.
Then 24+ G-—y)r—2y+6=0.
Solving for z in terms of y by the formula,
pe = (=N EVE -y —4(=2y+6)

9

=54yt ViyP—2y+1
= 5 .

'

Whence z=—2and y—3.
Therefore 22 — a2y + 52 —2y+ 6 =@+ 2)(z —y + 3).

31. 32> —Gay + 14 — 4y + 8.

32. 2 —ay — 2y +8x—6y.

3. 2 —day—y+3y5°—2—a.
4. 2 — 29y  —ay+2x+5y— 3.
35. 622 +awy — 129+ +10y — 2.
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THE BINOMIAL THEOREM

132. Powers of binomials. The following identities are easily
obtained by actual multiplication :

(a +0)* =a® + 2ad + 0% @
(@+0)P=a®+3a’+ 3ab® + 1 2
(a +0)*=a* + 4a% + 6’0 4 4 al® + % 3)

(¢ + 0P =0+ 500 +10a%* +100%° + 5ab* + 5.  (4)

If a + b is replaced by @ — b, the even-numbered terms in
each of the preceding expressions will then be negative and
the odd-numbered terms will be positive.

133. The expansion of (¢ 4+ b)*. The form of the expansion
for the general case will now be indicated :

The first term is a* and the last is b

The second term is na"~'b.

The exponents of a decrease by 1 in each term after the first.

The exponents of b increase by 1 in each term after the second.

The product of the coefficient of any term and the exponent
of a in that term, divided by the exponent of b increased by 1,
gives the coefficient of the next term.

The sign of each term of the expansion is + i¢f a and b are
positive ; the sign of the odd-numbered terms is — if b only is
- negative.

The number of terms in the expansion is n + 1.
According to the rule, (@ + 0)" = a + %a"“b +
ﬂ%%ﬁ(Ln—ebe+n(n;;122§7;_22an—sb3+._.+bn_ (1)
242
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The preceding expansion expresses in symbols the law known
as the binomial theorem. The theorem holds fer all positive
values of n and with certain limitations (see §136) for nega-
tive values as well. This will be assumed without proof.

Note. The coefficients of the various terms in the binomial expan-
sion are displayed in a most elegant form as follows:

1
11
121
1331
14641

In this arrangement each row is derived from the one above it by
observing that each number is equal to the sum of the two num-
bers, one to the right and the other to the left of it, in the line above,
Thus4 =1+ 8,6 =8+ 3, etc. Thenextlineis 1 5 10 10 5 1.
The successive lines of this table give the coefficients for the expan-
sions of (a+ D)* for the various values of n. Thus the numbers in
the last line of the triangle are seen to be the coeflicients when n = 4
the next line would give those for » = 5. This arrangement is known
as Pascal’s Triangle, and was published in 1665. It was probably
known to Tartaglia nearly a hundred years before its discovery by
Pascal.

134. The factorial notation. The notation 5!, or |5, signifies
1.2.3.4.5, or 120. Similarly, 4!=1.2.3.4 = 24.

In general, n! =1-2.3-4...(n — 2)(n — 1)n.

The sign n!, or n, is read factorial n.

With the factorial notation the denominators of the third
and fourth terms in the expansion of (« + )" in § 133 become
2! and 3! respectively.

EXERCISES
Expand by the rule:
L (a+ )" 3. (a4 1) 5. (o + 3)".
<2 (a—1)5 4. (a4 2)% 6. (2 —a).

Obtain the first four terms of :
7@+ 8 (a+4b)* 9 (a+D¥*. 10. (e —2)%
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Yxpand:
11. (a® 4 20)®. Hixt. To avoid confusion of exponents first write
@'+ (@EHHF @PEH+ (@ +
. (a®)1 (2b)% + (2 )5

Then in the spaces left for them put in the coefficients according
to the rule of § 133.
Finally, expand, and simplify each term.

2 o\G 5 6
12. (a* —2)% 14. <a,2 + 1) . 15. <a2 — %) :
13. (a* + 20)". b

Obtain in simplest form the first four terms of :

16. (a® + 20)™. 20. (a® — 30%)™.
2 30 3 m5 2 ?/16 6
2 —— . — .
17. <a a) 21. ( . 9xw>
a 3 [) 20 a2 2 [)2 12
WG+7» 2&@—?f
4 \7 2\ 12
1. <2_w _ 6L> 23, <ﬁ+ﬁ> .
Y x Yy x

24. Write the first six terms of the expansion of (« + 4)"and
test it for n =1,n = 2,n = 8, and n = 4. How does the num-
ber of terms compare with »? What is the value of each
coefficient after the (n 4 1)st? Why does not the expansion
extend to more than six terms when n=157?

25. Write the first four terms of <1 + %)n

Compute the following, correct to two decimal places :

26. (1.1)°. Hixt. (1.1)1 = (1 +.1)!, ete. 28. (2.9)%
27. (.98)". Hint. (98)1 =(1—.02)1, etc. 29. (1.06)%.
30. 61 1 1 1 1

31. 21.41. TR TR TR
32. 6! = 3. 35 15.14.13.12.11.10.9'

— 33. 4! —31.21 2L ’ 7!
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135. Extraction of roots by the binomial theorem. By refer-
ence to the expansion (1), page 242, it can be seen that none
of the factors n, »n — 1, n — 2, n — 3, etc. become zero for frac-
tional or negative values of n. Hence for such exponents the
development of (e + 0)" becomes an infinite series. If a is
numerically greater than 4, and »n has any one of the values
1, 4, 4, ete., the resulting series has a limiting value. In those
expansions where a is considerably greater than 0, this value
can be readily approximated by finding the sum of the first
few terms. Therefore the square root, cube root, and all other
roots can be obtamed approximately by the aid of the binomial
theorem. .

