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PREFACE

" Long after the death of Robert Recorde, England’s first
great writer of textbooks, the preface of a new’ edition of
one of his works contained the appreciative statement that
the book was *“entail’d upon the People, ratified and sign’d
by the approbation of Time.” The language of this sentiment
sounds quaint, but the noble tribute is as impressive to-day
as when first put in print two hundred and fifty years ago.

With equal truth these words may be applied to the Geom-
etry written by George A. Wentworth. For a generation it
has been the leading textbook on the subject in America. It
set a standard for usability that every subsequent writer upon
geometry has tried to follow, and the number of pupils who
have testified to its excellence has run well into the millions.

In undertaking to prepare a work to take the place of the
Wentworth Geometry the authors have been guided by certain
well-defined principles, based upon an extended investigation
of the needs of the schools and upon a study of all that is
best in the recent literature of the subject. The effects of
these principles they feel should be summarized for the pur-
pose of calling the attention of the wide circle of friends of
the Wentworth-Smith series to the points of similarity and
of difference in the two works.

1. Every effort has been made not only to preserve but to
improve upon the simplicity of treatment, the clearness of ex-
pression, and the symmetry of page that characterized the
successive editions of the Wentworth Geometry. It has been
the purpose to prepare a book that should do even more than
maintain the traditions this work has fostered.
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iv . SOLID GEOMETRY

2. The proofs have been given substantially in full, to the
end that the pupil may always have before him a model for
his independent treatment of the exercises.

3. To meet a general demand, the number of propositions
has been decreased so as to include only the great basal theo-
rems and problems. A little of the less important material
has been placed in the Appendix, to be used or not as cir-
cumstances-demand.

4. The exercises, in some respects the most important part
of a course in geometry, have been rendered more dignified in
appearance and have been improved in content. The number
of simple exercises has been greatly increased, while the diffi-
cult puzzle is much less in evidence than in most American
textbooks. The exercises are systematically grouped, appear-
ing in general in full pages, in large type, and at frequent
intervals. They are not all intended for one class, but are so
numerous as to allow the teacher to make selections from
year to year. )

5. The work throughout has been made as concrete as is
reasonable. Definitions have been postponed until they are
actually needed, only well-recognized terms have been em-
ployed, the pupil is led to apply his geometry to practical
cases in mensuration, and correlation is made with the algebra
already studied. '

6. All the references to Plane Geometry that are directly
made in the proof of Solid Geometry have been prefixed to this
edition so as to be easily accessible.

The authors are indebted to many friends of the Wentworth-
Smith series for assistance and encouragement in the labor of
preparing this edition, and they will welcome any further sug-
gestions for improvement from any of their readers.

GEORGE WENTWORTH
DAVID EUGENE SMITH
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SYMBOLS AND ABBREVIATIONS

= equals, equal, equal to,
is equal to, or
is equivalent to.

> is greater than.

< 1is less than.

Il parallel.

1 perpendicular.

Z angle.

A triangle.

[ parallelogram.

[J rectangle.

O circle.

st. straight.

rt. right.

-.* since.

.*. therefore.

Adj.
Alt.
Ax.
Const.
Cor.
Def.
Ex.
Ext.
Fig.
Hyp.
Iden.
Int.
Post.
Prob.
Prop.
Sup.

adjacent.
alternate.
axiom.
construction.
corollary.
definition.
exercise.
exterior.
figure.
hypothesis.
identity.
interior.
postulate.
problem.
proposition.
supplementary.

These symbols take the plural form when necessary, as in the case of

s, £, A, ©.

The symbols 4+, —, x, + are used as in algebra.
There is no generally accepted symbol for **is congruent to,’” and the

words are used in this book. Some teachers use

= or =, and some use

=, but the sign of equality is more commonly employed, the context

telling whether equality, equivalence, or congruence is to be understood.
Q. E.D. is an abbreviation that has long been used in geometry for

the Latin words quod erat demonstrandum, ** which was to be proved.”
Q. E. F, stands for quod erat faciendum, ** which was to be done.”’
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REFERENCES TO PLANE GEOMETRY

28. A portion of a plane bounded by three straight lines is
called a triangle.

41. The whole angular space in a plane about a point is
called a perigon.
52. The following are the most important axioms used in
geometry :
1. If equals are added to equals, the sums are equal.
2. If equals are subtracted from equals, the remainders are
equal. .
3. If equals are multiplied by equals, the products are equal.
4. If equals are divided by equals, the quotients are equal.

In division the divisor is never zero.

5. Like powers and like positive roots of equals are equal.

6. If unequals are operated on by positive equals in the
same way, the results are unequal in the same order.

7. If unequals are added to unequals in the same order, the
sums are unequal in the same order; if unequals are subtracted
from equals, the remainders are unequal in the reverse order.

8. Quantities that are equal to the same quantity or to equal
quantities are equal to each other.

9. A quantity may be substituted for its equal in an equa-
tion or in an inequality.

10. If the first of three quantities is greater than the second,
and the second is greater than the third, then the first is greater
than the third.

11. The whole is greater than any of its parts, and is equal
to the sum of all its parts.

vl



viii SOLID GEOMETRY

53. PosTULATE, b= Any figure may be moved from one place
to another without altering its size or shape.

56. All right angles are equal.

57. From a given point in a given line only one perpendic-
ular can be drawn to the line.

60. If two lines intersect, the vertical angles are equal.

66. Definition of congruent figures.

67. Corresponding parts of congruent figures are equal.

68. Two triangles are congruent, if two sides and the included
angle of the one are equal respectively to two sides and the
included angle of the other.

69. Two right triangles are congruent, if the sides of the
right angles are equal respectively.

72. Two triangles are congruent, if two angles and the in-
cluded side of the one are equal respectively to- ...

80. Two triangles are congruent, if the three sides of the
one are equal respectively to the three sides of the other.

82. Only one perpendicular can be drawn to a given line
from a given external point.

84. Of two lines drawn from a point in a perpendicular to a
given line, cutting off on the given line unequal segments from
the foot of the perpendicular, the more remote is the greater.

89. Two right triangles are congruent, if the hypotenuse and
a side of the one are equal respectively to the hypotenuse
and a side of the other.

93. Lines that lie in the same plane and cannot meet how-
ever far produced are called parallel lines.

94. Through a given point only one line can be drawn par-
allel to a given line.

95. Two lines in the same plane perpendicular to the same
line are parallel.
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97. If a line is perpendicular to one of two parallel lines, it
is perpendicular to the other also.

112. The sum of any two sides of a triangle is greater than
the third side, and the difference between any two sides is
less than the third side.

116. If two triangles have two sides of the one equal respec-
tively to two sides of the other, but the third side of the first
triangle greater than the third side of the second, then the
angle opposite the third side of the first is greater than the
angle opposite the third side of the second.

118. A quadrilateral may be a trapezoid, having two sides
parallel; a parallelogram, having the opposite sides parallel;
or it may have no sides parallel.

125. The opposite sides of a parallelogram are equal.

126. A diagonal divides a parallelogram into two congruent
triangles.

127. Segments of parallel lines cut off by parallel lines are
equal.

130. If two sides of a quadrilateral are equal and parallel,
then the other two sides are equal and parallel, and the figure
is a parallelogram.

131. The diagonals of a parallelogram bisect each other.

132. Two parallelograms are congruent, if two sides and the
included angle of the one are equal respectively to two sides
and the included angle of the other.

133. Two rectangles having equal bases and equal altitudes
are congruent.

136. The line which joins the mid-points of two sides of a
triangle is parallel to the third side, and is equal to half the
third side.



b4 SOLID GEOMETRY

142. Two polygons are

mutually equiangular, if the angles of the one are equal to
the angles of the other respectively, taken in the same order;

mutually equilateral, if the sides of the one are equal to the
sides of the other respectively, taken in the same order;

congruent, if mutually equiangular and mutually equilateral,
since they then can be made to coincide.

145. Each angle of a regular polygon of » sides is equal to
2(n=2) right angles.
n
146. The sum of the exterior angles of a polygon, made by
producing each of its sides in succession, is equal to four right
angles. '

148. To prove that a certain line or group of lines is the
locus of a point that fulfills a given condition, it is necessary
and sufficient to prove two things:

1. That any point in the supposed locus satisfies the con-
dition.

2. That any point outside the supposed locus does not satisfy
the given condition.

150. The locus of a point equidistant from the extremities
of a given line is the perpendicular bisector of that line.

151. Two points each equidistant from the extremities of a
line determine the perpendicular bisector of the line.

152. The locus of a point equidistant from two given inter-
secting lines is a pair of lines bisecting the angles formed by
those lines.

159. A closed curve lying in a plane, and such that all of
its points are equally distant from a fixed point in the plane,
- is called a circle.
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162. All radii of the same circle or of equal circles are equal ;
and all circles of equal radii are equal.

167. In the same circle or in equal circles equal arcs subtend
equal central angles; and of two unequal arcs the greater sub-
tends the greater central angle.

172. In the same circle or in equal circles, if two chords are
equal, they subtend equal arcs; and if two chords are unequal,
the greater subtends the greater arc.

174. A line through the center of a circle perpendicular to
a chord bisects the chord and the arcs subtended by it.

178. In the same circle or in equal circles equal chords are
equidistant from the center, and chords equidistant from the
center are equal.

185. A tangent to a circle is perpendicular to the radius
drawn to the point of contact.

195. If two circles intersect, the line of centers is the per-
pendicular bisector of their common chord.

204. When a variable approaches a constant in such a way
that the difference between the two may become and remain
less than any assigned positive quantity, however small, the
constant is called the limit of the variable.

207. If, while approaching their respective limits, two vari-
ables are always equal, their limits are equal.

212. In the same circle or in equal circles two central angles
have the same ratio as their intercepted arcs.

213. A central angle is measured by the intercepted arec.

261. In any proportion the product of the extremes is equal
to the product of the means.

262. The mean proportional between two quantities is equal
to the square root of their product.
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269. In a series of equal ratios, the sum of the antecedents
is to the sum of the consequents as any antecedent is to its
consequent.

270. Like powers of the terms of a proportion are in pro-
portion.

273. If a line is drawn through two sides of a triangle par-
allel to the third side, it divides the two sides proportionally.

274. One side of a triangle is to either of its segments cut
off by a line parallel to the base as the third side is to its
corresponding segment.

. 275. Three or more parallel lines cut off proportional in-
tercepts on any two transversals.

282. Polygons that have their corresponding angles equal,
and their corresponding sides proportional, are called similar

polygons.

285. Two mutually equiangular triangles are similar.

288. If two triangles have an angle of the one equal to an
angle of the other, and the including sides proportional, they
are similar.

289. If two triangles have their sides respectively propor-
tional, they are similar.

290. Two triangles which have their sides respectively par-
allel, or respectively perpendicular, are similar.

292. If two polygons are similar, they can be separated
into the same number of triangles, similar each to each, and
similarly placed.

298. If a perpendicular is drawn from any point on a circle
to a diameter, the chord from that point to either extremity of
the diameter is the mean proportional between the diameter
and the segment adjacent to that chord.
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322. The area of a parallelogram is equal to the product of
its base by its altitude.

323. Parallelograms having equal bases and equal altitudes
* are equivalent.

325. The area of a triangle is equal to half the product of
its base by its altitude.

326. Triangles having equal bases and equal altitudes are
equivalent.

327. Triangles having equal bases are to each other as their
altitudes ; triangles having equal altitudes are to each other as
their bases; any two triangles are to each other as the prod-
ucte of their bases by their altitudes.-

329. The area of a trapezoid is equal to half the product of
the sum of its bases by its altitude.

332. The areas of two triangles that have an angle of the
one equal to an angle of the other are to each other as the
products of the sides including the equal angles.

334. The areas of two similar polygons are to each other as
the squares on any two corresponding sides.

377. If the number of sides of a regular inseribed polygon
is indefinitely increased, the apothem of the polygon approaches
the radius of the circle as its limit.

381. The circle is the limit which the perimeters of regular
inscribed polygons and of similar circumscribed polygons ap-
proach, if the number of sides of the polygons is indefinitely
increased.

The area of the circle is the limit which the areas of the
inscribed and circumscribed polygons approach.

382. Two circumferences have the same ratio as their radii.
385. The circumference of a circle equals 2 7

389. The area of a circle = 72



SOLID GEOMETRY

BOOK VI

LINES AND PLANES IN SPACE

421. The Nature of Solid Geometry. In plane geometry we
deal with figures lying in a flat surface, studying their proper-
ties and relations and measuring the figures. In solid geometry
we shall deal with figures not only of two dimensions but of
three dimensions, also studying their properties and relations
and measuring the figures.

422. Plane. A surface such that a straight line joining any

two of its points lies wholly in the surface is called a plane. .

A plane is understood to be indefinite in extent, but it is conveniently
represented by a rectangle seen obliquely, as here shown.

423. Determining a Plane. A plane is said to be determined
by certain lines or points if it contains the given lines or
points, and no other plane can contain them.

‘When we suppose a plane to be drawn to include given points or lines,
we are said to pass the plane through these points or lines.

When a straight line is drawn from an external point to a plane, its
point of contact with the plane is called its foot.

424. Intersection of Planes. The line that contains all the

points common to two planes is called their intersection.’
273



274 BOOK VI SOLID GEOMETRY

425. Postulate of Planes. Corresponding to the postulate that
one straight line, and only one, can be drawn through two given
points, the following postulate is assumed for planes:

One plane, and only one, can be passed through two given
intersecting straight lines.

For it is apparent from the first figure that a plane may be made to
turn about any single straight line 4 B, thus assuming different positions.
But if CD intersects AB at P, as in the second figure, then when the

. plane through A B turns until it includes C, it must include D, since it
includes two points, C and P, of the line (§ 422). If it turns any more, it

will no longer contain C.
B
\ C—p 2 \
S—

426. CororLary 1. A straight line and a point not in the
line determine a plane.

For example, line 4B and point C in the above figure.

427. Cororrary 2. Three points not in a straight line deter-
mine a plane. ‘

For by joining any one of them with the other two we have two inter-
secting lines (§ 425).

428. Cororrary 3. Two parallel lines determine a plane.
M
c D
/ 4 £ B \
N

For two parallel lines lie in a plane (§ 93), and a plane containing
either parallel and a point P in the other is determined (§ 426).
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ProrosiTioN 1. THEOREM

429. If two planes cut each other, their intersection is
a straight line.
P a

o Q

Given MN and PQ, two planes which cut each other.

To prove that the planes MN and PQ intersect in a
straight line.

Proof. Let 4 and B be two points common to the two planes.

Draw a straight line through the points 4 and B.
Then the straight line 4B lies in both planes. § 422
(For it has two points in each plane.)

No point not in the line AB can be in both planes; for one
plane, and only one, can contain a straight line and a point
without the line. § 426

Therefore the straight line through 4 and B contains all
the points common to the two planes, and is consequently the
intersection of the planes, by § 424. Q.E.D.

Discussion. What is the corresponding statement in plane geometry ?

430. Perpendicular to a Plane. If a straight line drawn to a
plane is perpendicular to every straight line that passes through
its foot and lies in the plane, it is said to be perpendicular to
the plane.

‘When a line is perpendicular to a plane, the plane is also said to be
perpendicular to the line.
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ProrosiTioN I1I. THEOREM

431. If a line is perpendicular to each of two other
lines at their point of intersection, it is perpendicular
to the plane of the two lines.

/\
\

Given the line AO perpendicular to the lines OP and OR at O.
To prove that AO is L to the plane MN of these lines.

Proof. Through O draw in MN any other line 0Q, and draw
PR cutting OP, 0Q, OR, at P, Q, and R.

Produce 40 to 4', making 04' equal to 04, and join 4 and
A' to each of the points P, Q, and R.

Then OP and OR are each L to 4A4'at its mid-point.

. AP=A'P,and AR = A'R. § 150
.. A APR is congruent to A 4'PR. § 80
oL RPA=LA'PR. § 67
That is, £QPA=LA'PQ
.. A PQA is congruent to A PQA". § 68

. 4Q=4'Q(§67); and 0Q is L. to 44"at 0. §151
.. A0 is L to any and hence to every line in MN through 0.
.. 40 is L to the plane MN, by § 430. Q.E.D.
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ProrositioNn III. THEOREM

432. AUl the perpendiculars that can be drawn to a
given line at a given point lie in a plane which is per-
pendicular to the given line at the given point.

Y,

M
/ Qﬂ—éf_/_—»P \
R (4
N
- Given the plane MN perpendicular to the line OY at O.

To prove that OP, any line L to OY at O, lies in MN.

Proof. Let the plane containing OY and OP intersect the
plane MN in the line OP'; then 0Y is L to OP' § 430

In the plane POY only one L can be drawn to OY at 0. § 57

Therefore OP and OP' coincide, and OP lies in MN.

Hence every L to OY at 0, as 0Q, OR, lies in MN. Q.E.D.

433. Cororrary 1. Through a given point in a given line
one plane, and only one, can be passed perpendicular to the line.

434. CoroLrary 2. Through a given external point one plane,
and only ome, can be passed perpendicular to a given line.

Given the line OY and the point P.

Draw PO L to OY, and 0Q L to OY.
Then OQ and OP determine a plane through
P 1 to OY.

Only one such plane can be drawn; for
only one L can be drawn to OY from the point P (§ 82).

435. Oblique Line. - A line that meets a plane but is not per~
pendicular to it is said to be obligue to the plane,
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ProrositioNn IV. THEOREM

436. Through a given point in a plane there can be
drawn one line perpendicular to the plane, and only one.

X

Given the point P in the plane MN. .

To prove that there can be drawn one line perpendicular to
the plane MN at P, and only one.

Proof. Through the point P draw in the plane MN any line
AB, and pass through P a plane XY L to 4B, cutting the
plane MN in CD. § 433

At P erect in the plane XY the line PQ L to CD.

The line 4B, being L to the plane XY by construction, is L

to PQ, which passes through its foot in the plane. § 430
That is, PQ is L to ABj; and as it is L to CD by construc-
tion, it is L to the plane MN. § 431

Moreover, any other line PR drawn from P is oblique to
MN. For PQ and PR intersecting in P determine a plane.

To avoid drawing another plane, use XY again to represent
the plane of PQ and PR, letting it cut MN in the line CD.

Then since PQ is L to MN, it is L to CD. § 430
Therefore PR is oblique to C'D. § 57
Therefore PR is oblique to MN. §_435

Therefore PQ is the only L to MN at the point 2. Q.E.D.

Discussion. What is the corresponding proposition in plane geometry?
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ProprosiTioN V. THEOREM

437. Through a given external point there can be drawn
ene line perpendicular to a giwen plane, and only one.

Y
Given the plane MN and the external point P.

To prove that there can be drawn one line from P perpen-
dicular to the plane MN, and only one.

Proof. In MN draw any line EH, and let XY be a plane
through P | to EH, cutting MN in AB, and EH in C.

Draw PO L to AB,and in MN draw any line OD from O to EH.

Produce PO, making OP' = 0P, and draw PC, PD, P'C, P'D.

Since DC is L to X¥, A PCDand P'CDare right angles. § 430

Since  the side DC is common, and PC =P'C, § 150
.*. rt. A PCD is congruent to rt. A P'CD. § 69

' .. PD=P'D. § 67

.. 0D is L to PP'at 0. §151

.. PO is 1 to MN, being L to OD and AB. ' § 431

Moreover, every other line PF from P to MN is oblique
to MN. (The proof is left for the student.)

.. PO is the only L from P to MN. Q.E.D.

438. CororLrary. The perpendicular is the shortest line
Jrom a point to a plane.
The length of this L is called the distance from the point to the plane.
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Prorosition VI. THEOREM

439. Oblique lines drawn from a point to a plane,
meeting the plane at equal distances from the foot of
the perpendicular, are equal ; and of two oblique lines,
meeting the plane at unequal distances from the foot
of the perpendicular, the more remote is the greater.