Note. The process of extracting the square root and even the cube
root by means of the binomial expansion was familiar to the Hindus
more than a thousand years ago. The German, Stifel (1486-1567),

stated the binomial theorem for all powers up to the seventeenth, and
also extracted roots of numbers by this method.

EXAMPLES
Find to three decimals by the binomial theorem :

1 @20k

Solution: (27)% = (25 + 2)3
=25t 41.957 8.2 1,957 8. 024 1 057893,
=5+ 3~ g3y taas
=5+ .2 — .004 + .00016 = 5.196 +.

2. (67)k.
Solution: (67)% = (64 + 3)%
=645 +1.647%.3 - 1.643.32 +§Er'64_%'38'“
=4+ 45— g t
=4 +.0625 — .00097 = 4.0615.
Here three terms give the result correct to five figures.
3. (T9)%
Hint. (79)3 =(81-2)t=813—1.8173.2 4+ 1.s1-%.22 ¢
Here (81 — 2)% yields more accurate results with fewer terms
than does (64 4+ 15)%.
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EXERCISES
Find to two decimals by the binomial theorem :
1. @26k —~3. (9L 5. (28)3. 7. (25)%.
2. (38)L 7 4. (1200 6. (66)%. 8. (120)%.
Find the first four terms of :
9. (14 )k 11. (3 —x)k. 13. (2 +a)h.
10. (2 + )} 12. (1+ 2k 14. (3 — )k

136. Limitations on @ and b in (a.4 b)". The expansion
(@ + ) has a meaning for all values of n, only if ¢ and & are
properly chosen. To illustrate the truth of this statement we
shall consider the expansion of (1 + z)~* for various values
of z. By the theorem,

A+x)yt=1l—a+®?—2P+at—aP+a5—.... (1)
Now 1+2)"*= 1_{_% Hence the left member of (1) has

a meaning for all values of z except — 1. The right member
of (1) is an infinite geometrical series whose ratio is — . This
series has a limiting value only when x is numerically less
than 1 (see page 173); that is, if « be a positive or negative
proper fraction. For positive or negative values of = numeri-
cally greater than 1 the series has no definite value. There-
fore the expansion has a meaning only when « is numerically
less than 1. Here 1 corresponds to a and x to b in (a 4+ 0),
and the preceding discussion indicates but does not prove the
truth of the following statement:

The expansion (a + 0)* has a definite value if n is positive or
negative, integral or fractional, provided a is greater than b.

A proof of this last statement is beyond the scope of this
book.

Note. The binomial theorem occupies a remarkable place in the
history of mathematics. By means of it Napier was led to the dis-
covery of logarithms, and its use was of the greatest assistance to
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Newton in making his most wonderful mathematical discoveries.
But to-day the results of Napier and of Newton are explained with-
out even so much as a mention of the binomial theorem, for simpler
methods of obtaining these results have been discovered.

It was Newton who first recognized the truth of the theorem, not
only for the case where n is a positive integer, which had long been
familiar, but for fractional and negative values as well. He did not
give a demonstration of the general validity of the binomial develop-
ment, and none even passably satisfactory was given until that of
Euler (1707-1783). The first entirely satisfactory proof of this diffi-
cult theorem was given by the brilliant young Norwegian, Abel
(1802-1829).

137. The rth term of (a+ b)" According to the binomial
theorem the fifth term of the expansion (1) on page 242 is
n(n—1)(n—2)(n — 3)ar—*}*

1.2.3.4 '

If we note particularly this term and those on page 242, we
can write down, from the considerations which follow, any
required term without writing other terms of the expansion.

The denominator of the coefficient of the fifth term is 4!
From the law of formation the denominator in the sixth term
would be 5!, in the seventh term 6!, ete. Consequently in the
rth term the denominator of the coefficient would be (r — 1)!.

The numerator of the coeffictent of the fifth term contains
the product of the four factors n(n — 1)(n — 2)(n — 3). The
sixth term would contain these four and the factor »n — 4.
Similarly, the last factor in the seventh term would be n — 5,
ete. Hence the last factor in the 7th term would be n — (» — 2).
Therefore the numerator of the coefficient of the rth term is
nn—1)m—2)(n—3)---(n—r+2).

The exponent of a in the fifth term is » — 4, in the sixth
term it would be n — 5, ete. Therefore in the rth term the
exponent of ¢ would be » —(r —1) or n — » + 1.

The exponent of b in the fifth term is 4, in the sixth term it
would be 5, etc. Therefore in the rth term the exponent of
b would be » —1.




248 SECOND COURSE IN ALGEBRA

The sign of any term of the expansion (if » is a positive
integer) is plus if the binomial is « 4. If the binomial is
a — b, the terms containing the odd powers of b will be nega-
tive; the sign of the rth term being minus if » — 1 is odd.

Therefore the th term (» #=1) of (« 4-0)" equals plus or minus

nn—0Hn—2)(n—3)---(n—r+2?) ar-rip-t, (1)
‘ (r—=1!

The formula for the (» 4 1)st term is more simple and more
easily applied. It is plus or minus

nn—Dn—-—2(n —3)---(n—r+1)

7!

ar=Ti", 2)

If we wanted the 12th term, we would in using (1) substi-
tute 12 for », and in using (2) we would substitute 11 for ».

EXERCISES
‘Write the:

1. 5th term of (a + ).
Solution : Substituting 10 for » and 5 for r in the formula (1) gives

10- il 87 oip = 104’ 93' 80' T 1t = 210 a4,
2. 6th term of (¢ + 0)°. a b%\®
8. Gth ter fl=—=).

3. 4th term of (« + b)*. R VA
4. Tth term of (¢ — b)™. 9. Tth term of (a_z _ 2_62>14.
5. 8th term of (a — b)™. b e

1\® 10. middle term of (x?* — x)™.
6. 4th term of <a + —> .

a

15
. RN AT
7. 5th term of («® — 0)*. 11. bth term of <\/; \fx>

Find the coefficient of :

12. 2% in (1 4 =)™ 14. ¥ in (2® + 1)%.

13. «®in (1 4 %)™ 15. 2 in (2 — )™

16. Expand (3 + 1)~*and (1 + 3)~* by the binomial theorem,
and, if possible, find the sum of each series thus obtained.

17. Treat (2 +1)~'and (1 + 2)~' as in Exercise 16.



CHAPTER XIX
SUPPLEMENTARY TOPICS

138. Mathematical induction. The truth of many theorems
which may be stated as formulas involving a certain letter
can, for integral values of this letter, be established with cer-
tainty and elegance by a method of proof known as mathe-
matical induction. This process will best be understood by
an illustrative '

Example: Let us suppose that some one has discovered the
remarkable relation that ¢Ze sum of the cubes of the consecutive
integers 1,2, 8, ---, n is equal to the square of the sum of the
integers. Further, let us assume that he had expressed this in
the formula

P44+ +nf=1+24+3+--+n) @
Lastly, let us suppose that he has tested the truth of this for-
mula for all the positive integral values of » up to 15 and has
become convinced that the formula is true for any positive inte-
gral value of n. He knows, however, that he has not proved the
formula for n = 16, nor for any one of the infinite number of
integers greater than 15. The labor of verifying by actual
substitution, however, has become too great and he desires a
general proof of (1).

He could arrive at such a proof in the following manner:

The right member of (1) is an arithmetical series of =
terms; the first term is 1 and the common difference is 1.
Substituting in S = g [2a+(r—1)d] gives §= w .
Therefore, if % replaces n, (1) may be written

18+23+33+---+7;3:(1+2+3+...+;c)e=[k(7;z+ﬁ]. )
249
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Now (2) is known to be true for any value of % between
1 and 15. Consequently we can obtain the correct formule for
k +1, or 16, terms by actually’ adding the (% 4 1)st term to
each member. This gives

2 2
124t B+ =TT g ()

=%+ 1)2@ iy +1> @

24k + 4
=+ () @)
1k 42
YR U SN

4

Now (2) is the correct formula for all the numbers tried,
while (6) is the correct formula for all the numbers tried and
for one not tried, the number 16. Another important fact
about (6) is that, though derived through equations (3), (4),
and (5), it can also be obtained by merely substituting % + 1
for % in (2). This is obvious on inspection. We have proved,
then, that (1) is true for any integral value of » from 1 to 16,
but without actually substituting 16 for n. This, however, is
equivalent to proving that if' (1) is ¢rue for n terms, it is true
Jor n+1 terms. But (1) is true for 15 terms; therefore it is
true for 16 terms. Again, if true for 16 terms, (1) is true for
17 terms, ete. Therefore (1) is true for any positive integral
value of n. . .

The steps in a proof by mathematical induction are:

1. Test the given or derived formula for integral values of n
until its general truth seems probable.

2. Write the formula with % in place of =, 7c denoting any
number within the range of trial.

3. Derive (or establish the truth of) the correct formula for
a value of % greater by 1. (In the case of a series this can
frequently be done by actually adding the (% 4+ 1)st term to
both members of the equation; for many formulas some other
appropriate device must be thought out.) Then, if the formula
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thus obtained is the same as, or can be reduced to, the original
one, with % + 1 put for %, we have established the truth of the
formula for one integer beyond the range of trial.

4. Reason thus: If the formula is true for n = %, it is true
for n =k + 1. But it is true (let us say) for & = 5; therefore
it is true for £ = 6. But if true for & = 6, it is true for £ = 7,
and so on. Therefore the formula is true for all positive inte-
gral values of n.

Observe that a proof of a formula or theorem by mathematical
induction is possible only for integral values of n. (A series, for
example, cannot contain 8} terms.)

Frequently a formula is true only when » is even or when n is odd.
In such cases the next higher value of n is greater by 2.

Note. It is astonishing how far certain formulas will stand numer-
ical verification, yet ultimately fail. It can be proved that no rational,
algebraic formula for the determination of prime numbers exists, yet
many formulas have been discovered which give prime numbers for
many consecutive values of n. Those who discovered such formulas
often believed them true for all integral values of n. For example, the
Chinese, as early as the time of Confucius, believed that n is prime
if 2»—1—1 was exactly divisible by n. The least value of n for which
this theorem is not true is 841. Legendre (1752-1833) gave 2 n? 4 29
as a formula for primes, and Euler (1707-1783) gave n? 4 n + 41.
Both of these fail before n reaches 50. Of course each of these men
knew that his formula is not true generally. If the student will
determine the least value of n for which either formula fails, he will
realize that a large number of numerical verifications of a theorem
is very far indeed from a general proof of it. The necessity of fol-
lowing several numerical verifications by mathematical induction to
establish the general truth of a formula should then be apparent.

EXAMPLES

1. It has been proved by the factor theorem that for all
integral values of =, a® —i" is exactly divisible by « — .
Nevertheless, a proof by induction will be given, since it
appears to be slightly different from the example on pages
26-27, though it is essentially the same.
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Proof. From the work in factoring we know that a" — " is
divisible by @ — b for integral values of » up to 7 at least.

Therefore af — 0* is exactly divisible by @ — b for all values
of k& from 1 to 7.

Hence for these values of %, ¢ — b will exactly divide

a (afF — %) 4+ 0% (o — D). @
But (1) becomes  a*+! — abt + alt — bt @
or ab+tl — pr+1, 3)

Therefore (3) is exactly divisible by @ — b.