Given the plane MN, the perpendicular line PO, the oblique lines
PA, PB, PC, the equal distances OB, OC, and the unequal dis-
tances OA, OC, with OA greater than OC.

To prove that PB= PC, and PA> PC.

Proof. In the A OBP and OCP,
OP = OP, Iden.
OB=0C, Given
and £ BOP =/ POC. § 56
.*. AOBP is congruent to AOCP. § 69
.. PB=PC. § 67
Let 4, B,.and O lie in the same straight line.
Then 04> 0C. Given
.w 04> OB. Ax. 9
.. PA>PB. § 84
. PA>PC, by Ax. 9. Q.E.D. -

Discussion. Compare the corresponding case in plane geometry.
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440. CoroLrArY 1. FEqual oblique lines drawn from a point
to a plane meet the plane at equal distances from the foot of the
perpendicular ; and of two unequal.oblique lines the greater
meets the plane at the greater distance from the foot of the
perpendicular.

In the figure on page 280, if PB is given equal to PC, then since
PO = PO, and the angles at O are right angles, what follows with re-
spect to the A OBP and OCP? with respect to OB and OC ?

Furthermore, if PA > PC, how does P4 compare with PB?

Then how does 04 compare with OB? Why? .

Then how does OA compare with OC ?

441. Cororrary 2. The locus of a point equidistant from
all points on a circle is a line through the center, perpen-
dicular to the plane of the circle.

In the figure on page 280, in order to prove that PO is the required
locus what must be proved for any point on PO (§ 148) ? for any point
not on PO? Prove both of these facts.

442. Cororrary 3. The locus of a point equidistant from
the vertices of a triangle is a line through- the center of the
circumseribed circle, perpendicular to the plane of the triangle.

How does this follow from Corollary 27?
‘What locus is the line through the center of the inscribed circle, per-
pendicular to the plane of the triangle ?

443. CororLrAry 4. The locus of a point equidistant from
two given points is the plane perpendicular to the line joining
them, at its mid-point.

For any point C in this plane lies in a L to AB 4
at O, its mid-point (§ 430).

Hence how do C4 and CB compare (§ 150) ?

And any point D outside the plane MN cannot lie
in a L to AB at O. What may therefore be said as to the distances
from D to 4 and B (§ 150) ?

What is the proposition in plane geometry corresponding to Corol-
lary 4? In what respect do the two proofs differ ?

NS
\
D
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PropositioN VII. THEOREM

444. Two lines perpendicular to the same plane are

parallel.
: Ay,

M

Given the lines AB and CD, perpendicular to the plane MN.
To prove that AB and CD are parallel.

- Proof. Draw AD and BD, and in MN draw through D
EF | to BD, making DE = DF. Draw BE, AE, BF, AF.
Now prove that A BDE and BDF are congruent (§ 69), that
4 ADE and ADF are right angles (§ 80), and that BD, CD,
and AD lie in the same plane (§ 432).

But 4B also lies in this plane, § 422
and AB and CD are both | to BD. § 430
.. ABis Il to CD, by § 95. Q.E.D.

445. CoroLLARY 1. If omne of two parallel lines is perpen-
dicular to a plane, the other is also perpendicular 4 ¢

to the plane. M °
For if through any point O of CD a line is drawn L to m
MN, how is it related to AB (§ 444) ? Now apply § 94. N
4 ¢ E

446. CoroLLARY 2. If two lines are parallel a
to a third line, they are parallel to each other. =
For a plane MN L to CDis L to AB and EF (§445), L2 2

447. Line and Plane Parallel. If a line and plane cannot
meet, however far produced, they are said to be parallel.
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EXERCISE 74
1. Why does folding a sheet of paper give a straight edge ?

2. If equal oblique lines are drawn from a given external
point to a plane, they make equal angles with lines drawn from
the points where the oblique lines meet the plane to the foot
of the perpendicular from the given point.

3. If from the foot of a perpendicular to a plane a line is
drawn at right angles to any line in the plane, the line drawn
from its intersection with the line in the plane to any point
of the perpendicular is perpendicular to the line of the plane.

4. If two perpendiculars are drawn from a point to a plane
and to a line in that plane respectively, the line joining the
feet of the perpendiculars is perpendicular to the given line.

5. From two vertices of a triangle perpendiculars are let fall
on-the opposite sides. From the intersection of these perpen-
diculars a perpendicular is drawn to the plane of the triangle.
Prove that a line drawn to any vertex of the triangle, from
any point on this perpendicular, is perpendicular to the line
drawn, through that vertex parallel to the opposite side.

6. Tind the point in a plane to which lines may be drawn
from two given external points on the same side of the plane
50 that their sum shall be the least possible.

From one point 4 suppose a L. 40 drawn to the plane and produced
o A’, making OA’= 0A. Connect A’ and the other point B by a line
cutting the plane at P. Then BPA is the shortest line.

7. If three equal oblique lines are drawn from an external
point to a plane, the perpendicular from the point to the plane
meets the plane at the center of the circle circumsecribed about
the triangle having for its vertices the feet of the oblique lines.

8. State and prove the propositions of plane geometry cor-
responding to §§ 444, 445, and 446. Why do not the proofs
of those propositions apply to these sections ?
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PropositioNn VIII. THEOREM
448. If two lines are parallel, every plane containing
one of the lines, and only one, is parallel to the other line.

A
B

Given the parallel lines AB and CD, and the plané MN contain-
ing CD but not 4AB.

To prove that the plane MN is parallel to AB.

Proof. AB and CD are in the same plane, AD. § 93
This plane 4D intersects the plane MN in CD. Given

Now 4B lies in the plane 4D, however far produced. § 422

Therefore, if 4B meets the plane MN at all, the point of

meeting must be in the line CD. § 422
But since 4B is Il to CD, Given
.*. AB cannot meet C'D. § 93
.*. AB cannot meet the plane MN.
.. MN is Il to AB, by § 447. Q.E.D.

449. Cororrary 1. Through either of two lines not in the
same plane one plane, and only one, can be passed parallel to
the other.

For if AB and CD are the lines, and we pass a 4
plane through CD and a line CE which is drawn 2L

parallel to AB, what can be said of the plane MN : D
determined by CD and CE, with respect to the line /g B

AB? Why can there be only one such plane ? N

B
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450. CoroLLARY 2. Through a given point one plane, and
only one, can be passed parallel to any two given lines in space.
‘Suppose P the given point and AB and CD the

given lines. If, now, we draw through P the line 4 /B’

A’B’ parallel to AB, and the line ¢’ parallel to CD, c D
these lines will determine the plane MN (§ 425). M

Then what may be said of the plane MN with re- o/
spect to the lines AB and CD? Why can only one 7
plane be so passed through P? v

Discussion. Proposition VIII might of course be made more general
by allowing both of the parallels to lie in the plane MN. That is, If two
lines are parallel, a plane containing one of the lines cannot intersect the
other, although the other line might lie in it.

In the figure of Corollary 2 the ZD’PB’ is sometimes spoken of as the
angle between the nonintersecting lines A B and CD, although this is not
commonly done in elementary geometry.

451. Parallel Planes. Two planes which cannot meet, how-
ever far produced, are said to be parallel.

EXERCISE 75

1. What is the locus of a point in a plane equidistant from
two parallel lines ? What is the corresponding locus in space,
given two parallel planes instead of two parallel lines ? Draw
the figure, without proof.

2. Find the locus in a plane of a point at a given distance
from a given external point. What is the corresponding case
of plane geometry ?

3. If a given line is parallel to a given plane, the intersection
of the plane with any plane passed through the given line is
parallel to that line.

4. If a given line is parallel to a given plane, a line parallel
to the given line drawn through any point of the plane lies in
the plane.
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ProrositioNn IX. THEOREM

452. Two planes perpendicular to the same line are
parallel. '
M, P

N Q

Given the planes MN and PQ perpendicular to the line AB.
To prove that the planes MN and PQ are parallel.

Proof. If MN and PQ are not parallel, they must meet.
If they could meet, we should have two planes from a point
of their intersection L to the same straight line.

But this is impossible. § 434
.*. MN and PQ are parallel, by § 451. Q.E.D.
EXERCISE 76

1. What is the locus of a point equidistant from two given
points 4, B, and also equidistant from two other given points
C,D?

2. What is the locus of a point at the distance d from a
given plane P, and at the distance d' from a given plane P'?

3. What is the locus of a point at the distance d from a
given plane P, and equidistant from two given points 4, B?

4. Find a point at the distance d from a given plane P, at
the distance d' from a given plane P, and equidistant from
two given points 4, B. Can there be more than one such
point ? Draw the figure, without proof.
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ProrositioN X. THEOREM

453. The intersections of two parallel planes by a third
plane are parallel lines.

Giver the parallel- planes MN and PQ, cut by the plane RS in
AB and CD respectively. *

To prove that the intersections AB and CD are parallel.

Proof. ABand CD are in the same plane RS. Given
If ABand CD meet, the pianes MN and PQ must meet, since
AB is always in MN and CD is always in PQ. § 422
But MN and PQ cannot meet. § 451

.. ABis I to CD, by § 93. Q.E.D.

454. CoroLrLAry 1. Parallel lines included between par-
allel planes are equal.

In the above figure, suppose AC |l to BD. Then the plane of AC and
BD will intersect MN and PQ in lines that are how related to each
other ? Then what kind of a figure is ACDB?

455. CororLrAry 2. Two parallel planes are- everywhere
equidistant from each other.

Drop perpendiculars from any points in MN to PQ. Prove that these
perpendiculars are parallel and hence (§ 4564) that they are equal.
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Prorosition XI. THEOREM

456. A line perpendicular to one of two parallel planes

is perpendicular to the other also.

L X{Z‘_‘:_:::: I.:::::::} cl. \N

Given the line AB perpendicular to the plane MN, and the plane
PQ parallel to the plane MN.

To prove that AB is perpendicular to the plane PQ.

Proof. Pass through 4B two planes AE, AF, intersecting
MN in AC, AD, and intersecting PQ in BE, BF, respectively.

Then AC is Il to BE, and 4D is Il to BF. § 453
But 4B is L to AC and AD. § 430

. ABis L to BE and BF. § 97

». AB is L to the plane PQ, by § 431. QED.

457. Corornary 1. Through a given point one plane, and
only one, can be passed parallel to a given plane.
How is a plane through 4, | to AB, related to PQ? Now use § 433.

458. CororLARY 2. T'he locus of a point equidistant from
two parallel planes is a plane perpendicular to o line which is
perpendicular to the planes and which bisects the segment cut
off by them.

459. Cororrary 3. The locus of a point equidistant fiom
two parallel lines is a plane perpendicular to a line which is
perpendicular to the given lines and which bisects the segment
cut off by them.
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ProrosirioN XII. THEOREM

. 460. If two intersecting lines are each parallel to o
plane, the plane of these lines is parallel to that plane.

=\,

/7 I

Given the intersecting lines AC, AD, each parallel to the plane
PQ, and let MN be the plane determined by AC and AD.

To prove that ~ MN is parallel to PQ.

Proof. Draw AB 1 to PQ.

Pass a plane through AB and AC intersecting PQ in BE,
and a plane through 4B and AD intersecting PQ in BF.

Q

"Then ABis L to BE and BF. § 430
But AC and BE lie in the same plane, Const.
and 4C cannot meet BE without meéting the plane PQ, which
is impossible. § 447
<.BEis Il to AC. § 93

Similarly BFis |l to AD.
. ABis | to AC and to AD. § 97
.. AB is L to the plane MN. § 431
.. MN is || to PQ, by § 452. Q.E.D.

Discussion. It is evident that this proposition does not depend upon
the position of 4. For example, C and D might remain where they are
and A4 might recede a long distance, 4C and 4D becoming more nearly
parallel. So long as the lines intersect, and only so long, are we certain
that the planes are parallel.
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ProrositioNn XIII. THEOREM

461. If two angles not in the same plane have their
~ sides respectively parallel and lying on the same side of
the straight line joining their vertices, the angles are
equal, and their planes are parallel.

=\

/

==\

Given the angles A and A', in the planes MN and PQ respec-
tively, and their corresponding sides parallel and lying on the same
side of AA'.

To prove that L A= 2L A", and that MN s Il to PQ.
Proof. Take AD and 4'D' equal, also AC and 4'C' equal.
Draw DD', CC', CD, C'D'.

Since 4D is equal and |l to 4'D',

~~J_

.. AA'is equal and | to DD, § 130

In like manner 44'is equal and Il to CC'".
.. DD' and CC" are equal, Ax. 8
and DD' and CC' are parallel. § 446
. CD=C'D. - §130
.. A ADC is congruent to A A'D'C". § 80
wLA=ZLA\ § 67
But MN is |l to each of the lines 4'C' and 4'D". § 448
. MN is |l to PQ, by § 460. Q.E.D.

Discussion. Why does not the proof of the corresponding proposition
in plane geometry apply here ?
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ProrosirioN XIV. THEOREM

462. If two lines are cut by three parallel planes, their
corresponding segments are proportional.

Given the lines AB and CD, cut by the parallel planes MN,
PQ, RS, in the points A4, E, B, and C, F, D, respectively.

To prove that AE:EB= CF:FD.
Proof. Draw AD cutting the plane PQ in G.

Pass a plane through 4B and 4D, intersecting PQ in the
line Ed, and intersecting RS in the line BD.

Also pass a plane through AD and CD, intersecting PQ in
the line G'F, and intersecting MN in the line 4C.

Then E@G is |l to BD,
and GFis |l to AC. § 453
S.AE:EB=AG:GD,
and CF:FD=AG:GD. § 273
. AE:EB=CF:FD, by Ax. 8. Q.E.D.

Discussion. This is a generalization of §275. It may be stated still
more generally, If two lines are cut by any number of parallel planes, their
corresponding segments are proportional. In particular, the case might be
considered in which 4B and CD intersect between the planes.

" Why does not the proof of the corresponding case (§ 275) in plane
geometry apply here ?
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EXERCISE 77

1. Find the locus of a line drawn through a given point,
parallel to a given plane.

2. Find the locus of a point in a given plane that is equi-
distant from two given points not in the plane.

3. Find the locus of a point equidistant from three given
points not in a straight line.

4. Find the locus of a point equidistant from two given
parallel planes and also equidistant from two given points.

5. What is the locus of a point in a plane at a given dis-
tance from a given line in the plane ? What is the locus of
a point at a given distance from a given plane ?

6. The line AB cuts three parallel planes in the points 4,
E, B; and the line C'D cuts these planes in the points C, F, D.
If AE=61in., EB=8in,and CD=12 in., compute CI?" and FD.

7. The line 4B cuts three parallel planes in the points 4,
E, Bj; and the line CD cuts these planes in the points C, F, D.
If AB=8 in., CF =5 in.,,and CD =9 in., compute 4 E and EB.

8. To draw a perpendicular to a given plane from a given
point without the plane.

9. To erect a perpendicular to a given plane at a given
point in the plane.

10. It is proved in plane geometry that if three or more
parallels intercept equal segments on one transversal, they
intercept equal segments on every transversal. State and prove
a corresponding proposition in solid geometry.

11. It is proved in plane geometry that the line joining the
mid-points of two sides of a triangle is parallel to the third
side. State and prove a corresponding proposition in solid
geometry, referring to a plane passing through the mid-points
of two sides of a triangle.
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463. Dihedral Angle. The opening between two intersecting
planes is called a dikedral angle.

In this figure the two planes AM
and BN are called the faces of the
dihedral angle, and the line of inter-
section AB is called the edge of the
angle.

A dihedral angle is read by nam-
ing the letters designating its edge,
or its faces and edge, or by a small letter within., Thus the dihedral
angle here shown may be designated by 4B, M-AB-N, or d.

464. Size of a Dihedral Angle. The size of a dihedral angle
depends upon the amount of turning necessary to bring one -
face into the position of the other.

The analogy to the plane angle is apparent, and is still further seen
as we proceed.

465. Adjacent Dihedral An-
gles. If two dihedral angles
have a common edge, and a
common face between them,
they are said to be adjacent
dihedral angles.

For example, M-A B-N and N-BA-P are adjacent dihedral angles.

466. Right Dihedral Angle. If one plane meets another plane
and makes the adjacent dihedral angles equal, each of these
angles is called a right dihedral angle. / _

Dihedral angles are said to be straight, acute, obtuse, reflex, comple-
mentary, supplementary, conjugate, and vertical, under conditions similar

to those obtaining with plane angles. There is little occasion, however,
to use any of these terms in connection with dihedral angles.

467. Perpendicular Planes. If two planes intersect and form
a right dihedral angle, each of the planes is said to be perpen-
dicular to the other plane.

A\
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468. Plane Angle of a Dihedral Angle. The plane angle formed
by two straight lines, one in each plane, perpen- o

. . . B
dicular to the edge at the same point, is called J ‘
the plane angle of the dihedral angle. | B’

For example, Z.A OB is the plane angle of the dihedral 0 B~
angle 007, if AO and BO are each L to 00”. e

469. Cororrary. The plane angle of a dihedral angle has
the same magnitude from whatever point in the edge the per-
pendiculars are drawn.

How is O’B’ related to OB, and 0’A’ to OA (§95)? Then how is
£ A’0’'B’ related to £ AOB (§ 461) ?

470. Relation of Dihedral Angles to Plane Angles. It is appar-
ent that the demonstrations of many properties of dihedral
angles are identically the same as the demonstrations of anal-
ogous properties of plane angles. A few of the more important
propositions will be proved, but the following may be assumed
or may be taken as exercises :

1. If a plane meets another plane, it forms with it two adjacent
dihedral angles whose sum is equal to two right dihedral angles.

2. If the sum of two adjacent dihedral angles is equal to two right
dihedral angles, their exterior faces are in the same plane.

3. If two planes intersect each other, their vertical dihedral angles
are equal.

4. If a plane intersects two parallel planes, the alternate-interior dihe-
dral angles are equal ; the exterior-interior dihedral angles are equal ;
and the two interior dihedral angles on the same side of the transverse
plane are supplementary.

6. When two planes are cut by a third plane, if the alternate-interior
dihedral angles are equal, or the exterior-interior dihedral angles are
equal, and the edges of the dihedral angles thus formed are parallel,
the two planes are parallel.

6. Two dihedral angles whose faces are parallel each to each are
either equal or supplementary.

7. Two dihedral angles whose faces are perpendicular each to each,
and whose edges are parallel, are either equal or supplementary.



DIHEDRAL ANGLES 295

Prorosition XV. THEOREM

471. Two dihedral angles are equal if their plane
angles are equal.

E| ——=n C'

= O

= =

N,

[N
|

D

! 4
Given two equal plane angles ABD and A'B'D' of the two dihe-
dral angles d and d'.

To prove that the dikedral angles d and d' are equal.

Proof. Apply dihedral angle d' to dihedral angle d, making
the plane £ A'B'D' coincide with its equal £ ABD.

Then since B'C'is 1 to A'B' and D'B, § 468
B'C'is L to the plane A'B'D'. §431

‘. B'C' will also be L to the plane ABD at B. Post. 5

. B'C' will fall on BC. : § 436

Then the planes 4'B'C' and ABC, having in common the
two intersecting lines AB and BC, coincide. - §425

In the same way it may be shown that the planes D'B'C'
and DBC coincide.

Therefore the two dihedral angles d and d' coincide and are
equal. Q.E.D.

Discussion. May we have equal straight dihedral angles ? equal reflex

dihedral angles? What is the authority for saying that right dlhedral
angles are equal ?
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Prorosition XVI. THEOREM

472. Two dihedral angles have the same ratio as their
plane angles.

S G

v

e m ey

‘.\_-_.__—-~—___—____\
RS, |

N

Fic. 1 FiG. 2 Fi6. 3

Given two dihedral angles BCand B'C', and let their plane angles
be ABD and A'B'D' respectively.

To prove that LB'C': L BC =L A'B'D': L ABD.
Case 1. When the plane angles are commensurable.