Hence since o’ — 07 is exactly divisible by « — 0, o® — 78
is also. But if a® — 7% is exactly divisible by « — 0, so is
a® —1° ete. Therefore a® — " is exactly divisible by a — b
for all positive integral values of n.

2. An illustration somewhat different from either of those
given, and epparently very difficult, is the following:

Prove that (9"*! — 8 n — 9) + 64 gives an integral quotient
for all values of n.

Proof. 1fn=1,2, 3, and 4, (9"*! — 8% — 9) + 64 becomes
respectively §%, %0, 6528 and 52008 the respective quotients
being 1, 11, 102, and 922.

We know, therefore, that (if ¢ is a properly chosen 1ntege1)
for every value of & from 1 to 4

9+l 8k —9=064-c. @

Then 9(9¥+1 — 8k —9)=19-64-¢, @)
and 9(9*'—8k—9)+64%464=9-64.c+ 64% + 64. (3)

Whence :

9+2 72k — 81+ 64k +64=0649c+ 1 +1), )
9+ 8k —8—-9=064(9c+ %k +1), ®)
or 9+2 —8(k+1)—9=0649c+ Lk +1). (6)

Since the right member of (6) is divisible by 64 the left ‘

member is also.
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But the left member of (6) is the same as 9¥+! — 8 £ — 9, with
k + 1 put for %. . _

Hence (9**! —8% — 9) + 64 is an integer when % is re-
placed by % + 1. Consequently (1) is true when %z = 5. Then
it follows that (1) is true when %4 = 6, and so on.

Therefore (9"+! —8n — 9) + 64 gives an integer for all
positive integral values of =.

EXERCISES
Prove by mathematical induction that

1. The sum of the first n integers is g (n+1).

2. The sum of the first » odd integers is n*

3. The sum of the squares of the first n integers is
’(—;’(n+1)(2n+1).

4. The sum of the squares of the first » odd integers is
5@n+1)(@n—1).

5. The sum of the first » integral powers of the number 2

is 2(2 —1).

6. a+ar+ar*+4--- +a1’"‘1=a—(;m:_1—12-

7. 3+6+9+---+3n=3—2n(n+1).

8. a?" — ¢~ is divisible by « + y if » is a positive integer.
9. x* + y* is divisible by = + y if »n is odd.
10124234344 +n@+1)=¢ @+1)(n+2).

11. 2-5+3-6+4-7+---+(n+1)(n+4)=g(n+4)(n+5).

1 1 n
12.—+—+ ik +n(n+1)—n+1.

13 £4 7410+ 4+ Bn 1) =7 (62* + 150 +11).
14. 9~*+1 —1 is exactly divisible by 4.
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15. Prove 3** — 1 is exactly divisible by 8.
16. Prove 3?* — 8n — 1 is exactly divisible by 64.
17. Prove 9*+! —1 is exactly divisible by 8.
18. Prove 3 2% + 157 + 6 is exactly divisible by 6.
19. Prove =z (n + 1) (n + 5) is exactly divisible by 6.
20. Prove (a + 0)"
=a"+ na"~% + 2@2—'_12“"_2,,2 + n(n——gw a8 4

21. A pyramid of shot stands on a triangular base having m
shot on a side. How many shot are in the pile ?

© 22. From Exercises 3 and 4 derive a formula for the sum
of the squares of the first » even integers.

139. Proof of remainder theorem. This theorem is stated on
page 24 as follows: If any rational integral expression in
be divided by x — n, the remainder is the same as the original
expression with n substituted for x. Let f(x) denote any
rational integral function of x as follows:

J(@)=oax + bx"~' 4 cx" "2 4 .- p. @

Then J (&)= ak® + 0k"~' 4 ckr=2 4 ... p. 2)
A)—(2), f(x) —f(k)= aax” + bz~ 4 cx" =2 - ..
—akr— 0kt — k%t — ... (3)
=a(@ — k)4 b(xr~t— k7
+e@ -k - 4)

By Example 1, page 251, each binomial in the right mem-
ber of (4) is divisible by  — k. Denote the quotient by @ (x),
and the right member of (4) may be written (x — %) Q (x).

Therefore f(x) — f (k)= (x — k) Q(x). ®)

Transposing f(k) and dividing by « — %, (5) becomes

Sk
L@ o) LA ©

Tha.t is, f(k) is the remainder When S(x) is divided by

@— k).
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140. Theorems on irrational numbers. In order to solve a
linear equation or a system of linear equations having rational
coefficients, we need use only the operations of addition, subtrac-
tion, multiplication, and division. When, however, we attempt
to solve the equation of the second degree, * = 2, we find that
there is no rational number which satisfies it. This last fact
can be proved if (as in Example 2, page 252) we assume that:

An integral factor of one member of an identity detween inte-
gers is also a foctor of the other member.

This is certainly true. For example, let 2 @ = b, where a and
b are integers. Then since 2 is a factor of the left member it
is also a factor of the right.

THEOREM 1. No rational number satisfies the equation x* = 2.

Proof. Evidently no integer satisfies the equation. Let us make
y g

the supposition that a rational fraction in its lowest terms, g, satis-

fies it. Then o\ 2
—_ = 2 1
<,)> . @

or a? =212 ) &)

From (2) it is seen that 2 is a divisor of the left member and
therefore a divisor of a% and hence a divisor of «. Let us then sup-
pose @ <+ 2 = m, or

a=2m 3)

Then a? =4 m2 @
From (2) and (4), 4m? =217 ®)
or 2m? = 12 (6)

Hence 2 must be a divisor of 52 and therefore of 5. Then 2 is a

divisor of both @ and b, which contradicts the hypothesis that % is a
rational fraction in its lowest terms.
Therefore no rational number satisfies the equation z? = 2.