Proof. Suppose the £ ABD and A'B'D' (Figs. 1 and 2) have
a common measure, which is contained m times in £ ABD and
n times in Z A'B'D'.
Then L ABD :ZABD=mn:m.
Apply this measure to £ ABD and £ A'B'D', and through
the lines of division and the edges BC and B'C' pass planes.
These planes divide £ BC into m parts, and £ B'C' into »
parts, equal each to each. §471
S ALBC':LBC=mn:m.
o LB'C':£LBC=LA'B'D': LABD, by Ax. 8. Q.E.D.
As with plane angles, there is also the case of incommensurables.
Since the common measure may be taken as small as we please, it is
evident that for practical purposes the above proof is sufficient. The

proof for the incommensurable case, p. 297, may be omitted at the
discretion of the teacher without destroying the sequence.
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Case 2. When the plane angles are incommensurable.

Proof. Divide the £ ABD into any number of equal parts,
and apply one of these parts to the £ 4'B'D' (Figs. 1 and 3)
as a unit of measure.

Since £ ABD and £ A'B'D' are incommensurable, a certain
number of these parts will form the £ A'B'E, leaving a re-
mainder Z EB'D', less than one of the parts.

Pass a plane through B'E and B'C".

Since the plane angles of the dihedral angles A-BC-D and
A'-B'C'-E are commensurable,

.. A-B'C"-E : A-BC-D=Z A'B'E: L ABD. Case 1

By increasing the number of equal parts into which £ 4BD
is divided we can diminish the magnitude of each part, and
therefore can make the Z EB'D' less than any assigned positive
value, however small.

Hence the Z EB'D' approaches zero as a limit, as the number
of parts is indefinitely increased, and at the same time the cor-
responding dihedral £ E-B'C'-D'approacheszeroasalimit. § 204

Therefore the £ A'B'E approaches the £ 4'B'D' as a limit,
and the £ A'-B'C'-E approaches the £ A'-B'C'-D' as a limit.

.*. the variable %}gg approaches éé%,- as a limit,
and the variable % approaches % as a limit.
But % is always equal to 42%%’ as LA'B'E
varies in value and approaches Z 4'B'D' as a limit. Case 1
. ALA;_B;S_'-,?' = iﬁi’éy, by § 207. Q.E.D.

473. Cororrary. The plane angle of a dikedral angle may
be taken as the measure of the dihedral angle.
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ProrositioN XVII. THEOREM

474. If two planes are perpendicular to each other, a
line drawn in one of them perpendicular to their inter-
section is perpendicular to the other.

Given the planes MN and PQ perpendicular to each other, and the
line CD in PQ perpendicular to their intersection 4B.

To prove that CD is perpendicular to the plane MN.
Proof. In the plane MN draw DE L to AB at D.

Then Z EDC is a right angle, § 473
and £ CDA is also a right angle. Given
.. CDis L tothe plane MN, by § 431. Q.E.D.

475. CororrAry 1. If two planes are perpendicular to each
other, a perpendicular to one of them at any point of their
tntersection will lie in the other.

Will a line CD drawn in the plane PQ L to AB at D be _L to the plane
MN? How many Is can be drawn from D to the plane MN?

476. CoroLrArY 2. If two planes are perpendicular to each
other, a perpendicular to the first from any point in the second
will lie in the second.

Will a line CD drawn in the plane PQ from C 1 to AB be L to the
plane MN ? How many I can be drawn from C to the plane MN ?
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Prorosition XVIII. THEOREM

477. If o line is perpendicular to a plane, every plane
passed through this line is perpendicular to the plane.

Given the line CD perpendicular to the plane MN at the point D,
and PQ any plane passed through CD intersecting MN in AB.

To prove that the plane PQ is perpendicular to the plane MN.
Proof. Draw DE in the plane MN 1 to AB.

~ Since CDis 1 to MN, Given
‘. CDis 1 to AB. § 430
.. £ EDC measures £ N-AB-P. §473
But £ EDC is a right angle. § 430
.. PQis L to MN, by § 467. Q.E.D.
EXERCISE 78

1. A plane perpendicular to the edge of a dihedral angle is
perpendicular to each of its faces.

2. If one line is perpendicular to another, is any plane passed
through the first line perpendicular to the second ? Prove it.

3. If three lines are perpendicular to one another at a com-
mon point, what is the relation to one another of the three
planes determined by the three pairs of lines ? Prove it.
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ProrosiTioN XIX. THEOREM

478. If two intersecting planes are each perpendicular
to a third plane, their intersection is also perpendicular
to that plane.

Given two planes BC and BD, intersecting in AB, and each per-
pendicular to the plane PQ.

To prove that AB s perpendicular to the plane PQ.
Proof. Let the plane BC intersect the plane PQ in BF,
and let the plane BD intersect the plane PQ in BE.
From any point 4 on 4B draw AX 1 to BE,
and from 4 draw AY L to BF.
Then AX and AY are both L to the plane PQ. § 474
But it is impossible to draw two L to the plane PQ
from a point outside the plane PQ, - § 437
or from a point in the plane PQ. § 436
.*. AX and AY must coincide.
But AX and AY can coincide only if they lie in both planes.
And all points common to both planes lie in 4B. § 429
.. AX and A4Y coincide with 4B.
.. ABis L to the plane PQ. Q.E.D.

Discussion. How does it appear from this proof that 4B cannot be
parallel to PQ ? :

The proposition is illustrated in the intersection of two walls of a room
with the floor or the ceiling.
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ProrosiTioNn XX. THEOREM

479. The locus of a point equidistant from the faces
of a dihedral angle is the plane bisecting the angle.

Given the plane AM bisecting the dihedral angle formed by the
planes AD and AC.

To prove that the plane AM is the locus of a point eqm—
distant from the planes AD and AC.

Proof. Let EOF be a plane L to 40, the mtersectlon of the
planes AD and AC, at O.

Since 40 is L to the plane EOF,
.*. the planes 4D, AM, and AC are L to the plane EOF. §477

From any point P, in the intersection of the planes 43 and
EOF, draw PF L to OF, and PE L to OE.

Then PFis 1 to AD, and PE is L to AC. § 474
.. PF and PE measure the distances from the point P to

the planes AD and AC. § 438
Since A0 is 1 to OF, OP, and OE, § 430
‘. OP bisects £ FOE. §473

.*. OP is the locus of a point equidistant from OFand OE. §152

.. AM, which contains all points P, is the locus of a point
equidistant from the planes 4D and 4C. Q.E.D.
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ProrositioNn XXI. THEOREM

480. Through a given line not perpendicular to a given
plane, one plane and only one can be passed perpen-
dicular to the plane.

Given the line AB not perpendicular to the plane MN.

To prove that one plane can be passed through AB perpen-
dicular to the plane MN, and only one.

Proof. From any point X of AB draw XY 1 to the plane MN,
and through 4B and XY pass a plane AP.  § 425

The plane AP is L to the plane MN, since it passes through
XY, a line L to MN. § 477
Moreover, if two planes could be passed through 4B L to the
plane MN, their intersection 4B would be L to MN. §478
But this is impossible, since 4B is not L to MN. Given
Hence one plane can be passed through 4B L to the plane
MN, and only one. Q.E.D.

481. Projection of a Point. The foot of the line from a given
point perpendicular to a plane is called the

projection of the point on the plane. W
482. Projection of a Line. The locus of the £ ::f HH 'E'
. . it | 1
projections of the points of a line on a plane
N

is called the projection of the line on the plane. -
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ProrositioNn XXII. THEOREM

483. The projection of a straight line not perpendicu-
lar to a plane, upon that plane, is a straight line.

A
M
' AI

Given the straight line AB not perpendicular to the plane MN,
and A'B' the projection of AB upon MN.

To prove that A'B' is a straight line.

Proof. From any point X of AB draw XY L to MN,
and pass a plane AP through XY and 4B. § 425
The plane AP is L to the plane MN, © 8477
and contains all the Is drawn from AB to MN. § 476
Hence 4'B' must be the intersection of these two planes.
Therefore A'B' is a straight line, by § 429. Q.E.D.

484. Cororrary. The projection of a straight line perpen-
dicular to a plane, upon that plane, is a point.

485. Inclination of a Line. The angle which a line makes
with its projection on a plane is considered as the angle which
it makes with the plane, and is called the inclination of the
line to the plane.

Therefore a line ordinarily makes an acute angle with a plane, since

it makes an acute angle with its projection on the plane. The cases of
perpendicular and parallel lines have already been considered.
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Prorosition XXIII. THEOREM

486. The acute angle which a line makes with its
projection upon o plane is the least angle which it
makes with any line of the plane.

B

; |
| <5
Y

Given the line AB meeting the plane MN at A, AB' being the pro-
jection of AB upon the plane MN, and AD being any other line drawn
through A in the plane MN.

To prove that £ B'AB is less than £ DAB.

Proof. Make 4D equal to AB', and draw BB' and BD.

Then in A BAB' and BAD,

’

&

N

AB= AB, Iden.

AB'= AD, Const.

and BB'< BD. § 438
.. Z B'AB< Z DAB, by § 116. Q.E.D.

Discussion. Since £ B’AB is the least angle that A B makes with any
line of the plane, how does Z BAC compare with the angles that AB
makes with other lines of the plane ? State the general proposition
involved in the answer.

If AB is parallel to the plane, what interpretation may be given to
the proposition ?

If ABis perpendicular to the plane, what interpretation may be given

to the proposition ?
As AD swings around from the position 4B’ to the position 4 C, what

kind of change takes place in the angle DAB ?
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EXERCISE 79

1. Describe the position of a segment of a line relative to a
given plane if the projection of the segment on the plane is
equal to its own length.

2. From a point 4, 4 in. from a plane MN, an oblique line
AC 5 in. long is drawn to the plane and made to turn around
the perpendicular 4B dropped from A to the plane. Find the
area of the circle described by the point C.

3. From a point 4, 8 in. from a plane MN, a perpendicular 4B
is drawn to the plane; with B as a center and a radius equal
to 6 in., a circle is described in the plane; at any point C on
this circle a tangent CD is drawn 24 in. in length. Find the
distance from 4 to D.

4. Equal lines drawn from a given external point to a given
plane are equally inclined to the plane.

5. If three equal lines are drawn to a plane from an exter-
nal point, the perpendicular from the point to the plane deter-
mines the center of the circle: circumscribed about the triangle
determined by the planes of the three lines.

6. Three lines not in the same plane meet in a point. How
shall a line be drawn so as to make equal angles with all three |
of these lines ?

7. From a point P two perpendiculars PX and PY are drawn
to two planes MN and AC which intersect in AB. From Y a
perpendicular ¥Z is drawn to MN. Prove that the line XZ is
perpendicular to AB.

8. If the length of the shadow of a tree standing on level
ground exceeds the height of the tree, the angle made by the
sun above the horizon must be less than what known angle ?

9. Find the locus of a point at a given distance from a given
plane and equidistant from two given points not in the plane.
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ProprosiTion XXIV. THEOREM

487. Between two lines not in the same plane there
can be one common perpendicular, and only one.

Given AB and CD, two lines not in the same plane.
To prove that there can be one common perpendicular, and
only one, between AB and CD.
Proof.” Through any point 4 of AB draw AG | to DC.
Let MN be the plane det';e_rmined by AB and AG. § 425
Then the plane MN is Il to DC. § 448
Through DC pass the plane PQ L to the plane MN. § 480
Then DC cannot meet D'C', since it is || to the plane MN and

lies in the plane PQ. § 422
..DCis |l to D'C'. § 93
. if ABis |l to D'C' it must be Il to DC. § 446

But 4B is not Il to DC, for they are not in the same plane. Given
.*. AB must intersect D'C' at some point as C'.
Draw C'C L to the plane MN.

Then C'C is L to AB and to D'C". § 430
Since  C'C is L to D'C', and lies in plane PQ, § 475
»~.C'Cis L to DC. § 97

Therefore one common perpendicular can be drawn.
It remains to be proved that no other can be drawn.
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If it were possible that another common perpendicular could
be drawn, we might suppose E4 to be L to both 4B and CD.

Then EA would be L to 4G, §97
and therefore EA would be L to the plane MN. § 431
Draw EE'_ L to D'C'.

Then EE'is | to the plane MN. §474

But this is impossible, if EA is also L to the plane MN. § 437

Hence the supposition that there is a second common per-
pendicular, E4, leads to an absurdity.

Therefore there can be one common perpendicular, and only
one, between 4B and CD. Q.E.D.

488. CoroLLArY. The common perpendicular between two
lines not in the same plane is the shortest line joining them.

How does CC’ compare in length with EE’? Why ?
How does EE’ compare in length with E4 ?

EXERCISE 80
1. Parallel lines have parallel projections on a plane.

2. If two planes are perpendicular to each other, any‘line
perpendicular to one of them is how related to the other ?

3. If three lines passing through a given point P are cut by
a fourth line that does not pass through P, the four lines all
lie in the same plane.

4. Seven lines, no three of which lie in the same plane,
pass through the same point. How many planes are deter-
mined by these lines ?

5. A cubical tank 10 in. deep contains water to a depth of
7in. A foot rule is placed obliquely on the bottom so as just
to reach the top edge of the tank. Make a sketch of the tank,
and compute the length of the rule covered by water.
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489. Polyhedral Angle. The opening of three or more planes
which meet at a common point is called a polyhedral angle.

The common point V is called the vertex of the angle ;
the intersections V4, VB, etc., of the planes are called
the edges; the portions of the planes lying between the
edges are called the faces; and the angles formed by 4
adjacent edges are called the face angles.

Every two adjacent edges form a face angle, and every
two adjacent faces form a dihedral angle. The face angles and dihedral
angles are the parts of the polyhedral angle.

490. Size of a Polyhedral Angle. The size of a polyhedral
angle depends upon the relative position of its faces, and not
upon their extent.

491. Convex and Concave Polyhedral Angles. A polyhedral
angle is said to be convex or comcave according as a section
made by a plane that cuts all its edges at other points than
the vertex is a convex or concave polygon.

Only convex polyhedral angles are considered in this work.

492. Classes of Polyhedral Angles. A polyhedral angle is called
a trikedral angle if it has three faces, a tetrahedral angle if it
has four faces, and so on.

Other names, like pentahedral, hexahedral, heptahedral, etc., for
' angles with 5, 6, 7, etc., faces, are rarely used.

A polyhedral angle is designated by a letter at the vertex, or by let-
ters representing the vertex and all the faces taken in order. Thus, in
the above figure the trihedral angle is designated by V or by V-ABC.
A tetrahedral angle would be designated by V or by V-ABCD.

493. Equal Polyhedral Angles. If
the corresponding parts of two poly-
hedral angles are equal and are ar-
ranged in the same order, the poly-
hedral angles are said to be equal.

Thus the angles V-4ABC and V’-A’B’C’ are equal. Equal polyhedra,l
angles may evidently be made to coincide by superposition. ‘
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Prorosition XXV. THEOREM.

494. The sum of any two face angles of a trihedral
angle is greater than the third face angle.

Given the trihedral angle V-XYZ, with the face angle XVZ greater
than either of the face angles XV¥ or YVZ.
To prove that LXVY + L YVZ is greater than £ XVZ.
Proof. In the ZXVZ draw VW, making ZXVW=ZLXVY.
Through any point D of VW draw ADC in the plane XVZ.
. On VY take VB equal to VD.
Pass a plane through the line 4C and the point B.
Then since AV=AV, VD=VB,and LAVD=LAVB,

.'w A AVD is congruent to A AVB. § 68

. AD=AB. § 67

In the A ABC, AB+BC>AC. §112
Since AB =AD, .. BC >DC. : Ax. 6

In the A BVC and DVC,
Ve =ve, and VB = VD, but BC > DC.

.. Z BV is greater than Z DVC. - §116
. £LAVB4 L BVC is greater than L AVD 4 £ DVC. Ax.6
But LAVD+ /£ DVC=LAVC. Ax. 11

. ZLAVB+ L BVC is greater than ZAVC. Ax.9
That is, ZXVY + £LYVZ is greater than ZXVZ.  QE.D.
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ProposITioN XXVI. THEOREM

495. The sum of the face angles of any convex poly-
hedral angle is less than four right angles.

Given a convex polyhedral angle V, all of its edges being cut by
a plane making the section ABCDE.

To prove that L AVB + L BVC, ete., is less than four rt. A.

Proof. From any point P within the polygon draw PA, PB,
PC, PD, PE.

The number of the A having the common vertex P is the
same as the number having the common vertex V.

Therefore the sum of the £ of all the A having the common
vertex V is equal to the sum of the 4 of all the A having the
common vertex P.

But in the trihedral 4 formed at 4, B, C, ete.,

L EAV + £ BAYV is greater than Z BAE,
LVBA 4+ ZCBYV is greater than ZCBA, ete.  § 494

Hence the sum of the £ at the bases of the A whose com-
mon vertex is V is greater than the sum of the £ at the bases

of the A whose common vertex is P. Ax. 7
Therefore the sum of the £ at the vertex ¥ is less than the
sum of the 4 at the vertex P. Ax. 7

" But the sum of the £ at P is equal to 4 rt. 4. § 41

Therefore the sum of the /4 at ¥V is less than 4 rt. 4. ¢.E.D.
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496. Symmetric Polyhedral Angles. If the faces of a poly-
hedral angle V-ABCD are produced through the vertex V,
another polyhedral angle V-4'B'C'D' is formed, symmetric with
respect to £ V-ABCD.

The face angles AVB, BVC,
etc., are equal respectively to CX
the face angles A’VB’, B'V(,
ete. (§ 60).

Also the dibedral angles VA4,
VB, etc., are equal respectively
to the dihedral angles VA’, VB,
etc. (§470). (The second figure
shows a pair of these vertical B
dihedral angles.)

Looked at from the point V, the edges of £ V-ABCD are arranged
from left to right (counterclockwise) in the order VA, VB, VC, VD, but
the edges of £ V-4’B’C’D’ are arranged from right to left (clockwise)
in the order VA’, VB, VC’, VD’; that is, in an order the reverse of the
order of the edges in £ V-ABCD. Therefore,

Two symmetric polyhedral angles have all their parts equal each to each
but arranged in reverse order.

&\\
-

497. Symmetric Polyhedral Angles not Superposable. In gen-
eral, two symmetric polyhedral angles are not superposable.
Thus, if the trihedral angle V-4'B'C' is made to
turn 180° about XY, the bisector of the angle
CVA', then VA' will coincide with VC, V'C' with
VA, and the face A'VC' with AVC'; but the di-
hedral angle V4, and hence the dihedral angle
VA', not being equal to V'C, the plane 4'VB' will
not coincide with BV C'; and, for a similar reason,
the plane C'VB' will not coincide with 4 VB. Hence the edge
VB' takes some position VB" not coincident with VB; that is,
the trihedral angles are not superposable.

An analogous case is seen in a pair of gloves. All the parts of one
are equal to the corresponding parts of the other, but the right-hand
glove will not fit the left hand.
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ProrosiTion XXVII. THEOREM

- 498. Two trihedral angles are equal or symmetric
when the three face angles of the one are equal respec-
tively to the three face angles of the other.

BE A

Given the trihedral angles ¥V and V', the angles BVA, CVA, CVB
being equal respectively to the angles B'V'A'!, C'V'A!, C'V'B'.

To prove that the angles V and V' are equal or symmetric.

Proof. On the edges of these angles take the six equal seg-
ments VA, VB, VC, V'A', V'B, V'C".
Draw AB, BC, CA, A'B', B'C', C'A".
The isosceles A BAV, CAV, CBV are congruent respectively
to the isosceles A B'A'V', C'A'V'!, C'B'V". § 68
.*. AB, BC, CA are equal respectively to 4'B', B'C', C'A'. § 67
.*. A BAC is congruent to A B'A'C". § 80

" From any point D in V4 draw DE in the face AVB and DF
in the face AV C, each L to VA.

These lines meet 4B and A4 C respectively.

(For the AVAB and VAC are acute, each being one of the equal
& of an isosceles A.)

Draw EF.
On A'V! take A'D' equal to AD.
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Draw D'E'in the face A'V'B'and D'F'in the face 4'V'C’, each
1 toV'4’, and draw E'F'.

Then since AD=A'D', Const.
and / DAE =/ DA'E, § 67
.". Tt. A ADE is congruent to rt. A A’'D'E". §72
.AE=A'E',and DE = D'E". § 67

In like manner AF= A'F', and DF=D'F".
Furthermore, since it has been proved that
A BAC is congruent to A B'A'C,

. LCAB=/LC'A'B'. § 67

.. A AFE is congruent to A A'F'E'. § 68
S.EF=E'F. ' § 67

.. A EDF is congruent to A E'D'F'. § 80
. L FDE=/F'DE" § 67

.*. dihedral £ V4 = dihedral £ 7V'4". §473

(For £ FDE and F'D’'E’, the measures of these dihedral £, are equal.)

In like manner it may be proved that the dihedral angles

VB and VC are equal respectively to the dihedral angles V'B'
and V'C.

.*. the trihedral angles ¥V and V' are equal, § 493

or else they are symmetric, by § 496. Q.E.D.

This demonstration applies to either of the two figures denoted by
V’-A’B’C’, which are symmetric with respect to each other. If the first
of these figures is taken, V" and V"’ are equal. If the second is taken,
V and V' are symmetric.

499. Comorrary. If two trihedral angles have the three
Sace angles of the one equal respectively to the three face
angles of the other, then the dihedral angles of the one are
equal respectively to the dihedral angles of the other.

For whether the trihedral angles are equal or symmetric, as stated in
the proposition, the dihedral angles are equal (§§ 493, 496).
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EXERCISE 81

1. Find the locus of a point in a space of three dimensions
equidistant from two given intersecting lines.

2. Find a point at equal distances from four points not all
in the same plane.

3. Two dihedral angles which have their edges parallel and
their faces perpendicular are equal or supplementary.

4. The projections on a plane of equal and parallel line-
segments are equal and parallel.

5. Two tribedral angles are equal when two dihedral angles
and the included face angle of the one are equal respectively
to two dihedral angles and the included face angle of the other,
and are similarly placed.

6. Two trihedral angles are equal when two face angles and
the included dihedral angle of the one are equal respectively
to two face angles and the included dihedral angle of the other,
and are similarly placed. ’

7. If the face angle AVB of the trihedral angle V-ABC is
bisected by the line VD, the angle C VD is less than, equal to,
or greater than half the sum of the angles 4VC and BVC,
according as Z C'VD is less than, equal to, or greater than 90°.

8. If two face angles of a trihedral angle are equal, the
dihedral angles opposite them are equal.

9. A trihedral angle having two of its face angles equal is
superposable on its symmetric trihedral angle.

10. Find the locus of a point equidistant from the three edges -
of a trihedral angle.

11. Find the locus of a point equidistant from the three faces
of a trihedral angle.

12. The planes that bisect the dihedral angles of a trihedral
angle meet in a straight line.
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EXERCISE 82
ProBLEMS oF CoMPUTATION

1. From a point P, 4 in. from a plane, a line PX is drawn
meeting the plane at X. If PX is 5 in,, what is the length of
the iocus of X in the plane ?

2. From a point P, 5 in. from a plane, a line PX is drawn
meeting the plane at X. If PX is 12 in., what area is inclosed
in the plane by the locus of X ? Answer to two decimal places.

3. The base AB of the isosceles triangle ABC in the plane
MN is 6 in., and the perimeter of the triangle is 20 in. If the
triangle revolves about its base as an axis, what is the greatest
distance from the plane that is reached by ¢'? Answer to three
decimal places.

4. Two points 4 and B are 4 in. apart. A point P moves so
as to be constantly 5 in. from each of these points. Find the
length of the locus of P. Answer to three decimal places.

5. Two parallel planes MN and PQ are cut by a third plane
RS so0 as to make one of the dihedral angles 27° 15' 30". Find
the other dihedral angles.

6. Two lines are cut by three parallel planes. The segments
cut from one line are 3 in. and 5% in., and those cut from the
other line are 72 in. and 2. Find the value of z.

7. Two given planes are at right angles to each other. A
point X is 8 in. from each plane. How far is X from the edge
of the right dihedral angle ?

8. What is the length of the projection on a plane of a line
whose length is 10 V2, the inclination of the line to the plane
being 45°?

9. From the external point P a perpendicular PP, 9 in. long,
is drawn to a plane MN. From P the line PQ is drawn to the
plane making the angle P'PQ equal to 30°. Find the length of
the projection of PQ on the plane MN.
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EXERCISE 83

REviEw QUEsTIONS

" 1. How many and what conditions determine a straight line ?
How many and what conditions determine a plane ?

2. What simple numerical test, following the measurement
of certain lengths, determines whether or not one line is perpen-
dicular to another ? a line is perpendicular to a plane ?

3. How many planes can be passed through a given line
perpendicular to a given plane ? Is this true for all positions
of the given line ?

4. Through a given point how many lines can be drawn
parallel to a given line ? parallel to a given plane ? Through
a given point how many planes can be passed parallel to a
given line ? parallel to a given plane ?

5. What is the locus, in a line, of a point equidistant from
two given points ? in a plane ? in a space of three dimensions ?

6. What is the locus, in a plane, of a point equidistant from
two intersecting lines ? State a.corresponding proposition for
solid geometry.

7. What may be said of two lines in one plane perpendicular

_to the same line ? State two corresponding propositions for

solid geometry. Does one of these propositions state that two
planes perpendicular to the same plane are parallel ?

8. What may be said of a line perpendicular to one of two
parallel lines ? State two corresponding propositions for solid
geometry. Is a plane perpendicular to one of two parallel
planes perpendicular to the other ?

9. If a line is perpendicular to a plane, what may be said
of every plane passed through this line? Does a true prop-
osition result from changing the word * perpendicular” to
“ parallel ” in this statement ?
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POLYHEDRONS, CYLINDERS, AND CONES

500. Polyhedron. A solid bounded by planes is called a poly-
hedron.

For example, the figures on pages 317 and 318 are polyhedrons.

The bounding planes are called the faces of the polyhedron, the in-
tersections of the faces are called the edges of the polyhedron, and the
intersections of the edges are called the vertices of the polyhedron.

A line joining any two vertices not in the same face is called a
dtagonal of the polyhedron.

The plural of polyhedron is polyhedrons or polyhedra.

501. Section of a Polyhedron. If a plane passes through a

polyhedron, the intersection of the plane with such faces as it
cuts is called a section of the polyhedron.

502. Convex Polyhedron. If every section of a polyhedron
is a convex polygon, the polyhedron is said to be convez.
Only convex polyhedrons are considered in this work.

503. Prism. A polyhedron of which two faces are congruent
polygons in parallel planes, the other faces
being parallelograms, is called a prism.

The parallel polygons are called the bases of the
prism, the parallelograms are called the lateral
Jfaces, and the intersections of the lateral faces
are called the lateral edges.

The sum of the areas of the lateral faces is
called the lateral area of the prism.

The lateral edges of a prism are equal (§ 125).

504. Altitude of a Prism. The perpendicular distance be-
tween the planes of the bases of a prism is called its altitude.
317
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505. Right Prism. A prism whose lateral edges are per-

pendicular to its bases is called a right
prism.

The lateral edges of a right prism are equal to
the altitude (§ 4565).

506. Oblique Prism. A prism whose lat-
eral edges are oblique to its bases is called
an obligue prism.

507. Prisms classified as to Bases. Prisms
are said to be ¢riangular, quadrangular,
and so on, according as their bases are
triangles, quadrilaterals, and so on.

508. Right Section. A section of a prism :

made by a plane cutting all the lateral edges
and perpendicular to them is called a right
section.

Oblique Triangular Prism

In the case of oblique prisms it is sometimes necessary to produce
some of the edges in order that the cutting plane may intersect them.

Right Section of a Prism Truncated Prism

509. Truncated Prism. The part of a prism included between

the base and a section made by a plane oblique

called a truncated prism.

to the base is
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ProrosiTioON I. THEOREM

510. T'he sections of a prism made by parallel planes
cutting all the lateral edges are congruent polygons.

Given the prism PR and the parallel sections AD, A'D' cutting
all the lateral edges.

To prove that AD s congruent to A'D'.
Proof. ABisllto A'B', BC is Il to B'C', CD is Il to C'D/,

and so on for all the corresponding sides. § 453
.. AB=A'B', BC =B'C', CD = C'D/,
and so on for all the corresponding sides, §127
and Z CBA=/C'B'A", ZDCB=/D'C'B,
and so on for all the corresponding angles. § 461
.. AD is congruent to 4'D', by § 142. Q.E.D.

Discussion. Is the proof the same whether or not the two parallel
planes are parallel to the bases ?

If the sections are all parallel to the bases, are they also congruent to
the bases ?

Would the proposition be true if the prism were concave instead of
convex ?

Suppose the bases were squares, what would be known as to the form
of the sections ?

511. Cororrary. FEvery section of a prism made by «
plane parallel to the base is congruent to the base; and all
right sections of a prism are congruent.

?
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ProrositioNn I1I. THEOREM

512. The lateral area of a prism is equal to the
product of a lateral edge by the perimeter of a right
section.

Given VWXYZ a right section of the prism AD', I the lateral
area, e a lateral edge, and p the perimeter of the right section.

To prove that 1= ep.
Proof. AA'=BB'=CC'=DD'=EE'=e. § 503
Furthermore, VW is L to BB, WX to CC', XY to DD', YZ
to EE',and ZV to AA". ' § 508
. the area of [T AB'=BB'X VW =¢ X VW; § 322

the area of [T BC'=CC'X WX =¢ X WX,
the area of [7CD'=DD'X XY =e¢ X X7, and so .on.

But [ is equal to the sum of these parallelograms. § 503

S l=e(VWAH+WXHXY+YZ+ZV). Ax.1
But VWAHWX+XY+YZ+ZV=p. . Ax. 11
' . l=ep, by Ax. 9. Q.E.D.

513. Cororrary. The lateral area of a right prism is
equal to the product of the altitude by the perimeter of the base.

For how would p then compare with AB + BC + D 4+ DE 4+ EA?
The truth of the corollary is easily seen by imagining the right prism
laid on one of its lateral faces, and the surface as it were unrolled.
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EXERCISE 84

Find the lateral areas of the right prisms whose altitudes
and perimeters of bases are as follows :
1. a=18in,p=29in. 4. ae=1ft Tin, p =21t 9 in.
2.¢=22in,p=37in. 5.e¢=31t 8in.,,p=>51ft. Tin.
3. a=4.25in,p=6.75in. 6. ¢ =12 ft. 2in., p = 27 t. 9 in.

Find the lateral areas of the prisms whose lateral edges and
perimeters of right sections are as follows :

7. e=1T1in, p=271in. 10.e=1 ft. 3 in.,, p=2 ft. 3in.
8. 6;23 in,p=36in. 1l.e=2ft. 7in, p=3 . 9 in.
9. ¢e=23in,p=4%in. 12, e=61ft.11in.,p=8ft. 9} in.

Find the lateral edges of the prisms whose lateral areas and
perimeters of right sections are as follows:

13. =187 sq. in,, p =11 in.

14. =357 sq. in., p =21 in.

15. =169 sq. in., p =1 ft. 1 in.

16. The lateral surface of an iron bar 5 ft. long is to be
gilded. The right section is a square whose area is 2.89 sq. in.
How many square inches of gilding are required ?

17. A right prism of glass is 2} in. long. Its right section
is an equilateral triangle whose altitude is 0.866 in. (} V3 in.):
Find the lateral surface. ' S

18. Find the total area of a right prism whose base is a square
with area 5.29 sq. in., and whose length is twice its thickness.

19. What is the total area of.a right prism whose altitude
is 32 in., and whose base is a right triangle with hypotenuse
106 in. and with one side 84.8 in.?

1 20. Every section of a prism made by a plane parallel to the
lateral edges is a parallelogram.
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514. Parallelepiped. A prism whose bases are parallelograms
is called a parallelepiped.
The word is also, with less authority, spelled parallelopiped.

515. Right Parallelepiped. A parallelepiped whose edges are.
perpendicular to the bases is called a right parallelepiped.

516. Rectangular Parallelepiped. A right parallelepiped whose
bases are rectangles is called a rectangular parallelepiped.

By §§ 480 and 453 the four lateral faces are also rectangles.

Rectangular Parallelepiped Cube Oblique Parallelepiped

517. Cube. A parallelepiped whose six faces are all squares
is called a cube.

We might also say that a hexahedron whose six faces are all squares
is a cube, because such a figure would necessarily be a parallelepiped.

518. Unit of Volume. In measuring volumes, a cube whose
edges are all equal to the unit of length is taken as the wunit
of volume. _

Thus, if we are measuring the contents of a box of which the dimen-
sions are given in feet, we take 1 cubic foot as the unit of volume. If the
dimensions are given in inches, we take 1 cubic inch as the unit.

519. Volume. The number of units of volume contained by
a solid is called its wolume.

520. Equivalent Solids. If two solids have equal volumes,
they are said to be equivalent.

521. Congruent Solids. If two geometric solids are equal in
all their parts, and their parts are similarly arranged, the solids
are said to be congruent.
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ProrositioNn III. THEOREM

522. Two prisms are congruent if the three faces which
include a trikedral angle of the one are respectively con-
gruent to three faces which include a trikedral angle of
the other, and are similarly placed.

Given the prisms AI and A'I', with the faces AD, AG, AJ re-
spectively congruent to A'D', A'G', A'J', and similarly placed.

To prove that AI is congruent to A'I'.

Proof. The face £ BAE, BAF, EAF are equal to the face
£ B'A'E', BA'F', E'A'F' respectively. § 142
Therefore the trihedral angles 4 and A' are equal. § 498
Apply the trihedral angle 4 to its equal 4.
" Then the face AD coincides with 4'D', 4G with A4'G', and
AJ with 4'J'; and C falls at €', and D at D".

The lateral edges of the prisms are parallel. § 446
Therefore CH falls along C'H', and DI along D'I'. § 94
Since the points F, G, and J coincide with F', ¢/, and J',
each to each, the planes of the upper bases coincide. § 427

Hence H coincides with H', and I with 7',
Hence the prisms coincide and are congruent, by § 521. Q.E.D.

523. Cororrary 1. Two truncated prisms are congruent
under the conditions given in Proposition III.

524. CororLrary 2. Two right prisms having congruent
bases and equal altitudes are congruent.

e o an e .

e e e e
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ProrositioN IV. THEOREM,

525. An oblique prism is equivalent to a right prism
whose base is equal to a right section of the oblique
prism, and whose altitude is equal to a lateral edge of
the oblique prism.

Given a right section FI of the oblique prism AD', and FI' a
right prism whose lateral edges are equal to the lateral edges of AD'.

To prove that AD' is equivalent to FI'.

Proof. If from the equal lateral edges of AD'and FI' we -
take the lateral edges of FD', which are common to both, the
remainders AF and A'F', BG and B'G’, etc., are equal. Ax.2

The bases FI and F'I' are congruent. § 510
Place A on A'I' so that FI shall coincide with F'I'.
Then FA, GB, ete., coincide with F'4', G'B', ete. § 436

Hence the faces G4 and G'A’, HD and H'B', coincide.
But the faces FI and F'I' coincide.
.*. the truncated prisms AI and 4'I' are congruent. § 523

. Al + FD'= A'T' + FD'. Ax.1
But AI+ FD'= AD), '
and A'I'++ FD' = FI". Ax. 11

Therefore =~ AD'is equivalent to FI', by Ax. 9. Q.E.D.
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ProrositioNn V. THEOREM

526. The opposite faces of a parallelepiped are con-
gruent and parallel.

Given a parallelepiped ABCD-A'B'C'D'.

To prove that the opposite faces AB' and DC' are con-
gruent and parallel.

Proof. ABis |l to DC, i §118
and, AB=DC. §125
Likewise AA'is |l and equal to DD'.
./ BAA'=/ZCDD'. § 461
.. AB'is Il to DC". § 461
.. AB' is congruent to DC', by § 132. Q.E.D.
EXERCISE 85

1. If in the above figure the three plane angles at A are
80° 70° 75° what are all the other angles in the faces ?

2. Given a parallelepiped with the three plane angles at
one of the vertices 85°% 75° 60° to find all the other angles
in the faces. )

3. Given a rectangular parallelepiped lettered as in the fig-

" ure above, and with 4B =4, BC =3, and C'C' = 33, to find the
length of the diagonal 4C'.

4. The four diagonals of a rectangular parallelepiped are
equal.

5. Compute the lengths of the diagonals of a rectangular
parallelepiped whose edges from any vertex are a, b, c.
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ProrositioNn VI. THEOREM

521. The plane passed through two diagonally oppo-
site edges of a parallelepiped divides the parallelepiped
imto two equivalent m'cmgular prisms.

gk}

Given the plane ACC'A' passed through the opposite edges AA'
and CC' of the parallelepiped AC'.

To prove that the parallelepiped AC' is divided into two
equivalent triangular prisms ABC-B' and ACD-D'.

Proof. Let WXYZ be a right section of the parallelepiped.

The opposite faces 4B'and DC' are parallel and equal. § 526
Similarly, the faces AD' and BC' are parallel and equal.

. WX is l to ZY, and WZ to XY. § 453

Therefore WXYZ is a parallelogram. ‘ §118

The plane ACC'A' cuts this parallelogram WXYZ in the
diagonal WY. § 429
. AWXY is congruent to AYZW. § 126

How shall it be proved that prism 4ABC-B' is equivalent to
a right prism with base WXY and altitude 44'?

How shall it be proved that prism CDA-D'is equivalent to
a right prism with base YZ W and altitude 44'?

How are these two right prisms known to be equivalent ?

How does this prove the proposition ?

Discussion. What is the corresponding proposition of plane geometry ?
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EXERCISE 86
1. The lateral faces of a right prism are rectangles.
2. The diagonals of a parallelepiped bisect one another.

3. The three edges of the trihedral angle at one of the ver-
tices of a rectangular parallelepiped are 5 in., 6 in,, and 7 in.
respectively. Required the total area of the six faces of the
parallelepiped.

4. The three face angles at one vertex of a parallelepiped
are each 60° and the three edges of the trihedral angle with
that vertex are 3 in., 2 in., 1 in. respectively. Required the
total area of the six faces. Answer to two decimal places.

5. In a rectangular parallelepiped the square on any diag-
onal is equivalent to the sum of the squares on any three edges
that meet at one of the vertices.

Y

6. In a box 3'in. deep and 6 in. wide a wire 1 ft. long can
be stretched to reach from one corner to the diagonally oppo-
site corner. Required the length of the box. Answer to two
decimal places.

7. The diagonal of the base of a rectangular parallelepiped
is 313 in. and the height of the parallelepiped is 23.7 in.
Required the length of the diagonal of the parallelepiped.

8. The total area of the six faces of a cube is 18 sq. in.
Find the diagonal of the cube.

9. The diagonal of the face of a cube equals V14. Find
the diagonal of the cube.

10. The diagonal of a cube equé,ls 2.75+/3. Find the diagonal
of a face of the cube.

11. A water tank is 3 ft. long, 2 ft. 6 in. wide, and 1 ft. 9 in.
deep. How many square feet of zinc will be required to line
the four sides and the base, allowing 1% sq. ft. for overlapping
and for turning the top edge ?
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ProrositioNn VII. THEOREM

528. Two rectangular parallelepipeds having con-
gruent bases are to each other as their altitudes.

Given two rectangular parallelepipeds P and P', with congruent
bases and with altitudes AB and A'B'.

To prove that . P:P'=AB:A'B.

Case 1. When AB and A'B' are commensurable.