Note. This theorem, when stated in geometrical language, asserts
that the hypotenuse of an isosceles right triangle is not commensu-
rate with the legs of the triangle. In this form the theorem was
stated, and perhaps proved, by Pythagoras, about 525 B.c. The proof
given here is found in Euclid’s “Geometry,” and some historians
think that it is the very demonstration given by Pythagoras himself,
and was inserted by Euclid in his book for its historical interest.
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THEOREM 2. The square root of a rational number cannot be
the sum of a rational number and a quadratic surd.

Proof. Suppose z is a rational number and V@ and /b are surds.
Then, if possible, suppose

Va=Vb+a @

Squaring each member of (1),
a=b+a?+2zVb. @)
Solving (2), Vb=+ % . 3)

But (3) is impossible, for it asserts that a surd equals a rational
number.
Therefore Va # Vb + z if Va and Vb are surds.

THEOREM 3. If each member of an equation consists of a
rational number and a quadratic surd, then the rational parts
are equal and the trrational parts are equal.

Proof. Let at Vi=c+ V. ®

If possible, suppose c=az . )

Then a+Vb=atz+ Vi, 3)
or Vi =4z +Vd €))

But (4) by the preceding theorem is impossible.

Consequently a = ¢, and hence from' (1), Vb=V

Therefore, if a + Vb=c+ \/ﬁ, a = c¢ and \/_ = '\/r-l

141. Cube root of algebraic expressions. Since by actual mul-
tiplication
@+ u)® = + 3t%u + 34?4 P,
a careful inspection of the expression
t*+3%u+4 3t + ud

will enable one to extract the cube root of any polynomial
which is a perfect cube; for the extraction of cube and other
roots is not a mysterious, unreasonable process, but merely an
intelligent undoing of the work of multiplication. We see that
the first term of the result is the cube root of the first term of
the polynomial ¢, The second term of the cube root, w«, can be
obtained by squaring 2, multiplying it by 3, and dividing the
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result as a trial divisor into the second term of the polynomial,
thus obtaining #. Since £ + 3¢%u + 3t + P = + (3¢ +
3 tu + v¥) u = (¢ + ©)®, we may then form the complete divisor
as indicated by the trinomial in parenthesis. A systematic
arrangement of the work follows:

Example 1. 3+ 3t2ut+3tuz+ud|t+u
LS
Trial divisor, 3.2 =812 3t2u+3tuz4usd

Second term of root,
Stu+32=u
Complete divisor, 812 + 3tu + u? StPu+3tu2+ud= (312+ Stu+ ud)u

Example 2. Extract the cube root of 27 a3 — 823 + 86 ax? — 54 a2z.

Solution : 27a® — 54 a2x + 36 ax? — 8a%|3a — 2%
B3=Ba)P®= 27 a3
Trial divisor, 3t2=3-(3a)? = 27a* — 54 a?x + 36 ax? — 8a8
Second term of root, u, equals
—bda%x +27a2 =— 22
3tu=38.3a(—2x)=—18ax
uz = (2 .’12)2 = 422
Complete divisor, 27 a? — 18 ax + 4 &2
— 2z
— 54 a2x + 36 ax® — 823 |— 54 ax 4 36 ax? — 8 a8

The student should note particularly the form of the trial
divisor and of the complete divisor. They are very important
in extracting the cube root of a polynomial or of an arithmet-
ical number.

If ¢ in the preceding example be replaced by the binomial
% + ¢, we obtain

[+ +uP=0C+ )2+ 3+ t)u + 3(h + t)u? + v,

If this last were expanded fully, we would obtain a polyno-
mial of ten terms which would be a perfect cube. Its cube
root could be obtained as before, first obtaining % and then ¢
Then we could regard % + ¢ as a single term, form the trial
divisor and the complete divisor as before, and obtain the third
term of the root. Thus the method may be extended to any
polynomial of more than four terms which is a perfect cube.

[
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The method just illustrated may be stated in the

RuLe. Adrrange the terms of the polynomial according to the
powers of some letter in .

Eaxtract the cube root of the first term. Write the result as
the first term of the root, and subtract its cube from the given
polynomial.

Square the part of the root already found and multiply the
result by 3 for a trial divisor. Divide the first term of this
product into the first term of the remainder, and write the quo-
tient as the second term of the root.

Annex to the trial divisor three times the product of the first
term and the second term of the root, and the square of the
second term also, thus forming the complete divisor.

Multiply the complete divisor by the second term of the r0ot,
and subtract the result from the remainder.

If terms of the polynomial still remain, square the part of
the root already found, and multiply the result by 3 for a trial
divisor. Divide the first term of the trial divisor into the first
term of the remainder, and write the quotient as the third term
of the root, form the complete divisor, and proceed as before until
the process ends, or until the required number of terms have
been obtained.

’ EXERCISES

Extract the cube root of:

1. 2+ 32>+ 32+ 1. 2. 8a® — 1222+ 62 — 1.
3. 272 + 27 2%y + Qxy® + o~
4. 64a® — 144 a® + 108 ac® — 27 &
5. 6 — 1520 4 758 — 125 a8,

Sxt 3x* 1 @ 3 & 38

6-——— ——— M e e — —— — .