Proof. Suppose a common measure of 4B and A'B' to be
contained m times in AB, and » times in A'B'.

Then AB:A'B'=m:n.

Apply this measure to AB and 4'B',and through the several
points of division pass planes perpendicular to these lines.
These planes divide the parallelepiped P into m parallele-
pipeds and the parallelepiped P' into n parallelepipeds, con-
gruent each to each. . § 524
SoPiP=m:n.
. P:P'=A4B: A'B', by Ax. 8.  Q.E.D.
The proof for the incommensurable case is similar to that in other
propositions of this nature. It may be omitted at the discretion of the

teacher without destroying the sequence, if the incommensurable cases
are not being considered by the class.
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CasE 2. When AB and A'B' are incommensurable.

O

i

S— i
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Proof. Divide 4B into any number of equal parts,and apply
one of these parts to A'B' as a unit of measure as many times
as A'B' will contain it.

Since 4B and A'B' are incommensurable, a certain number
of these parts will extend from A4’ to a point D, leaving a
remainder DB’ less than one of the parts.

Through D pass a plane L to A'B', and let Q denote the
parallelepiped whose base is the same as that of P', and whose
altitude is 4'D.

Then Q:P=A'D: AB. Case 1

If the number of parts into which 4B is divided is indefi-
nitely increased, the ratio Q:P approaches P': P as a limit,
and the ratio A'D: A B approaches 4'B': AB as a limit.  § 204

The remainder of the proof of the incommensurable case
is substantially as in the proof given on page 297, and it is
therefore left for the student.

il

529. Dimensions. The lengths of the three edges of a rec-
tangular parallelepiped which meet at a common vertex are
called its dimensions.

530. CororLarY. Two rectangular parallelepipeds which
have two dimensions in common are to each other as their third
dimensions. '
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ProrositioNn VIII. THEOREM

531. Two rectangular parallelepipeds‘ having equal
altitudes are to each other as their bases.

Given two rectangular parallelepipeds, P and P', and a, b, c, and
a, b, c, their three dimensions respectively.

P ab
To prove that =
Proof. Let Q be a third rectangular parallelepiped whose
dimensions are a', b, and c.
Now Q has the two dimensions 4 and ¢ in common with P,
and the two dimensions ' and ¢ in common with P',

Therefore

)

&=

Nl oy
|

and § 530

The products of the corresponding members of these two

equations give P ab

p = ;’b—” by Ax. 3. Q.E.D.

532. CororLary. Two rectangular parallelepipeds which

have one dimension in common are to each other as the
products of their other two dimensions.

For any edge of a rectangular parallelepiped may be taken as the
altitude, whence § 531 applies.
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ProposiTioN I1X. THEOREM

533. Two rectangular parallelepipeds are to each other
as the products of their three dimensions.

Given two rectangular parallelepipeds, P and P', and a, b, ¢, and
a, v, c, their three dimensions respectively.
P abe
P b

Proof. Let Q@ be a third rectangular parallelepiped whose
dimensions are a, b', and c.

To prove that

Then g = %7 §530

and 1% - «%’ : § 532
P abe

5= 2o by Ax. 3. Q.E.D.

534. Cororrary 1. The volume of a rectangular parallele-
piped is equal to the product of its three dimensions.

For in the above case, if a’=b=¢’=1, then P’=1x1x1=1 (§ 518).
But the volume of P (§ 519) is P: P/, and P: P’= abc:1 (§ 633). There-
fore the volume of P is abc.

535. CoroLLARY 2. The volume of a rectangular parallele-
piped is equal to the product of its base and altitude.

For the volume of P is abc, and ab equals the base and c¢ the altitude.
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ProrosiTioN X. THEOREM

536. The volume of any parallelepiped is equal to the
product of its base by its altitude.

Given an oblique parallelepiped P of volume v, with no two of
its faces perpendicular, with base b and with altitude a.

To prove that v = ba.

Proof. Produce the edge EF and the edges Il to EF, and cut
them perpendicularly by two parallel planes whose distance
apart GI is equal to EF. We then have the oblique parallele-
piped @ whose base ¢ is a rectangle.

Produce the edge IK and the edges Il to IK, and cut them
perpendicularly by two planes whose distance apart MN is
equal to IK. We then have the rectangular parallelepiped R.

Now P=Q,and Q=R. § 525
.. P=R. Ax. 8

The three parallelepipeds have a common altitude a.  § 455
Also b=c, § 323
and c=d. § 133
' cb=d. Ax.8

But the volume of R = da. § 535

Putting P for R, and b for d, we have v = ba, by Ax. 9. Q.E.D.

537. Cororrary. T'he volume of any parallelepiped is equal
to that of a rectangular parallelepiped of equivalent base and
equal altitude.
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EXERCISE 87

1. Find the ratio of two rectangular parallelepipeds, if their
dimensions are 3, 4, 5, and 9, 8, 10 respectively.

2. Find the ratio of two rectangular parallelepipeds, if their
altitudes are each 6 in., and their bases 5 in. by 4 in., and 10 in.
by 8 in. respectively.

3. Find the volume of a rectangular parallelepiped 2 ft.
6 in. long, 1 ft. 8 in. wide, and 1 ft. 6 in. high.

4. Find the volume of a 1'ectangulai' parallelepiped whose
base is 27 sq. in. and whose altitude is 13} in.

5. The volume of a rectangular parallelepiped is 1152
cu. in. and the area of the base is half a square foot. Find
the altitude.

6. The volume of a rectangular parallelepiped with a square
base is 273.8 cu. in. and the altitude is 5 in. Find the dimen-
sions.

7. A rectangular tank full of water is 7 ft. 3 in. long by
4 ft. 6 in. wide. How many cubic feet of water must be drawn
off in order that the surface may be lowered a foot ?

8. Tind to two decimal places the length of each side of a
cubic reservoir that will contain exactly a gallon (231 cu. in.).

9. A box has as its internal dimensions 18 in., 9% in., and"

41 in. The box and cover are made of steel } in. thick. If steel

weighs 490 1b. per cubic foot, what is the weight of the box ?

10. A steel rod 4 ft. 8 in. long is 2 in. wide and 1} in. thick.
How much does it weigh, at 490 1b. per cubic foot ?

11. If 3 cu. in. of gold beaten into gold leaf will cover
75,000 sq. in. of surface, find the thickness of the leaf.

12. The sum of the squares on the four diagonals of a par-
allelepiped is equivalent to the sum of the squares on the
twelve edges.
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ProrosiTioN XI. THEOREM

538. The volume of a triangular prism is equal to the

product of its base by its altitude.

Given the triangular prism ABC-B', with volume v, base b, and

altitude a.

To prove that v = ba.

Proof. Upon the edges 4B, BC, BB' construct the parallele-

piped 4BCD-B'.

Then ABC-B'= % ABCD-B'.
The volume of ABCD-B'= ABCD X a.
But ABCD=20.

c v =1%(2ba) =ba, by Ax. 9.

EXERCISE 88

§ 527
§ 536
§ 126
QE.D.

Find the volumes of the triangular prisms whose bases and

altitudes are as follows :

1. 17 sq. in,, 8 in. 6. 162 sq. in., 2 in.
2. 15.75 sq. ft., 3 ft. 7. 22} sq. in., 4} in.
3. 81 sq. ft., 1 ft. 8 in. 8. 33} sq. in., 7} in.
4. 5} sq. ft., 2 ft. 9 in. 9. 427 sq. in., 33 in.
5. 15.84 sq. ft., 3 ft. 10 in. 10. 273 sq. in., 33 in.

11. 12 sq. ft. 75 sq. in., 2 ft. 7 in.
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ProrositioNn XII. THEOREM

539. The volume of any prism is equal to the product
of its base by its altitude.

Given the prism AC' with volume v, base b, and altitude a.
To prove that v = ba.

Proof. It is possible to divide any prism in general into
what kind of simpler prisms ?

How is this done ?

What is the volume of each of these simpler prisms (§ 538) ?

What is the sum of the volumes of these simpler prisms ?

What is the sum of their bases ?

How does the common altitude of these simpler prisms
compare with a, the altitude of the given prism ?

What conclusion can be drawn from these statements ?

Write the proof in full.

540. CororrarY 1. Prisms having equivalent bases are to
each other as their altitudes; prisms having equal altitudes
are to each other as their bases.

Write the proof in full.

541. CoroLLARY 2. Prisms having equivalent bases and
equal altitudes are equivalent.
Write the proof in full.
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EXERCISE 89

1. If the length of a rectangular parallelepiped is 18 in., the
width 9 in., and the height 8 in., find the total area of the surface.

2. Find the volume of a triangular prism, if its height is
15 in. and the sides of the base are 6 in., 5 in., and 5 in.

3. Find the volume of a prism whose height is 15 ft., if
each side of the triangular base is 10 in.

4. The base of a right prism is a rhombus of which one
side is 20 in., and the shorter diagonal 24 in. The height of
the prism is 30 in. Tind the entire surface and the volume.

5. How many square feet of lead will be required to line an
open cistern which is 4 ft. 6 in. long, 2 ft. 8 in. wide, and con-
tains 42 cu. ft.?

6. An open cistern 6 ft. long and 4} ft. wide holds 108
cu. ft. of water. How many square feet of lead will it take
to line the sides and bottom ?

7. One edge of a cube is e. Find in terms of e the surface,
the volume, and the length of a diagonal of the cube.

8. The diagonal of one of the faces of a cube is d. Find in
terms of d the volume of the cube.

9. The three dimensions of a rectangular parallelepiped are
a, b, ¢. Find in terms of a, b, and ¢ the volume and the area of
the surface.

10. Find the volume of a prism with bases regular hexagons,
if the height is 10 ft. and each side of the hexagons is 10 in.

11. An open cistern is made of iron } in. thick. The inner
dimensions are: length, 4 ft. 6 in.; breadth, 3 ft.; depth, 2 ft.
6 in. What will the cistern weigh when empty ? when full of
water ? (A cubic foot of water weighs 624 1b. Iron is 7.2 times
as heavy as water; that is, the specific gravity of iron is 7.2.)
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542. Pyramid. A polyhedron of which one face, called the
base, is a polygon of any number of sides and the other faces
are triangles having a common
vertex is called a pyramid.

The triangular faces having a
common vertex are called the lateral
Sfaces, their intersections are called
the lateral edges, and their common
vertex is called the vertexr of the
pyramid. The base of a pyramid
may be any kind of a polygon, but
usually a convex polygon is taken.

543. Lateral Area. The sum of the areas of the lateral faces
of a pyramid is called the lateral area of the pyramid.

544. Altitude. The perpendicular distance from the vertex
to the plane of the base is called the altitude of the pyramid.

545. Pyramids classified as to Bases. Pyramids are said to
be triangular, quadrangulor, and so on, according as their
bases are triangles, quadrilaterals, and so on.

A triangular pyramid has four triangular faces and is called a tetra-
hedron. Any one of its faces may be taken as the base.

546. Regular Pyramid. If the base
of a pyramid is a regular polygon
whose center coincides with the foot
of the perpendicular let fall from the
vertex to the base, the pyramid is
called a regular pyramid.

A regular pyramid is also called a right :
pyramid. .

547. Slant Height of a Regular Pyramid. The altitude of
any one of the lateral faces of a regular pyramid, drawn
from the vertex of the pyramid, is called the slant height.

The slant height is the same whatever face is taken (§ 439). Only a
regular pyramid can have a slant height.
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A .
548. Properties of Regular Pyramids. Among the properties
of regular pyramids the following are too evident to require
further proof than that referred to below:

(1) The lateral edges of a regular pyramid are
equal (§ 439).

(2) The lateral faces of a regular pyramid are
congruent isosceles triangles (§ 80).

(3) The slant height of a regular pyramid is
the same for all the lateral faces (§ 439).

549. Frustum of a Pyramid. The portion of a pyramid in-
cluded between the base and a section parallel to the base is
called a jfrustum of
a pyramid.

The base of the pyra-
mid and the parallel
section are called the
bases of the frustum.

A more general term,
including frustum as a special case, is truncated pyramid, the portion of
a pyramid included between the base and any section made by a plane
that cuts all the lateral edges. This term is little used.

550. Altitude of a Frustum. The perpendicular distance
between the bases is called the altitude of the frustum.
E.g. €’C is the altitude of the frustum in the above figure.

551. Lateral Faces of a Frustum. The portions of the lateral
faces of a pyramid that lie between the bases of a frustum are
called the lateral faces of the frustum. _

In the case of a frustum of a regular pyramid the lateral faces ave
congruent isosceles trapezoids. The sum of the areas of the lateral faces
is called the lateral area of the frustum.

552. Slant Height of a Frustum. The altitude of one of the
trapezoid faces of a frustum of a regular pyramid is called the
slant height of the frustum.

Thus MM’ in the above figure is the slant height.
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ProrostTioN XIII. THEOREM

553. The lateral area of a reqular pyramid is equal
to half the product of its slant height by the perimeter
of its base. '

v

B c

Given the regular pyramid V-ABCDE, with [ the lateral area,
s the slant height, and p the perimeter of the base.

To prove that l=1sp.
Proof. The A VAB, VBC, VCD, VDE, and VEA are con-
gruent. ’ § 548
The area of each A = }s X its base. § 325

The sum of the bases of the triangles =p. Ax.11
.". the sum of the areas of these A =} sp. Ax.1
But the sum of the areas of these A =1. § 543
. l=1}sp, by Ax. 8. Q.E.D.

554. Cororrary. The lateral area
of the frustum of a regular pyramid .
18 equal to half the sum of the perim-
eters of the bases multiplied by the

slant height of the frustum.

How is the area of a trapezoid found (§ 329) ? Are these trapezoids
congruent ? What is the sum of their lower bases ? of their upper bases ?
‘What is the sum of their areas? Insert the formula.
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ProrosiTioNn XIV. THEOREM
555. If a pyramid is cut by a plane parallel to the
base :

1. The edges and altitude are divided proportionally.
2. The section is a polygon similar to the base.

Given the pyramid V-ABCDE cut by a plane parallel to its base,
intersecting the lateral edges in A', B, C', D', E', and the alti-
tude VO in O'. .

VA' VB 4%

1. To prove that TA=TE= = Vo

Proof. Since the plane 4'D' is Il to the plane 4D, Given
..A'B'is |l to AB, B'C'is Il to BC,...,and 4'0'is ll to 40. § 453
vA' VB Vo'

(0)
'—ﬁ_ﬁz"'_VO’by§274' Q.E.D.

2. o prove the section A'B'C'D'E' similar to the base ABCDE.

Proof. Since AVA'B' is similar to AVAB, AVB'C' similar
to AVBC, and so on (why ?), how can the corresponding sides
of the polygons be proved proportional ?

Since 4'B' is || to AB, B'C' to BC, ete. (why ?),
how can the corresponding angles be proved equal ?
Then why is 4'B'C'D'E' similar to ABCDE ?
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556. CororLrLARY 1. Any section of a pyramid parallel to
the base is to the base as the square of the distance from the
~wertex 18 to the square of the altitude of the pyramid.

For Vo _ VA’
Vo v4A
A’B
AB
Therefore g = g
vo* 4B’
But, from similar polygons, .
A'BCDE _A'B”?
ABCDE . Z§°
Hence, by substituting,
A'BCDE V0"
ABCDE 7o .

§ 555

§ 288

§ 270

§ 334

Ax. 8

557. Cororrary 2. If two pyramids have equal altitudes
and equivalent bases, sections made by planes parallel to the
bases, and at equal distances from the vertices, are equivalent.

‘What is the ratio of A’B’C’D’E’ to ABCDE ?
How can this be shown to equal VO?: V0" ?
What is the ratio of X’Y’Z’ to XYZ ?

How can this be shown to equal WP :WP*?
Are the tatios V02 : VO? and WP : WP equal ?
Since it is given that A BCDE = XYZ, what can be said of 4A’B'C’'D’E’

‘and X'Y’Z’?
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ProrosiTioN XV. THEOREM

558. Two triangular pyramids having equivalent
bases and equal altitudes are equivalent.

Given two triangular pyramids, V-ABC and V'-A'B'C', having
equivalent bases and equal altitudes.

To prove that V-ABC and V'-A'B'C' are equivalent.

Proof. Suppose the pyramids are not equivalent, and

V'-A'B'C' > V-ABC.

Place the bases in the same plane, and suppose the altitude
divided into n equal parts, calling each of these parts 7.

Through the points of division pass planes parallel to the
base, cutting the pyramids in DEF, GHI,- - -, D'E'F', G'H'I, - - -.

On A'B'C', D'E'F', G'H'I', and other parallel sections, if any,
construct prisms with lateral edges parallel to 4'V’, and with
altitude 2. In the figure these are represented by X', ¥',and Z'.

On DEF, GHI, and other parallel sections, if any, as upper
bases, construct the prisms ¥, Z, with lateral edges parallel to
VA, and with altitude .

Then since DEF=D'E'F/, § 557
and h=h, Iden.
‘. prism ¥ = prism ¥ § 541

Similarly prism Z = prism Z"
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But X'+Y' +Z'>V-4'B'C,

and - Y4+ Z<V-ABC. Ax. 11
S V-A'B'C'—V-ABCL X'+ Y'+ Z' — (Y+ Z),

or V'-A'B'C' —V-ABC < X'.

That is, the difference between the pyramids must be less
than the difference between the sets of prisms.

Now by increasing = indefinitely, and consequently de-
creasing % indefinitely, X' can be made less than any assigned
quantity. :

Hence whatever difference we suppose to exist between the
pyramids, X' can be made smaller than that supposed difference.

But this is absurd, since we have shown that X' is greater
than the difference, if any exists.

Hence it leads to a manifest absurdity to suppose that
V-A'B'C' > V-ABC.

In the same way it leads to an absurdity to suppose that
V-ABC > V'-A'B'C'.

.. V-ABC =V'-A'B'C". Q.E.D.

EXERCISE 90

1. The slant heéight of a regular pyramid is 6 in., and the
base is an equilateral triangle of altitude 2 V3 in. Find the
lateral area of the pyramid.

2. The slant height of a regular triangular pyramid equals
the altitude of the base. The area of the base is V3 sq. ft.
Find the total area of the pyramid.

* 3. A pyramid has for its base a right triangle with hy-
potenuse 5 and shortest side 3. Another one of equal altitude

has for its base an equilateral triangle with side 2V2+V3.
Prove the pyramids equivalent.
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ProprositioNn XVI. THEOREM

559. The volume of a triangular pyramid is equal to
one third the product of its base by its altitude.

Given the t}iangular pyramid E-ABC, with volume v, base b,
and altitude a.

To prove that v=1ba

Proof. On the base ABC construct a prism 4 BC-DEF.
Through DE and EC pass a plane CDE.
Then the prism is composed of three triangular pyramids
E-ABC, E-CFD, and E-ACD.
Now the pyramids E-CFDand E-A CD have the same altitude
‘ and equal bases CFD and ACD. §126 .
.. E-CFD=E-ACD. § 558
But pyramid E-CFD is the same as pyramid C-DEF,
which has the same altitude as pyramid E-4BC,

and has base DEF equal to base 4BC. § 511
.. E-CFD = E-ABC. § 558
. E-ABC = E-CFD = IE-ACD. Ax. 8

.*. pyramid E-ABC =} prism ABC-DEF.
But the volume of ABC-DEF = ba. § 539
v =140ba, by Ax. 4. Q.E.D.

560. CororLrARY. The volume of a triangular pyramid is’
equal to one third the volume of a triangular prism of the
same base and altitude.
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ProrosiTioNn XVII. THEOREM

561. The volume of any pyramid is equal to one third
the product of its base by its altitude.

Given the pyramid V-ABCDE, with volume v, base b, and alti-
tude a.

To prove that v =} ba.

Proof. Through the edge VD and the diagonals of the base,
DA, DB, pass planes. '

These planes divide the pyramid V-4ABCDE into three tri-
angular -pyramids.

‘What can be said as to the altitudes of the original pyramid
and of the triangular pyramids ?

What can be said as to the base of the original pyramid in
relation to the bases of the triangular pyramids ?

What is the volume of each triangular pyramid ?

What is the sum of the volumes of the trla.ngular pyramids ?

Complete the proof.

562. Cororrary. The volumes of two pyramids are to each
other as the products of their bases and altitudes ; pyramids
having equivalent bases are to each other as their altitudes ;
pyramids hoving equal altitudes are to each other as thewr
bases ; pyramids having equivalent bases and equal altitudes
are equivalent,
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EXERCISE 91

Find the lateral areas of regular pyramids, given the slant
heights and the perimeters of the bases, as follows :
1. s=34in,p=57in. 3. s=2ft. Tin,,p=41ft. 6 in.
2. s=282in,p=17} in. 4. s=1271t. 5in,,p=63t.21n.

Find the lateral areas of frustums of regular pyramids,
given the slant heights of the frustums and the pemmeters of
the bases, as follows :

5. s=4 in.,, p=_8in., p'=6in.
6. s =5} in.,, p=9% in,, p' =73 in,
7. s=2ft. 31in, p=4 ft. 8 in,, p'= 3 ft. 9 in.

Find the volumes of pyramids, given the altitudes and the
areas of the bases, as follows :
8. a=T7in,b=9sq.in. 11. ¢ =38} in,, b =5} sq. in.
9. a=61in,56=23sq.in. 12. ¢ =43 in., b =19 sq. in.
10. =17 in., b=>51sq.in. 13. a=27.5 ft., b = 325 sq. ft.

Find the lateral areas of regular pyramids, gz'veﬂ the slant
heights, the number of sides of the bases, and the length of
each side, as follows :

14. s=23in, n=4, =21 in.

15. s=3.7 in, n =6, = 2.9 in.

16. s=5.33in.,,n=28,7=3 in.

Find the volumes of pyramids, given the altitudes and .a
description of the bases, as follows :

17. @ =7 in., the base a square with side 2 in.
18. o = 62 in., the base a square with diagonal 3\_/5 in.
19. a = 8.9 in., the base a triangle with each side 3.7 in.
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20. Find the lateral area of a regular pyramid, if the slant
height is 16 ft. and the base is a hexagon with side 12 ft.

21. Find the lateral area of a regular pyramid, if the slant
height is 8 ft. and the base is a pentagon with side 5 ft.

22. Find the total surface of a regular pyramid, if the slant
height is 6 ft. and the base is a square with side 4 ft.

23. Find the total surface of a regular pyramid, if the slant

height is 18 ft. and the base is a square with side 8 ft.

24. Find the total surface of a regular pyramid, if the slant
height is 16 ft. and the base is a triangle with side 8 ft.

25. The volume of a pyramid is 26 cu. ft. 936 cu. in. and
each side of its square base is 3 ft. 6 in. Find the height.

26. The volume of a pyramid is 20 cu. ft. and the sides of
its triangular base are 5 ft., 4 ft., and 3 ft. respectively. Find
the height.

27. Find the volume of a regular pyramid with a square
base whose side is 40 ft., the lateral edge being 101 ft.

28. Find the volume of a regular pyramid whose slant height
is 12 ft. and whose base is an equilateral triangle inscribed in
a-circle of radius 10 ft.

29. Having given the base edge a and the total surface ¢ of
a regular pyramid with a square base, find the height Z.

30. Having given the base edge @ and the total surface ¢ of
4 regular pyramid with a square base, find the volume w.

31. The eight edges of a regular pyramid with a square base
are equal and the total surface is ¢£. Find the edge.

32. Find the base edge a of a regular pyramid with a square
base, having given the height % and the total surface ¢

33. Show how to find the volume of any polyhedron by
dividing the polyhedron into pyramids.
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Prorosirion XVIII. THEOREM

563. The frustum of a triangular pyramid is equiva-
lent to the sum of three pyramids whose common altitude
18 the altitude of the frustum and whose bases are the
lower base, the upper base, and the mean proportional
between the two bases of the frustum.

Given the frustum of a triangular pyramid, ABC-DEF, having
ABC, or b, for its lower base ; DEF, or b, for its upper base; and
the altitude a. ‘ ' :

To prove that ABC-DEF=}ab+ L ab + % a Vol

Proof. Through 4, E,and C,and also through €, D, and E,
pass planes dividing the frustum into three pyramids.

Then E-ABC =} ab,
and C-DEF =1} ab'. § 559

It therefore remains only to prove that E-ACD =} aVbb'.

We see by the figure that we may speak of E-ABC as C-4ABE,
. and of E-ACD as C-AED.

But C-ABE : C-AED= A ABE : A AED. § 562

Since A ABE and AED have for a common altitude the
altitude of the trapezoid ABED,

CoAABE: A AED=AB: DE. § 327

.. C-ABE : C-AED = AB: DE, Ax. 8

or E-ABC : E-ACD=AB: DE. Ax. 9
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In like manner E-ACD and E-CFD have a common vertex
E and have their bases in the same plane, A CFD, so that

E-ACD: E-CFD=AACD:A CFD. § 562

Since A ACD and CFD have for a common altitude the alti-
tude of the trapezoid 4 CFD,

SAACD: ACFD=AC : DF. § 327

. E-ACD: E-CFD=AC : DF. Ax.8

But A DEF is similar to A ABC. § 555
.. AB:DE =AC : DF. § 282

c.E-ABC : E-ACD = AC : DF. Ax. 8

. E-ABC : E-ACD=E-ACD : E-CFD. Ax. 8

But E-CFD is the same as C-DEF, which has been shown to
equal 1 ad'. .
s.}ab:E-ACD=E-ACD: } ab. Ax.9

o E-ACD=V}abX}ab § 262
=}a Vo'

.. E-ABC + C-DEF +E-ACD =% ab + 4 ab'+ aVib'. Ax.1
That is, ABC-DEF =} ab+ Y ad' + L a Voo, by Ax. 9. Q.E.D.
564. CororLrary 1. The volume of a frustum of a tri-

angular pyramid may be expressed as %a (6 + b + \/W)

For we may factor by % a.

565. CoroLtARY 2. The wolume of a frustum of any
pyramid is equal to the sum of the volumes of three pyramids
whose common altitude is the altitude of the frustum, and
whose bases are the lower base, the upper base, and the mean
proportional between the bases of the frustum. ’

Extend the faces of the frustum F, forming a pyramid P. From a
triangular pyramid P’ of equivalent base b and equal altitude, cut off
a frustum F of the same altitude ¢ as F. Then P= P’ and F= F".
But F and F” have equivalent bases, and F’ =}a(b + b’ + Vo ). Hence
F=3a(b+4b +Vbv).
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566. Polyhedrons classified as to Faces. A polyhedron of
four faces is called a tetrahedron ; one of six faces, a hexalke-
dron ; one of eight faces, an octahedron ; one of twelve faces,
a dodecahedron ; one of twenty faces, an icosahedron.

Tetrahedron Hexahedron Octahedron Dodecahedron Icosahedron

567. Regular Polyhedron. A polyhedron whose faces are con-
gruent regular polygons, and whose polyhedral angles are equal,
is called a regular polyhedron.

It is proved on page 351 that it is possiblé to have only five regular
polyhedrons. They may be constructed from paper as follows:

/\

- Draw on stiff paper the diagrams given above. Cut through the full
lines and paste strips of paper on the edges as shown. Fold on the dotted
lines, and keep the edges in contact by the pasted strips of paper.
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ProrosiTioN XIX. PROBLEM

568. 7o determine the number of regqular convex poly-
hedrons possible.

A convex polyhedral angle must have at least three faces,
and the sum of its face angles must be less than 360° (§ 495).

1. Since each angle of an equilateral triangle is 60° convex
polyhedral angles may be formed by combining three, four, or
five equilateral triangles. The sum of six such angles is 360°,
and therefore is greater than the sum of the face angles of a
convex polyhedral angle. Hence three regular convex polyhe-
drons are possible with equilateral triangles for faces.

2. Since each angle of a square is 90° a convex polyhedral
angle may be formed by combining three squares. The sum of
four such angles is 360°, and therefore is greater than the sum
of the face angles of a convex polyhedral angle. Hence one
regular convex polyhedron is possible with squares.

~ 3. Since each angle of a regular pentagon is 108° (§ 145), a
convex polyhedral angle may be formed by combining three
regular pentagons. The sum of four such angles is 432° and
therefore is greater than the sum of the face angles of a convex
polyhedral angle. Hence one regular convex polyhedron is
possible with regular pentagons.

4. The sum of three angles of a regular hexagon is 360°, of®
a regular heptagon is greater than 360° and so on.

Hence only five regular convex polyhedrons are possible.

The regular polyhedrons are the regular tetrakedron, the
regular hexahedron, or cube, the regular octakedron, the regular
dodecahedron, and the regular icosahedron. Q.E.F.

It adds greatly to a clear understanding of the five regular poly-
‘hedrons if they are constructed from paper as suggested in § 567.

Since these solids were extensively studied by the pupils of Plato, the
great Greek philosopher, they are often called the Platonic Bodies.
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EXERCISE 92
Find the volumes of frustums of pyramids, the altitudes and
the bases of the frustums being given, as follows :
1. a=3in, b=_8sq. in,, ' =2 sq. in.
. a=4} in,, 6 =8} sq. in., ' =3 sq. in.

. a=2 ft. 6 in., 5 =10 sq. ft., o' =2 sq. ft. 72 sq. in.
. a=3 ft. Tin, b =24 sq. ft. 72 sq. in., o' = 2 sq. ft.
6. A pyramid 2 in. high, with a base whose area is 8 sq. in.,
is cut by a plane parallel to the base 1 in. from the vertex.
Find the volume of the frustum.

2
3. a=3.2in., =2 sq. in., 8'=0.18 sq. in.
4
5

7. A pyramid 3 in. high, with a base whose area is 81 sq. in.,
is cut by a plane parallel to the base 2 in. from the base. Find
the volume of the frustum.

8. The lower base of a frustum of a pyramid is a square
4 in. on a side. The side of the upper base is half that of the -
lower base, and the altitude of the frustum is the same as the
side of the upper base. Find the volume of the frustum.
9. The lower base of a frustum of a pyramid is a square
3 in. on a side. The area of the upper base is half that of the
lower base, and the altitude of the frustum is 2 in. Find to
two decimal places the volume of the frustum.
10. A pyramid has six edges, each 1 in. long. Find to two
decimal places the volume of the pyramid.
11. A regular tetrahedron has a volume 2 V2 cu. in. Find to
two decimal places the length of an edge.
12. The base of a regular pyramid is a square 7 ft. on a side.
The slant height is s ft. Find the area of the entire surface.
13. Consider the formula v=13}a (Z) 40+ \/b?’), of § 564,
when &' = 0. Discuss the meaning of the result. Also discuss
the case in which b =10
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569. Cylindric Surface. A surface generated by a straight
line which is constantly parallel to a fixed straight line, and
touches a fixed curve not in
the plane of the straight line,
is called a cylindric surface, or
a cylindrical surface.

The moving line is called the
generatricz and the fixed curve the
directriz. In the figure ABC is
the directrix.

570. Element. The generatrix
in any position is called an ele-
ment of the cylindric surface.

571. Cylinder. A solid bounded by a cylindric surface and
two parallel plane surfaces is called a cylinder.

It follows, therefore, that all the elements of a cylinder are equal.

The terms bases, lateral surface, and altitude are used as with prisms.

572. Right and Oblique Cylinders.. A cylinder whose elements
are perpendicular to its bases is called a right cylinder; other-
wise a cylinder is called an obligue cylinder.

573. Section of a Cylinder. A figure formed by the intersec-
tion of a plane and a cylinder is called a section of the cylinder.
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ProrosiTioN XX. THEOREM

574. Every section of a cylinder made by a plane
passing through an element is a parallelogram.

Given a cylinder AC, and a section ABCD made by a plane pass-
ing through the element AB.

To prove that ABCD 1is a parallelogram.

Proof. Through D draw a line in the plane ABCD | to 4 B.
This line is an element of the cylindric surface. § 570
Since this line is in both the plane and the cylindric surface,
it must be their intersection and must coincide with DC.
Hence DC coincides with a straight line parallel to 4B.

Therefore DC is a straight line Il to 4B.
Also AD is a straight line Il to BC. § 453
.'« ABCD is a parallelogram, by § 118. Q.E.D.

575. CororrarY. Fvery section of a right cylinder made
by a plane passing through an. element is a rectangle.

576. Circular Cylinder. A cylinder whose bases are circles is
called a circular cylinder.

A right circular cylinder, being generated by the revolution of a rec-
tangle about one side as an axis, is also called a cylinder of revolution.
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ProrositioN XXI. THEOREM

577. The bases of a cylinder are congruent.

Given the cylinder AC, with bases ABE and DCG.
To prove that ~ ABE is congruent to DCG.

Proof. Let 4, B, E be any three points in the perimeter of
the lower base, and AD, BC, EG be elements of the surface.
Draw 4B, AE, EB, DC, DG, GC.

Then 4D, BC, EG are equal, § 571
and parallel. § 569

. AB=DC, AE = DG, EB= GC. § 130
.*. A ABE is congruent to A DCG. § 80

Place the lower base on the upper base so that the A ABE
shall fall on the ADCG. Then 4, B, E will fall on D, C, G.
Therefore all points in either perimeter will coincide with
points in the other, and the bases are congruent, by § 66. q.E.p.

578. CororrArY 1. Any two parallel sections of a cylinder,
cutting all the elements, are congruent.

579. Cororrary 2. Any section of a cylinder parallel to
the base ts congruent to the base.

580. CororrarY 3. The straight line joining the centers of
the bases of a circular cylinder passes through the centers of
all sections of the cylinder parallel to the bases.
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581. Tangent Plane. A plane which contains an element of
a cylinder, but does not cut the surface, is called a tangent plane
to the cylinder.

582. Construction of Tangent Planes. From a consideration
of the nature of a tangent plane and of the construction of a
cylindric surface it is evident that:

A plane passing through a tangent to the base of a circular
cylinder and the element drown through the point of contact is
tangent to the cylinder.

If a plane is tangent to a circular cylinder, its intersection
with the plane of the base is tangent to the base.

583. Inscribed Prism. A prism whose lateral edges are ele-
ments of a cylinder and whose bases are inscribed in the bases
of the eylinder is called an inscrided prism.

In this case the cylinder is said to be circumscribed about the prism.

Inscribed Prism . Circumsecribed Prism

584. Circumscribed Prism. A prism whose lateral faces are
tangent to the lateral surface of a cylinder and whose bases
are circumsecribed about the bases of the cylinder is called a
circumscribed prism.

I this case the cylinder is said to be inscribed in the prism.
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585. Right Section. A section of a cylinder made by a plane
that cuts all the elements and is perpendicular to them is called
a right section of the cylinder.

586. Cylinder as a Limit. From the work already done in
connection with limits, and from the nature of the inscribed
and circumscribed prisms, the following properties of the
cylinder may now be assumed without further proof than
that given below:

If a prism whose base is a regular polygon is inscribed in or
circumscribed about a circular cylinder, and if the number of
sides of the prism is indefinitely increased,

1. The volume of the cylinder is the limit of the volume of
the prism.

2. The lateral area of the cylinder is the limit of the lateral
area of the prism. :

3. The perimeter of a right section of the cylinder is the limit
of the perimeter of a right section of the prism.

For as we increase the number of sides of the base of the inscribed
or circumscribed prism whose base is a regular polygon, the perimeter
of the base approaches the circle as its limit (§ 381).

This brings the lateral surface of each prism nearer and nearer the
lateral surface of the cylinder. It also brings the volume of each prism
nearer and nearer the volume of the cylinder. In the same way it brings
the right section of each prism nearer and nearer the right section of
the cylinder.



358 BOOK VIL. SOLID GEOMETRY
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587. The lateral area of a circular cylinder is equal
to the product of an element by the perimeter of a
right section of the cylinder. '

Given a circular cylinder C, ! being the lateral area, p the perim-
eter of a right section, and e an element.

To prove that l=ep.

Proof. Suppose a prism with base a regular polygon to be
inseribed in C, !’ being its lateral area and p' being the perim-
eter of its right section.

Then U'=ep' § 512

If the number of lateral faces of the prism is indefinitely

increased,
' approaches 7 as a limit,

and p' approaches p as a limit, § 586
and consequently ep' approaches ep as a limit.
s l=ep, by § 207. Q.E.D.

588. Cororrary. The lateral area of a cylinder of revolu-
tion is equal to the product of the altitude by the circum-
JSerence of the base.

In the case of a right circular cylinder of altitude a, lateral area I,
total area ¢, and radius of base r, we have

l=2mra, and t =27ra + 272 = 27r (a + 7).
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589. The volume of a circular cylinder is equal to the
product of its base by its altitude. '

Given a circular cylinder C, b being the base, v the volume,
and a the altitude.

To prove that v = ba.

Proof. Suppose a prism with base a regular polygon to be
inscribed in C, o' being its base and o' being its volume.

Then v =0'a. § 539

If the number of lateral faces of the prism is indefinitely
increased,

v' approaches v as a limit, § 586
b' approaches b as a limit, § 381

and consequently 0'a approaches ba as a limit.
But v'=b'a, whatever the number of sides. § 539
.. v=ba, by § 207. Q.E.D.

590. CororrarY. Zhe wvolume of a cylinder of revolution
with radius r and altitude a is mr*a.
‘What is the area of the base ? By what is this to be multiplied ?

591. Similar Cylinders. Cylinders generated by the revolu-
tion of similar rectangles about corresponding sides are called
similar cylinders of revolution. : '

§§ 591 and 592 may be omitted without destroying the sequence.
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ProrosiTioN XXIV. THEOREM

592. The lateral areas, or the total areas, of similar
cylinders of revolution are to each other as the squares

of their altitudes or as the squares of their radii ;

and

their volumes are to each other as the cubes of their

altitudes or as the cubes of their radii.

Given two similar cylinders of revolution, ! and 7' denoting their
lateral areas, ¢ and #' their total areas, v and o' their volumes,

a and a' their altitudes, and 7 and 7' their radii.
To prove that 1:l'=t:t' =a*: a*=r*:¢'%

and that viv=at:ad®=7r%: 7"

Proof. Since the generating rectangles are similar,

l 2 mra ra r” a?

7= 2mrd P~ P2 g
But ¢t =2 mra + 2 7r* (§ 588), and v = mra.
Lt 2mr(atr) r(a+rl__‘f__£
Y 2mr'(a ) (a4 2 a®
e P a

d 2 X o
an — = = — _— = — = —
v wrfa % al B g8

§ 501

§ 269

§ 590

Q.E.D.
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EXERCISE 93

1. The diameter of a well is 6 ft. and the water is 7 ft.
deep. How many gallons of water are there in the well, reck-
oning T} gal. to the cubic foot ?

2. When a body is placed under water in a right circular
cylinder 60 centimeters in diameter, the level of the water rises
40 centimeters. Find the volume of the body.

3. How many cubic yards of earth must be removed in
constructing a tunnel 100 yd. long, the section being a semi-
circle with a radius of 18 ft. ?

4. How many square feet of sheet iron are required to
make a pipe 18 in. in diameter and 40 ft. long ?

5. Find the radius of a cylindric®pail 14 in. high that will
hold exactly 2 cu. ft.

6. The height of a cylindric vessel that will hold 20 liters
is equal to the diameter. Find the altitude and the radius.

_ 7. If the total surface of a right cireular cylinder is ¢ and
the radius of the base is », find the altitude a. ‘

8. If the lateral surface of a right circular cylinder is !
and the volume is v, find the radius » and the altitude a.

9. If the circumference of the base of a right circular cyl-
inder is ¢ and the altitude is a, find the volume v.

10. If the circumference of the base of a right circular
cylinder is ¢ and the total surface is ¢, find the volume .

11. If the volume of a right circular cylinder is v and the
altitude is a, find the total surface ¢

12. If v is the volume of a right circular cylinder in which
the altitude equals the diameter, find the altitude a and the
total surface .