6. o 2 + 4 8 8. & B aﬁ+a3
@ 2 4 8 s 122 62 8
Tor Tt T e

10, ®*+0*—1—-3a?2—30®>—6ab+3a*+3al®>+3a+30.
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11, 2+ 8 — 92’ + 6622 — 36 4+ 33 x* — 63 22

12. Find the sixth root of a® —12x°% 4 64 — 192z + 240 z2
+ 602 — 16022

13. Find the first three terms in the cube root of 1 + 3.

142. Cube root of arithmetical numbers. The process of ex-
tracting the cube root of an arithmetical number does not
differ greatly from the method of extracting the cube root
of any polynomial. The formula for the complete divisor,
3¢ + 3tu + u?, can be used to guide the important steps in
the work. The first step, however, is pointing off, the reason
for which appears from a study of the following table:

n= 1] 10 100 1000

n8=|11{1000| 1,000,000 | 1,000,000,000

From this table it is obvious that the cube root of an integral
number of three digits or less must contain only one digit on
the left of the decimal point. Similarly, we see that the cube
root of an integral number containing four, five, or six digits
contains zwo digits on the left of the decimal point; and the
cube root of an integral number of seven, eight, or nine digits
contains #hree digits on the left of the decimal point. Hence
in cube root we find it convenient to begin at the decimal point
and point off the number in periods of three figures each, — to
the left if the number is integral, to the right if it is decimal;
to both the left and right if the number is part integral and
part decimal. There may, of course, be an incomplete period
on the left. Zeros should be used to complete any partial
period on the right.

If we now imagine (¢ + «)® to be a number consisting of a
tens and a units digit, we may translate 2 4+ 3 #*u + 3 tw?® + «®
thus : the cube of the tens + 3 times the square of the tens times
the units + 8 times the tens times the square of the units + the
cube of the units. i
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Now subtracting #* from the polynomial, we may write the
other three terms thus: (3¢ + 3 tu + «*) w. Here the trinomial
in parenthesis is the complete divisor. The process of ex-
tracting the cube root of 50,653 follows :

‘ 50653 |30 4+ 7 =37

B= (300 = 27 000

Trial divisor, 312 =3.(30)2 =2 700 | 23 653
Second term of root, u, 23653 - 2700 =7 4

8tu=38.30.-7T= 630

w= 1 = ﬁ

Complete divisor, 3¢+ 3tu+ u>=38379|23653 =38879x 7

To obtain the second term of the root, we divided 23,653 by
2700, which gave almost exactly the number 8. But since the
trial divisor 2700 must be increased by 3¢w and «* to form
the complete divisor,a moment’s thought showed that 8 was too
great. This means that the trial divisor is really a ¢ricl divisor,
and its use does not give us with certainty the next term of
the root. A little experience will enable one to look ahead and
decide mentally on the next root figure. If one decides on a
root figure either too great or too small, the product of the
complete divisor and this root digit will be too great or too
small and the subsequent work will show the error.

Since 374, for example, may be regarded as 37 tens plus 4
units, the process just illustrated may be applied to a number
whose cube root contains three digits, as follows:

644/972/544|800 + 60 + 4 = 864
= (800)3 = 512 000 000

32 = 3(800)2 = 1920 000 |132 972 544
Second term of root, u, equals
132 972 534 = 1 920 000 = 60 +
3tu = 3(800) (60) = 144 000
u = (60)2= 3600
312 + 3tu + u? = 2067 600 124 056 000 = 2 067 600 x 60
312 = 3(860)2 = 2218 800 [8 916 544

Third term of root,

8916 534 + 2218800 = 4 +

3tu=23(860)4 = 10820
u? = 42 — 16
318 + Stu+ u? = 2229 136(8 916 544 = 2229136 x 4
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EXERCISES
(Obtain roots in Exercises 6-9 correct to three decimals.)

Extract the cube root of :

1. 15625. 4. 13481272. 7. .0173.
2. 12167. 5. 41063.625. 8. .004913.
3. 1404928. 6. 1.0528. 9. .000062.

10. Find /35 to three decimal places.
11. Find /% to three decimal places.

12. Find the edge of a cube whose volume is 5832 cubic
inches.

13. Find the diagonal of a cube whose volume is 46656
cubic meters.

14. Find the sixth root of 46656000.

Note. Problems in cube root afford excellent drill if the time can
be spared to study the subject thoroughly. Ability to extract cube
root is not a real necessity, however, for in engineering practice, or
in any work requiring cube (or higher) roots, it is customary to obtain
them from a table of roots, or by means of a slide rule or a table of
logarithms. The roots can be obtained in any of these ways far
more rapidly than by the method explained in the text.
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SECOND COURSE IN ALGEBRA

z
o

fury
QPO T WO = I

T
. |Squares| Cubes S;{]: :c;e }({Jg(‘))t:; No. |Squares| Cubes Slggloatge Ig ouobtcz
1 1 | 1.000 | 1.000 {{ 51 | 2,601 132,651 | 7.141 | 3.708
4 8 | 1.414 | 1.259 || 52 | 2,704 140,608 | 7.211 | 3.732
9 27 | 1.732 | 1.442 || 63 | 2,809 148,877 | 7.280 | 3.756
16 64 | 2.000 | 1.587 || 54 | 2,916 157,464 | 7.348 | 3.779
25 125 | 2.236 | 1.709 || 65 | 3,025 166,375 | 7.416 | 3.802
36 216 | 2.449 | 1.817 || 56 | 3,136 175,616 | 7.483 | 3.825
49 343 | 2.645 | 1.912 || 67 | 3,249 185,193 | 7.549 | 3.848
64 512 | 2.828 | 2.000 || 58 | 3,364 195,112 | 7.615 | 3.870
81 729 | 3.000 | 2.080 || 59 | 3,481 205,379 | 7.681 | 3.892
100 1,000 | 3.162 | 2.154 || 60 | 3,600 216,000 | 7.745 | 3.914
121 1,331 | 3.316 | 2.223 || 61 | 3,721 226,981 | 7.810 | 3.936
144 1,728 | 3.464 | 2.289 || 62 | 3,844 238,328 | 17.874 | 8.957
169 2,197 | 3.605 | 2.351 || 63 | 3,969 250,047 | 7.937 | 3.979
196 2,744 | 3.741 | 2.410 || 64 | 4,09 262,144 | 8.000 | 4.000
225 3,375 | 3.872 | 2.466 || 65 | 4,225 274,625 | 8.062 | 4.020
256 4,096 | 4.000 | 2.519 || 66 | 4,356 287,496 | 8.124 | 4.041 -
289 4,913 | 4.123 | 2.571 || 67 | 4,489 300,763 | 8.185 | 4.061
324 5,832 | 4.242 | 2.620 || 68 | 4,624 314,432 | 8.246 | 4.081
361 6,859 | 4.358 | 2.668 || 69 | 4,761 328,509 | 8.306 | 4.101
400 ,000 | 4.472 | 2.714 || 70 | 4,900 343,000 | 8.366 | 4.121
441 9,261 | 4.582 | 2.758 || 71 | 5,041 357,011 | 8.426 | 4.140
484 10,648 | 4.690 | 2.802 || 72 | 5,184 373,248 | 8.485 | 4.160
529 12,167 | 4.795 | 2.843 || 73 | 5,329 389,017 | 8.544 | 4.179
576 13,824 | 4.808 | 2.884 || T4 | 5,476 405,224 | 8.602 | 4.198
625 15,625 | 5.000 | 2.924 || 75 | 5,625 421,875 | 8.660 | 4.217
676 17,576 | 5.099 | 2.962 || 76 | 5,776 438,976 | 8.717 | 4.235
729 19,683 | 5.196 | 3.000 || 77 | 5,929 456,633 | 8.774 | 4.254¢
784 21,952 | 5.201 | 3.036 || 78 | 6,084 474,552 | 8.831 | 4.272
841 24,389 | 5.385 | 3.072 || 79 | 6,241 493,039 | 8.888 | 4.290
900 27,000 | 5.477 | 3.107 || 80 | 6,400 512,000 | 8.944 | 4.308
961 29,791 | 5.567 | 3.141 || 81 | 6,561 531,441 | 9.000 | 4.326
1,024 32,768 | 5.656 | 3.174 (| 82 | 6,724 551,368 | 9.065 | 4.344
1,089 35,037 | 5.744 | 3.207 || 83 | 6,889 571,787 | 9.110 | 4.362
1,156 39,304 | 5.830 | 3.239 || 84 | 7,056 592,704 | 9.165 | 4.379
1,225 42,875 | 5.916 | 3.271 || 85 | 7,225 614,125 | 9.219 | 4.396
1,296 46,656 | 6.000 | 3.301 || 86 | 7,396 636,056 | 9.273 | 4.414
1,369 50,653 | 6.082 | 3.332 || 87 | 7,569 658,503 | 9.327 | 4.431
1,444 54,872 | 6.164 | 3.361 || 88 | 7,744 681,472 | 9.380 | 4.447
1,521 59,319 | 6.244 | 3.391 || 89 | 7,921 704,969 | 9.433 | 4.464
1, 64, 6.324 | 3.419 || 90 | 8,100 729,000 | 9.486 | 4.481
1,681 68,921 | 6.403 | 3.448 || 91 | 8,281 753,671 | 9.539 | 4.497
1,764 74,088 | 6.480 | 3.476 || 92 | 8,464 778,688 | 9.591 | 4.514
1,849 79,507 | 6.557 | 3.503 || 93 | 8,649 804,357 | 9.643 | 4.530
1,936 85,184 | 6.633 | 3.530 || 94 | 8,836 830,684 | 9.695 | 4.546
2,025 91,125 | 6.708 | 3.556 || 95 | 9,025 857,375 | 9.746 | 4.562
2,116 97,336 | 6.782 | 3.583 || 96 | 9,216 884,736 | 9.797 | 4.578
2,209 | 103,823 | 6.855 | 3.608 || 97 | 9,409 912,673 | 9.848 | 4.594
2,304 | 110,592 | 6.928 | 3.634 || 98 ,604 941,192 | 9.899 | 4.610
2,401 117,649 | 7.000 | 3.659 || 99 | 9,801 970,299 | 9.949 | 4.626
2,500 | 125,000 | 7.071 | 3.684 ||100 | 10,000 10,000 | 4.641




INDEX

Abel, 247

Addition, algebraic, 2; commu-
tative law of, 2; of fractions,
35

Ahmes, 166

Alternation, 208

Antecedent, 207

Antilogarithm, 193

Argand, 231

Axes, x- and y-, 54

Axiom, 42

Axioms, 42

Base, 189

Bernouilli, John, 180

Binomial Theorem, 243 ; extraction
of roots by, 245; limitations on
aandbin (a + b)?, 246 ; rth term
of (a + b)r, 247

Binomials, powers of, 242

Briggs, 189, 206

Brouncker, William, 41

Cardan, 25, 225
Characteristic, 189
Circle, 137

Coefficients, detached, 8

Complex number, 223; graphical .

representation of, 230
Confucius, 251
Conjugate imaginaries, 226
Conjugate real radicals, 100
Consequent, 207
Constant, 212
Cobrdinates of a point, 55
Cramer, 77

Decimals, repeating, 52

Determinants of the second order,
62 ; of the third order, 71 ; solu-
tion by, 63, 74

Diophantos of Alexandria, 67

Discriminant of a quadratic equa-
tion, 234

Distance, x- and y-, 54

Division, by logarithins, 196 ; loga-
rithmie, 187; rule for, 5; syn-
thetic, 10

Elimination, 57

Ellipse, 138

Equation, definition of an, 42 ; de-
rived, 57; independent, 57; of
condition, 42