13. From the formula ¢ = 2 7r(a + ) (§ 588) find the value
of 7. (Omit unless quadratics have been studied.)
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593. Conic Surface. A surface generated by a straight line
which constantly touches a fixed plane curve and passes
through a fixed point not in the plane
of the curve is called a conic surface or
a conical surface.

The moving line is called the generatriz, the
fixed curve the directrix, and the fixed point the
vertex.

Hold a pencil by the point and let the other
end swing around a circle, and the pencil will
generate a conic surface.

We may also swing a blackboard pointer
about any point near the middle, so that either
end shall touch any fixed plane curve, and thus
generate a conic surface. Such a surface is rep-
resented in the annexed figure.

594. Element. The generatrix in any position is called an
element of the conic surface.

If the generatrix is of indefinite length, the surface consists of two
portions, one above and the other below the vertex, which are called
the upper nappe and lower nappe respectively. The two nappes are shown
in the above figure. '

595. Cone. A solid bounded by a conic surface and a plane
cutting all the elements is called a cone.

The conic surface is called
the lateral surface of the cone,
and the plane surface is called
the base of the cone.

The vertex of the conic sur-
face is called the vertexr of the
cone, and the elements of the
conic surface are called the ele-
ments of the cone.

The perpendicular distance
from the vertex to the plane of
the base is called the altitude of
the cone.
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596. Circular Cone. A cone whose base is a circle is called a
circular cone.

The straight line joining the vertex of a circular cone and the center
of the base is called the axis of the cone.

597. Right and Oblique Cones. A circular cone whose axis is
perpendicular to the base is called a right cone ; otherwise a
eircular cone is called an obligue cone.

598. Cone of Revolution. Since a right
circular cone may be generated by the
revolution of a right triangle about one
of the sides of the right angle, it is called
a cone of revolution.

In this case the hypotenuse corresponds to
an element of the surface and is called the slant height.

599. Conic Section. A section formed by the intersection of a
plane and the conic surface of a cone of revolution is called a
conic section.

‘Fie, 1 Fic. 2 Fic. 3 Fic. 4 Fic. 6

In Fig. 1 the conic section is two intersecting straight lines, and this
is discussed in § 600. This is true for all kinds of cones.

In Fig. 2 the conic section is a circle, and this is discussed in § 601.

In Fig. 3 the conic section is called an ellipse, the form a circle seems
to take when looked at obliquely. The orbit of a planet is an ellipse.

In Fig. 4 the conic section is a parabola, the path of a projectile (in a
vacuum). Here the cutting plane is parallel to an element.

In Fig. 5 the conic section is an hyperbola.

The general study of conic sections is not a part of elementary geome-
try, but the names of the sections may profitably be known.
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Prorosition XXV. THEOREM

600. Every section of a cone made by a plane pass-
ing through its vertex is a triangle.

Given a cone, with AVB a section made by a plane passing
through the vertex V.

To prove that AVB is a triangle.

Proof. AB is a straight line. § 429
. Draw the straight lines ¥4 and VB.

The lines VA and VB are both elements of the surface of

the given cone. § 594
. These lines lie in the cutting plane, since their extremities
are in the plane. § 422

Hence V4 and VB are the intersections of the conic surface
with the cutting plane. ‘
But V4 and VB are straight lines. Const.
Therefore the intersections of the conic surface and the
plane are straight lines.
Therefore the section 4 VB is a triangle, by § 28. Q.E.D.
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ProrosiTioN XXVI. THEOREM

601. In a circular cone a section made by a plane
parallel to the base is a circle.

Given the circular cone V-ABCD, with the section A'B/C'D'
parallel to the base.

To prove that A'B'C'D' is a circle.

Proof. Let O be the center of the base,and let 0'be the point
in which the axis V0 pierces the plane of the conic section.

Through V0 and any elements VA4, VB, pass planes cutting
the base in the radii 04, OB, and cutting the section 4'B'C'D'
in the straight lines 0'4’, 0'B.

Then 0'A' and O'B' are |l respectively to 04 and OB.  § 453

Therefore the A AOV and OBV are similar respectively to

the A A'0'V and O'B'V. § 285
0A Vo OB

oA VO 0B - 8282

But 04 = 0B. §162

.. 0'4'=0'B' (§263), and A'B'C'D' is a circle, by §159. ¢.E.D.

602. Corornary. The axis of a circular cone passes through
the center of every section which is parallel to the base.
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603. Tangent Plane. A plane which contains an element of
a cone, but does not cut the surface, is called a tangent plane
to the cone.

604. Construction of Tangent Planes.
It is evident that:

A plane passing through a tangent to
the base of a circular cone and the ele-
ment drawn through the point of contact
is tangent to the cone. :

If a plane is tangent to a circular
cone tts intersection with the plane of
the base is tangent to the base.

605. Inscribed Pyramid. A pyramid whose lateral edges are
elements of a cone and whose base is inscribed in the base of
the cone is called an inscribed pyramid.

In this case the cone is said to be circumscribed about the pyramid.

Inscribed Pyramid Circumscribed Pyramid

606. Circumscribed Pyramid. A pyramid whose lateral faces
are tangent to the lateral surface of a cone and whose base
is circumscribed about the base of the cone is called a cir-
cumscribed pyramid.

In this case the cone is said to be inscribed in the pyramid.
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607. Frustum of a Cone. The portion of a cone included be-
tween the base and a section parallel to the base is called a
Sfrustum of a cone.

The base of the cone and the parallel section
are together called the bases of the frustum.

The terms altitude and lateral area of a frus-
tum of a cone, and slant height of a frustum
of a right circular cone, are used in substan-
tially the same manner as with the frustum of
a pyramid (§§ 550, 651, 552).

608. Cones and Frustums as Limits. The following proper-
ties, similar to those of § 586, are assumed without proof:

If a pyramid whose base is a regular polygon is inscribed in
or circumscribed about a circular cone, and if the number of
sides of the base of the pyramid is indefinitely increased, the
volume of the cone is the limit of the volume of the pyramid,
and the lateral area of the cone is the limit of the lateral area
of the pyramid.

[ ———
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The volume of a frustum of a cone is the limit of the volumes
. of the frustums of the inscribed and circumscribed pyramids,
if the number of lateral faces is indefinitely increased, and
the lateral area of the frustum of a cone is the limit of the
lateral areas of the frustums of the inscribed and circumscribed
pyramids, the bases being regular polygons.
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ProrosiTioN XXVII. THEOREM

609. The lateral area of a cone of revolution is equal
to half the product of the slant height by the circumfer:

ence of the base.

Given a cone of lateral area I, circumference of base ¢, and slant
height s.

To prove that I=} sc.

Proof. Suppose a regular pyramid to be circumscribed about
the cone, the perimeter of its base being p and its lateral area ¢’

Then I'=}%sp. § 553

If the number of the lateral faces of the clrcumscrlbed pyra-
mid is indefinitely increased,

' approaches 7 as a limit, . §608
p approaches ¢ as a limit, § 381

and consequently } sp approaches } sc as a limit.
But ' =} sp, whatever the number of sides.  § 553
.l =}sc, by § 207. Q.E.D.

610. CororrarY. If 1 denotes the lateral area, t the total
area, s the slant height, and r the radius of the base of a cone
of revolution, then

I=3@mrXxs8)=mrs;
t=mrs+ wri=mr(s+7).
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EXERCISE 94

Find the lateral areas of cones of revolution, given the slant
heights and the circumferences of the bases respectively as -
Jollows : :

1. 2§in.,, 53 in. 4. 3.T7in.,5.8in. 7. 2ft. 6in., 4 ft.81in.
2. 43in.,,8}in. 5. 53in.,9.7in. 8. 3£t Tin., 8 ft.61in.
3. 6% in.,104in. 6. 6.5in.,11.6in. 9. 5ft. 8in., 12 ft.4in.

Find the lateral areas of cones of revolution, given the slant
heights and the radii of the bases respectively as follows :

10. 33in.,24in. 13. 6.4in.,4.8in. 16. 2ft. 3in,, 8in.

11. 2in,13in. 14. 7.2in,53in. 17. 4£t. 6in., 2 ft.

12. 4%in., 3}in. 15. 8.9in.,5.6in. 18. 6 ft. 9in., 3 ft. 2in.

Find the total areas of cones of revolution, giver. the slant
heights and the radii of the bases respectively as follows :

19. 3in,,2in. 2L Tin, 4in.  23. 6ft, 4 ft.

20. 5in., 3in. 22. 9in,, 5in. 24. 12 ft., 5 ft.

25. Deduce a formula for finding the lateral area of a cone of
revolution in terms of the radius of the base and the altitude.

26. Deduce a formula for finding the slant height in terms
of the lateral area and the circumference of the base.

27. Deduce a formula for finding the slant height in terms
of the lateral area and the radius of the base.

28. Deduce a formula for finding the radius of the base in
terms of the lateral area and the slant height.

29. Deduce a formula for finding the slant height in terms
of the total area and the radius of the base.

30. Deduce a formula for finding the circumference of the
base in terms of the lateral area and the slant height.
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ProrosiTioNn XXVIII. THEOREM

611. The volume of a circular cone is equal to one
third the product of its base by its altitude.

Given a circular cone of volume v, base b, and altitude a.
To prove that v=1%ba.

Proof. Suppose a pyramid with base a regular polygon to be
inscribed in the cone, 3' being its base and ¢' its volume.

Then v'=10b'a. § 561

If the number of lateral faces of the pyramid is indefinitely
increased, . '
: v' approaches v as a limit, § 608

%' approaches b as a limit, § 381
and consequently 4'a approaches ba as a limit.
c.v=1%ba, by § 207. - Q.E.D.

612. Cororrary. In a circular cone of radius r and alti-

tude a, v =} ma.

For the area of the base is r? (§ 389).

613." Similar Cones. Cones generated by the revolution of
similar right triangles about corresponding sides are called
similar cones of revolution.

In case § 614 is omitted this definition may also be omitted.
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EXERCISE 95

Find the volumes of circular cones, given the altitudes and
the areas of the bases respectively as follows :

1. 4in., 8 sq. in. 4. 6.3 in., 3.8 sq. in.
2. 3% in,, 93 sq. in. 5. 7.8 in., 6.9 sq. in.
3. 5% in., 10} sq. in. 6. 9.3 in,, 16.8 sq. in.

Find the volumes of circular cones, given the altitudes and
the radit of the bases respectively as follows :

7. 41in,, 3 in. 10. 9.8 in., 4.3 in.
8. 6 in., 4 in. 11. 10.5 in., 6.2 in.
9. 8 in, 5 in. 12. 14.9 in., 9.6 in.

13. How many cubic feet in a conical tent 10 ft. in diameter
and 7 ft. high? '

14. How many cubic feet in a conical pile of earth 15 ft. in
diameter and 8 ft. high ?

15. Deduce a formula for finding the altitude of a circular
cone in terms of the volume and the area of the base.

16. Deduce a formula for finding the area of the base of a
circular cone in terms of the volume and the altitude.

17. Deduce a formula for finding the altitude of a circular .

cone in terms of the volume and the radius of the base.

18. Deduce a formula for finding the radius of the base of
a circular cone in terms of the volume and the altitude.

19. Deduce a formula for finding the volume of a cone of

revolution in terms of the slant height and the radius of the
base.

20. Deduce formulas for finding the slant height and the
altitude of a cone of revolution in terms of the volume and the
radius of the base. '
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ProrosiTion XXIX. THEOREM

614. The lateral areas, or the total areas, of two sim-
ilar cones of revolution are to each other as the squares
of their altitudes, as the squares of their radii, or as the
squares of their slant heights ; and their volumes are
to each other as the cubes of their altitudes, as the cubes
of their radii, or as the cubes of their slant heights.

Given two similar cones of revolution, with lateral areas ! and
', total areas ¢ and t', volumes v and v', altitudes a and a', radii
r and r', and slant heights s and s’ respectively.

To prove that 1:U'=t:t'=a’: a”=r*: 7" =41 ",

and that v:v=a’:a®=0r: =545
Proof. 57:74:5,:5,1”%- ' §§ 282, 269
: P ;
I ars r s 17 s a?
c=Tl DX S == = § 610

U s’

P 7 r_s4+r P & o
'”,(s'l'_)':—, tr_r_s_&o, § 610
(s’ )
v ym’a P _a _r d® §
',U—!=§_7rr12a/:;,y—zx PR Rl R by § 612. Q.E.D.

§§ 613 and 614, like §§ 591 and 592, are occasionally demanded in
college entrance examinations. They are not needed for any exercises
and they may be omitted without destroying the sequence.

t.—<
5=
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ProrosiTioN XXX. THEOREM

615. The lateral area of a frustum of a cone of revo-
lution is equal-to half the sum of the circumferences of
its bases multiplied by the slant height.

Given a frustum of a cone of revolution, with lateral area I,
circumferences of bases ¢ and c¢', and slant height s.

To prove that l=%(c+ s

Proof. Suppose a frustum of a regular pyramid circum-
scribed about the frustum of the cone, as a pyramid is cir-
cumseribed about a cone.

Let the lateral area of the circumscribed frustum be /', and
let p and p' be the perimeters of the bases corresponding to
¢ and ¢' respectively. The slant height is s, the same as that
of the frustum of the cone.

Then U'=L(p+pHs. § 554

If the number of lateral faces of the circumseribed frustum
is indefinitely increased, what limits do ' and p + p' approach ?

Therefore what limit does §(p + p')s approach ?

‘What conclusion may be drawn, as in § 587 ?

Complete the proof.

616. Cororrary. The lateral area of a frustum of a cone
of revolution is equal to the circumference of a section equi-
distant from its bases multiplied by its slant height.

How can it be proved that } (¢ + ¢’) equals the circumference of this
section ? How are the radii related ?
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PropositioN XXXI. THEOREM

617. A frustum of a circular cone is equivalent to
the sum of three cones whose common -altitude is the
altitude of the frustum and whose bases are the lower
base, the upper base, and the mean proportional between
the bases of the frustum.

Given a frustum of a circular cone, with volume v, bases b and &',
and altitude a.

To prove that v=1} a(b + 0 +V bb’).

Proof. Suppose a frustum of a pyramid with base a regular
polygon to be inscribed in the frustum of the cone, as a pyramid
is inscribed in a cone.

Let v' be the volume, and let  and «' be the bases corre-
sponding to b and ' respectively. The altitude is «, the same
as that of the frustum of the cone.

Then v'=1 a(m +x' 4 '\/@) § 565

If the number of lateral faces of the inscribed frustum is in-
definitely increased, what limits do ¢!, , ', and xa' approach ?

Therefore what limit does } a(ac + ' + \/@) approach ?

What conclusion may be drawn ?

Complete the proof.

618. CororLrARY. In a frustum of a cone of revolution,
r and 7' being the radii of the bases, v =% wa (r* + " + rr").
For b=ar2, V' = w2 .. Vb= Var: X wr'2 = marr'.
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EXERCISE 96

Find the lateral areas of frustums of cones, given the cir-
cumferences of the bases and the slant heights respectively as
Jollows :

1. c=4in., ¢/=38in., s=0.5in.
2. ¢=61n, ¢'=51in, s=1.4in.
3. ¢c=T}in, ¢'=>52 in.,, s=2} in.
4.

¢=23 in., ¢'=18 in., s=16 in.

Find to two dectmal places the volumes of frustums of cones,
given the altitudes and the areas of the bases respectively as
Jollows :

a=3in, b=4} sq. in., §'=2 sq. in.
a=41in., 0 =8} sq. in,, =3 sq. in.
a= b} in.,, 6 =16 sq. in., ' =9 sq. in.

® o @

a=16in.,, 06 =17 sq. in., o' =11 sq. in.

Find to two decimal places the volumes of frustums of cones
of revolution, given the altitudes and the radii of the bases
respectively as follows :

9. a=41in, r=3 in, »'=2in.
10. a=5in,, =3} in., »' =2} in.
11. a=6in., »=3.7 in., ' =3.1 in.
12. a =T} in., r=42 in,, »' =3} in.
13. Deduce a formula for finding the altitude of a frustum

of a circular cone in terms of the volume and the areas of the
bases.

14. Deduce a formula for finding the altitude of a frustum of
a cone of revolution in terms of the volume and the radii of the
bases.
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EXERCISE 97
INDUSTRIAL PROBLEMS

“'1. There is a rule for calculating the strongest beam that
can be cut from a cylindric log, as follows:

Erect perpendiculars MD and NB on opposite

sides of a diameter 4 C, at the trisection points &/ 4 c
and N, meeting the circle in D and B. Then
ABCD is a section of the beam. B

Calculate the dimensions, the log being 16 in. in diameter.

2. A cylindric funnel for a steamboat is 4 ft. 3 in. in diam-
.eter. It is built up of four plates in girth, and the lap of each
joint is 1§ in. Find one dimension of each plate. ' '

3. A tubular boiler has 124 tubes each 3% in. in diameter.
and 18 ft. long. Required the total tube surface. Answer to
the nearest square foot.

4. A room in a factory is heated by steam pipes. There are
235 ft. of 2-inch pipe and 26 ft. 3 in. of 3-inch pipe, besides 2 ft.
8 in. of 4}-inch feed pipe. Required the total heating surface.
Answer to the nearest square foot.

5. A triangular plate of wrought iron § in. thick is 2 ft. 7 in.
on each side. If the weight of a plate 1 ft. square and } in.
thick is 5 1b., find to the nearest pound the weight of the given
triangular plate.

6. The water surface of an upright cylindric boiler is 2 ft.
8 in. below the top of the boiler, and is 12.57 sq. ft. in. area.
What is the volume of the steam space ?

7. A cylinder 16 in. in diameter is required to hold 50 gal.
of water. What must be its height, to the nearest tenth of an
inch, allowing 231 cu. in. to the gallon ?

8. How many square feet of tin are required to make a
funnel, if the diameters of the top and bottom are 30 in. and
15 in. respectively, and the height is 25 in.? ‘
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9. Find to two decimal places the weight of a steel plate
4 ft. by 3 ft. 2 in. by 13 in,, allowing 490 1b. per cubic foot.

10. A steel plate for a steamship is 5 ft. long, 3 ft. 6 in.
wide, and } in. thick. A porthole 10 in. in diameter is cut
through the plate. Required the weight of the finished plate,
allowing 0.29 lb. per cubic inch. Answer to two decimal places.

11. A cast-iron base for a column is in the form of a frus-
tum of a pyramid, the lower base being a square 2 ft. on a side,
and the upper base having a fourth of the area of the lower
base. The altitude of the frustum is 9 in. Required the weight
to the nearest pound, allowing 460 1b. per cubic foot.

12. A cylinder head for a steam
engine has the shape shown in the
figure, where the dimensions in
inches are: a=12, =3, ¢=2,
d=6,e=3, f=},9=1} and h=4}.
There are six 3-inch holes for bolts.
Compute the weight of the plate,
allowing 41 1b. for the weight of a
steel plate 1 ft. square and 1 in. thick. Answer to the nearest
tenth of a pound.

13. A steel beam 10 in. by & in., in the form here shown, is
18 ft. long. The thickness of the beam is § in. and
the average thickness of the flanges is £ in. Find
the weight of the beam to the nearest pound, allow- »
ing 0.29 1b. per cubic inch.

14. A hollow steel shaft 12 ft. long is 18 in. in
exterior diameter and 8 in. in interior diameter. Find the
weight to the nearest pound, allowing 0.29 1b. per cubic inch.

fe-5%
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15. Tind the expense, at 70 cents a square foot, of polishing
the curved surface of a marble column in the shape of the frus-
tum of a right circular cone whose slant height is 12 ft. and the
_ radii of whose bases are 3 ft. 6 in. and 2 ft. 4 in. respectively.
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EXERCISE 98

MiscELLANEOUS PROBLEMS

1. The slant height of the frustum of a regular pyramid is
25 ft., and the sides of its square bases are 54 ft. and 24 ft.
respectively. Find the volume.