Equations, definition and typical
solution of irrational, 128 ; equiv-
alent, 43 ; exponential, 203 ; for-
mation of, with given roots, 238 ;
homogeneous, 144 ; identical, 42 ;
indeterminate, 65; rule for the
solution of irrational, 132 ; solu-
tion of, by factoring, 31; use of
division in, 150 ; with imaginary
roots, 227

Euler, 247, 251

Evolution, by logarithms,
logarithmic, 188

Exponent, meaning of a fractional,
90 ; meaning of a zero, 6

Exponents, fundamental laws of, 89

Extremes, 207 '

197

Factor, highest common, 31

Factor Theorem, 25

Factorial notation, 243

Factoring, definition of the process,
16 ; general directions for, 28;
solution of equations by, 31

Factors, prime, 16

Fractions, addition and subtraction
of, 35; complex, 38; equivalent,
34

Function, definition of a, 110;
graph of a, 110; graph of a
cubic, 110

Gauss, 116, 223, 231
Girard, 239
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Graph, of a cubic function, 110;
of a function, 110 ; of a quadratic
equation in two variables, 135

Graphical explanation of loga-
rithms, 183

Graphical interpretation of pure
imaginaries, 229

Graphical method of extracting
roots, 84

Graphical representation of a com-
plex number, 230

Graphical solution of a linear sys-
tem, 54; of two linear equa-
tions, 55

Graphical solution, of an equa-
tion in one unknown, 113;
more accurate graphical solu-
tion, 113

Graphical solution of a quadratic
system in two variables, 139

Harriot, 239
Horner, 12
Hyperbola, 136

Identity, 42

Imaginaries, addition and subtrac-
tion of, 223 ; conjugate, 226 ; defi-
nitions, 222; division of, 226;
equations with imaginary roots,
227 ; factors involving, 228;
graphical interpretation of pure,
229 ; multiplication of, 224 ; note
on the use of, 232

Imaginary roots, 112

Index, 93

Induction, mathematical, 249

Infinite, 176

Infinity, 176; definition of the
term *‘infinite,’’ 176 ; symbol for,
177

Interpolation, 192, 194, 195

Interpretation of 4 , 178 ; of g, 179

Inversion, 208

Involution, by logarithms,
law of, 5; logarithmic, 188

Irrational numbers, theorems on,
255

197 ;

Kepler, 138
Klein, Professor Felix, 116
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Legendre, 251
Le7ibnitz, Gottfried Wilhelm, 64,
6

L’Hospital, 180

Limits, 176 ; definition of, 176

Logarithms, antilogarithm, 193 ;
definition of a, 183; graphical
explanation of, 183; interpola-
tion, 195 ; table of, 200

Mantissa, 189

Means, 207; arithmetical,
geometrical, 168

Merchiston, Lord of (John Napier),
190

Multiple, lowest common, 32

Multiplication, law of, 5; loga-
rithmic, 187 ; rule for, by loga-
rithms, 195

161

Napier, John (Lord of Merchiston),
190, 206, 246

Newton, 113, 247

Numbers, complex, 223 ; imaginary,
93; irrational, 93; orthotomic,
222; pure imaginary, 93; ra-
tional, 93 ; real, 93

Operations, order of fundamental, 1
Origin, 65

Parabola, 135

Products, important special, 12

Progressions, common difference
of arithmetical, 159; definition
of arithmetical, 159 ; definition of
geometrical, 166; nth term of
arithmetical, 160; nth term
of geometrical, 167; ratio of
geometrical, 166

Proportion, 207

Proportional, fourth, 208; mean,
207 ; third, 208

Pythagoras, 255

Quadratic equation, character of
the roots of, 234; number of
roots of, 238 ; relation between
the roots and the coefficients of,
236 ; solution of, by completing
the square, 118 ; solution of, by
formula, 122
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Quadratic expressions, factors of,
240 :
Quantity, 211

Radicals, 93; addition and sub-
traction of, 97 ; conjugate, 100 ;
division of, 100 ; factors involv-
ing, 103 ; multiplication of real,
97; similar, 97; simplification
of, 95

Radicand, 93

Ratio, 207

Rational number, 93

Reciprocal, 38

Remainder Theorem, 24 ; proof of,
254

Root, cube, of algebraic expres-
sions, 256 ; cube, of arithmetical
numbers, 259; cube, of mono-
mials, 83 ; definition of cube, 82 ;
definition of square, 82 ; princi-
pal, 82 ; principal odd, 82 ; prin-
cipal square, 82; rule for
extracting square, 87; rule for
extracting cube, 258 ; square, of
arithmetical numbers, 86 ;square,
of polynomials, 83; square, of
surd expressions, 102

Roots, graphical method of extract-
ing, 84; imaginary, 112; table
of square and cube, 262

265

Series, arithmetical, 163 ; geomet-
rical, 169 ; infinite geometrical,
171; sum of, 163

*Slide rule,” 199

Stifel, 245

Subtraction, of fractions, 35; of
polynomials, 3 ‘

Surd, 93

Systems, determinate, in three
variables, 68; equivalent, 147;
general linear, in three variables,
72 ; solution of, when one equa-
tion is linear, and the other quad-
ratic, 143; solution of, when
both are quadratic, 144 ; solution
of a linear, in two variables, by
graphs, 54 ; solution by addition
and subtraction, 58 ; solution by
substitution, 59 ; solution by de-
terminants, 74 ; special devices
for solution of, 147

Table, of cubes and squares, 262 ;
of logarithms, 200

Variable, 110, 212 ; critical values
of, 114

Variation, 211; direct, 212; in-
verse. 213 ; joint, 214

Vieta, 239

Wessel, 231
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