2. If the bases of the frustum of a pyramid are regular
hexagons whose sides are 1 ft. and 2 ft. respectively, and the
volume of the frustum is 12 cu. ft., find the altitude.

3. From a right circular cone whose slant height is 30 ft.,
and the circumference of whose base is 10 ft., there is cut off
by a plane parallel to the base a cone whose slant height is
6 ft. Find the lateral area and the volume of the frustum.

4. Find the difference between the volume of the frustum

of a pyramid whose altitude is 9 ft. and whose bases are

squares, 8 ft. and 6 ft. respectively on a side, and the volume
of a prism of the same altitude whose base is a section of the
frustum parallel to its bases and equidistant from them.

5. A Dutch stone windmill in the shape of the frustum of a
right cone is 12 meters high. The outer diameters at the bottom
and the top are 16 meters and 12 meters, the inner diameters
12 meters and 10 meters. How many cubic meters of stone
were required to build it ?

6. The chimney of a factory has the shape of a frustum of a
regular pyramid. Its height is 180 ft., and its upper and lower
bases are squares whose sides are 10 ft. and 16 ft. respectively.
The flue throughout is a square whose side is 7 ft. How many
cubic feet of material does the chimney contain ?

7. Two right triangles with bases 15 in. and 21 in,, and
with hypotenuses 25 in. and 35 in. respectively, revolve about
their third sides. Find the ratio of the total areas of the solids
generated and find their volumes.
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EXERCISE 99
EQUIVALENT SOLIDS

1. A cube each edge of which is 12 in. is transformed into
a right prism whose base is a rectangle 16 in. long and 12 in.
wide. Find the height of the prism and the difference between
its total area and the total area of the cube.

2. The dimensions of a rectangular parallelepiped are a, b, c.
Find the height of an equivalent right circular cylinder,
having a for the radius of its base; the height of an equivalent
right circular cone having a for the radius of its base.

3. A regular pyramid 12 ft. high is transformed into a regu-
lar prism with an equivalent base. Find the height of the prism.

4. The diameter of a cylinder is 14 ft. and its height 8 ft.
Find the height of an equivalent right prism, the base of which
is a square with a side 4 ft. long. ‘

5. If one edge of a cube is e, what is the height 7 of an
equivalent right circular cylinder whose radius is » ? :

6. The heights of two equivalent right circular cylinderé
are in the ratio 4:9. If the diameter of the first is 6 ft.,
what is the diameter of the second ?

7. A right circular cylinder 6 ft. in diameter is equivalent
to a right circular cone 7 ft. in diameter. If the height of the
cone is 8 ft., what is the height of the cylinder ?

8. The frustum of a regular pyramid 6 ft. high has for bases
squares 5 ft. and 8 ft. on a side. Find the height of an equiva-
lent regular pyramid whose base is a square 12 ft. on a side.

9. The frustum of a cone of revolution is 5 ft. high and
the diameters of its bases are 2 ft. and 3 ft. respectively. Find
the height of an equivalent right circular cylinder whose base
is equal in area to the section of the frustum made by a plane
parallel to the bases and equidistant from them.
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EXERCISE 100

Review QuEsTIONS
1. Define polyhedron. Is a cylinder a polyhedron ?
2. Define prism, and classify prisms according to their bases.

3. How'is the lateral area of a prism computed ? Is the
method the same for right as for oblique prisms ?

4. Define parallelepiped ; rectangular parallelepiped ; cube.
Is a rectangular parallelepiped always a cube? Is a cube
always a rectangular parallelepiped ?

5. Distinguish between equivalent and congruent solids.

. Are two cubes with the same altitudes always equivalent ?

always congruent? Is this true for parallelepipeds?

6. What are the conditions of congruence of two prisms ?
of two right prisms ? of two cubes ?

7. The opposite angles of a parallelogram are equal. What

isa corresponding proposition concerning parallelepipeds ?

8. How do you find the volume of a parallelepiped ? What
is the corresponding proposition in plane geometry -

- 9. How do you find the volume of a prism ? of a cylinder ?
of a pyramid ? of a cone ?

10. Define pyramid. How many bases has a pyramid ? Is
there any kind of a pyramid in which more than one face
may be taken as the base ?

11. How do you find the lateral area of a pyramid ? of aright
cone? of a frustum of a pyramid ? of a frustum of a right cone ?

12. How many regular convex polyhedrons are possible ?
What are their names ?

13. Given the radius of the base and the altitude of a cone
of revolution, how do you find the volume ? the lateral area ?
the total area ?
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THE SPHERE

619. Sphere. A solid bounded by a surface all points of
which are equidistant from a point within is called a sphere.

The point within, from which all points on the surface are equally
distant, is called the center. The surface is called the spherical surface,
and sometimes the sphere. Half of a sphere is called a hemisphere. The
terms radius and diameter are used as in the case of a circle.

620. Generation of a Spherical Surface. By the definition of
sphere it appears that a spherical surface may be generated by
the revolution of a semicircle about its diameter as an axis.

Thus, if the semicircle A CB revolves about 4B, a spherical surface is
generated. It is therefore assumed that a sphere may be described with
any given point as a center and any given line as a radius.

621. Equality of Radii and Diameters. It follows that:

All radii of the same sphere are equal, and all diameters of
the same sphere are equal.
Equal spheres have equal radii, and spheres having equal

radit are equal.
381
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ProrosiTion I. THEOREM

622. Kuvery intersection of a spherical surface by a
plane is a circle.

Given a sphere with center O, and ABD any section of its
surface made by a plane.

To prove that the section ABD is a circle.

Proof. Draw the radii 04, OB, to any two points 4, B, in
the section, and draw OC L to the plane of the section.

Then in A 0CA4 and OCB, £0CA and OCB are rt. 4, § 430

0C is common, and 04 = OB. § 621

.. AOCA is congruent to AOCB. § 89

. CA=CB. § 67

.*. any points 4 and B, and hence all points, in the section are
equidistant from C, and 4BD is a O, by §159. Q.E.D.

623. Cororrary 1. The line Joining the center of a sphere
and the center of a circle of the sphere is perpendicular to the
plane of the circle.

624. CororrArY 2. (Mrcles of a sphere made by planes
equidistant from the center are equal; and of two circles made
by planes not equidistant from the center the one made by the
plane nearer the center is the greater.
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625. Great Circle. The intersection of a spherical surface by
a plane passing through the center is called a great circle of
the sphere. '

626. Small Circle. The intersection of a spherical surface by
a plane which does not pass through the center is called a
small circle of the sphere. :

627. Poles of a Circle. If a diameter of a sphere is perpen-
dicular to the plane of a circle of the sphere, the extremities
are called the poles of the circle.

628. CororrarY 1. Parallel circles have the same poles.
629. CoroLLARY 2. All great circles of a sphere are equal.

630. CoroLLARY 3. Ewvery great circle bisects the spherical
surface.

631. CororrarY 4. Two great circles bisect each other.

The intersection of the planes passes through what point ?

632. CoroLLARY 5. If the planes of two great circles are
perpendicular, each circle passes through the poles of the other.

Draw the figure and state the reason.

633. CororLrARY 6. Through two given points on the sur-
Jace of a sphere an arc of a great circle may always be drawn.

Do these two points, together with the center of the sphere, generally
determine a plane ? Consider the special case in which the two points
are ends of a diameter.

634. CoroLLARY 7. Through three given points on the sur-
Jace of a sphere one circle and only one can be drawn.

Iiiow many points determine a plane ?

635. Spherical Distance. The length of the smaller arc of
the great circle joining two points on the surface of a sphere
is called the spherical distance between the points, or, where
no confusion is likely to arise, simply the distance.
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ProrosiTioN 1I. THEOREM

636. The spherical distances of all points on a circle
of a sphere from either pole of the circle are equal.

Given P, P!, the poles of the circle ABC, and 4, B, C, any points
on the circle.

To prove that the great-circle arcs PA, PB, PC are equal.

Proof. The straight lines PA, PB, PC are equal. § 439

Therefore the arcs PA, PB, PC are equal, by § 172. Q.E.p.

In like manner, the great-circle arcs P’4, P’B, P’C may be proved
equal.

637. Polar Distance. The spherical distance from the nearer
pole of a circle to any point on the circle is called the polar
distance of the circle.

The spherical distance of a great circle from either of its peles may
be taken as the polar distance of the circle.

638. Quadrant. One fourth of a great circle is called a
quadrant.

639. Cororrary 1. The polar distance of a great circle ts
a quadrant.

640. Cororrary 2. The straight lines joining points on a
ctrole to either pole of the circle are equal.
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ProrosiTioN III. THEOREM

641. A point on a sphere, which is at the distance of
a quadrant from each of two other points, not the ex-
tremities of a diameter, is a pole of the great circle
passing through these points.

Given a point P on a sphere, PA and PB quadrants, and ABC the
great circle passing through A4 and B.

To prove that P s the pole of © ABC.

Proof. ~ What kind of angles are the £ AOP and BOP?

How is PO related to the plane of ©ABC' ?
Does this prove that P is the pole of O ABC ?

642. Describing Circles on a Sphere. This proposition proves
that we may describe a great circle on a sphere of a given radius
so that it shall pass through two given points.

Open the compasses the length of chord PA =Vr2 4 r2=r V2.

643. Tangent Lines and Planes. A line or plane that has one
point and only one point in common with a sphere, however
far produced, is said to be zangent to the sphere, and-the sphere
to be tangent to the line or plane.

644. Tangent Spheres. Two spheres whose surfaces have one
point and only one point in common are said to be tangent.
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ProrosiTioNn IV. THEOREM

645. A plane perpendicular to a radius at its extrem-
ity s tangent to the sphere.

‘Given the plane MN perpendicular to the radius OA at 4.
To prove that MN is tangent to the sphere.

Proof. Let P be any point except 4 in MN.

Then which is longer, OP or 04, and why ?
Therefore, is P inside, on, or outside the sphere, and why ?
What does this tell us concerning all points, except 4,

on MN?
How, then, do we know that MN is tangent to the sphere ?

646. Cororrary. A plane tangent to a sphere is perpen-
dicular to the radius drawn to the point of contact.

What are the proposition and corollary of plane geometry corre-
sponding to §§ 645 and 646 ? Do they suggest the proof of this corollary ?

647. Inscribed Sphere. If a sphere is tangent to all the faces
of a polyhedron, it is said to be inscribed in the polyhedron,
and the polyhedron to be circumscribed about the sphere.

648. Circumscribed Sphere. If all the vertices of a polyhedron
lie on a spherical surface, the sphere is said to be circumscribed
about the polyhedron, and the polyhedron to be inscribed
in the sphere.
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ProrositioNn V. THEOREM

649. A sphere may be inscribed in any given tetra-
hedron.

Given the tetrahedron ABCD.

To prove that a sphere may be inscribed in ABCD.

Proof. Bisect the dihedral £ at the edges 4B, BC, and C4
by the planes 04 B, OBC, and OCA respectively.

Every point in the plane 04 B is equidistant from the faces
ABC and ABD. § 479

For a like reason every point in the plane OBC is equidistant
from the faces ABC and DBC'; and every point in the plane
0CA4 is equidistant from the faces ABC and ADC.

Therefore the point O, the common intersection of these
three planes, is equidistant from the four faces of the tetra-
_hedron and is the center of the sphere inscribed in the tetra-
hedron, by § 647. Q.E.D.

Discussion. What is the corresponding proposition in plane geome-
try ? Is the line of proof similar ?

It is shown in plane geometry that the three lines which bisect the
three angles of a triangle meet in a point. What is the corresponding
proposition with reference to planes in a tetrahedron? Is it substan-
tially proved in this proposition ?

It is proved in plane geometry that a circle may be inscribed in what
kind of a polygon ? What corresponding proposition may be inferred in
solid geometry ?
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ProrosiTioN VI. THEOREM

650. A sphere may be circumscribed about any given
tetrahedron.

Given the tetrahedron ABCD.
To prove that a sphere may be circumseribed about ABCD.

Proof. Let P, Q respectively be the centers of the circles
circumseribed about the faces ABC, ABD.

Let PR be L to the face ABC, and QS L to the face ABD.

Then PR is the locus of a point equidistant from 4, B, C,
and QS is the locus of a point equidistant from 4, B, D. § 442

Therefore PR and QS lie in the same plane, the plane L to
AB at its mid-point. § 443

If QS were |l to PR, it would be L to the face ABC.  § 445

But this is impossible, for QS is L to the face ABD which
intersects the face ABC. Given

Since PR and QS cannot be ll, and since they lie in the same
plane, they must therefore meet at some point 0.

.. 0 is equidistant from 4, B, C, and D,
and is the center of the required sphere, by § 648. ¢.E.D.

651. Cororrary. Through four points not in the same
plane one spherical surface and- only one can be passed.

The center of any sphere whose surface passes through the four
points must be in the perpendiculars mentioned in the proof, and since
there is only one point of intersection, there can be only one sphere.
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ProrositioNn VII. THEOREM

652. The intersection of two spherical surfaces is a
circle whose plane is perpendicular to the line which
Jjoins the centers of the spheres and whose center is in
that line.

Given two intersecting spherical surfaces, with centers O and O'.

To prove that the spherical surfaces intersect in a circle
whose plane is perpendicular to 00', and whose center is in 00",

Proof. Let the two great circles formed by any plane
through O and O' intersect in 4 and B.

Then 00' is a L bisector of AB. § 195

If this plane revolves about 00', the circles generate the
spherical surfaces, and A describes their line of intersection.

But during the revolution 4C remains constant in length
and perpendicular to 00'.

Therefore A generates a circle with center C, whose plane is
perpendicular to 00, by § 432. Q.E.D.

653. Spherical Angle. The opening between two great-circle
arcs that intersect is called a spherical angle. A spherical angle
is considered equal to the plane angle formed by the tangents
to the arcs at their point of intersection.

Draw a figure illustrating this definition.

In elementary geometry we do not consider angles formed by arcs
of small circles.
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EXERCISE 101

1. The four perpendiculars erected at the centers of the
circles circumscribed about the faces of a tetrahedron meet
in the same point.

2. The six planes perpendicular to the edges of a tetra-
hedron at their mid-points intersect in the same point.

3. The six planes which bisect the six dihedral angles of a
tetrahedron intersect in the same point.

4. Circles on the same sphere having equal polar distances
are equal.

5. Equal circles on the same sphere have equal polar dis-
tances. '

6. Find the locus of a point in a plane at a given distance
from a given point. "Also of a point in a three-dimensional space.

7. A line tangent to a great circle of a sphere lies in the
plane tangent to the sphere at the point of contact.

8. Any line in a tangent plane drawn through the point of
contact is tangent to the sphere at that point.

9. One plane and only one plane can be passed through a
given point on a given sphere tangent to the sphere.

10. Find a point in a plane equidistant from two intersecting
lines in the plane, and at a given distance from a given point
not in the plane. Discuss the solution.

11. How many points determine a straight line ? a circle ?
a spherical surface ? Prove that two spherical surfaces coin-
cide if they have this number of points in common.

12. If two planes which intersect in the line AB touch a
sphere at the points C' and D respectively, the line CD is
perpendicular to 4B in the sense mentioned in the discussion
under § 450,—that a plane can be passed through C'D per-
pendicular to 4B.
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ProrositioN VIII. THEOREM

654. A spherical angle is measured by the arc of the
great circle described from its vertex as a pole and
included between its sides, produced if necessary.

Given PA and PB, arcs of great circles intersecting at P; PA/
and PB', the tangents to these arcs at P; AB, the arc of the great
circle described from P as a pole and included between PA and PB.

To prove that the spherical L APB s measured by arc AB.

Proof. In the plane POB, PB'is L to PO, § 185

and OB is L to PO. § 213

. PB'is Il to OB. § 95
Similarly PA'is l to 0OA.

/L A'PB'=/Z AOB. § 461

But Z AOB is measured by arc 4B. § 213

.. £ A'PB' is measured by arc 4B.
.. £ APB is measured by arc 4B, by § 653. Q.E.D.

655. Cororrary 1. A spherical angle has the same meas-
ure as the dihedral angle formed by the planes of the two circles.

656. Cororrary 2. Al ares of great circles drawn through

the pole of a given great circle are perpendicular to the given
circle.
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657. Spherical Polygon. A portion of a spherical surface
bounded by three or more arcs of great circles is called a
spherical polygon.

The bounding arcs are called the sides of the polygon, the angles
between the sides are called the angles of the polygon, and the points
of intersection of the sides are called the vertices of the polygon.

658. Relation of Polygons to Polyhedral Angles. The planes
of the sides of a-spherical polygon form a polyhedral angle
whose vertex is the center of the sphere, whose face angles are
measured by the sides of the polygon, and whose dihedral angles
have the same numerical measure as the angles of the polygon.

Thus the planes of the sides of the polygon
ABCD form the polyhedral angle 0-4 BCD.
The face angles BOA, COB, and so on, are
measured by the sides 4B, BC, and so on,
of the polygon. The dihedral angle whose
edge is 04 has the same measure as the
spherical angle BAD, and so on.

Hence from any property of polyhedral angles we may infer
an analogous property of spherical polygons ; and conversely.

659. Convex Spherical Polygon. If a polyhedral angle at the
center of a sphere is convex (§ 491), the corresponding spherical
polygon is said to be convez.

Every spherical polygon is assumed to be convex unless the contrary
is stated.

660. Diagonal. An arc of a great circle joining two non-
consecutive vertices of a spherical polygon is called a diagonal.

661. Spherical Triangle. A spherical polygon of three sides
is called a spherical triangle.

A spherical triangle may be right, obtuse, or acute. It may also be
equilateral, isosceles, or scalene.

662. Congruent Spherical Polygons. If two spherical polygons
can be applied, one to the other, so as to coincide, they are said
to be congruent.
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ProrositioNn IX. THEOREM

663. Fach side of a spherical triangle is less than the
sum of the other two sides.

Given a spherical triangle ABC, CA being the longest side.

To prove that CA < AB+ BC.
Proof. In the corresponding trihedral angle 0-4BC,
Z CO0A is less than £ Bo4 + Z COB. § 494
.. CA< 4B+ BC, by § 658. Q.E.D.

ProrosiTtioNn X. THEOREM

664. The sum of the sides of a spherical polygon s
less than 360°. .

Given a spherical polygon ABCD.
To prove that AB+ BC +CD + DA < 360°.

Proof. In the corresponding polyhedral angle 0-ABCD,
L BOA 4+ £ COB+ £DOC + £ DOA < 360°  § 495

..AB+ BC + CD + DA < 360° by § 658. Q.E.D.
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665. Polar Triangle. If from the vertices of a spherical tri-
angle as poles arcs of great circles are described, another
spherical triangle is formed which is called the polar triangle
of the first.

Thus, if 4 is the pole of the arc of the great A
circle \B’C’, B of C’4’, C of A’B’, A’B’C’ is the

polar triangle of ABC.

' If, with 4, B, C as poles, entire great circles
are described, these circles divide the surface of
the sphere into eight spherical triangles.

Of these eight triangles, that one is the polar g o’
of ABC whose vertex A4’, corresponding to A4,
lies on the same side of BC as the vertex 4 ; and similarly for the other
vertices.

EXERCISE 102

1. To bisect a given great-circle arc.
‘What must be done to the angle at the center ?

2. If two great-circle arcs intersect, the vertical angles are
equal.

3. To describe an arc of a great circle through a given point
and perpendicular to a given arc of a great circle.

4. Every point lying on a great circle which bisects a given
arc of another great circle at right angles is equidistant (§ 635)
. from the extremities of the given arc.

5. Two sides of a spherical triangle are respectively 82°
47" and 67° 39'. What is known concerning the number of
degrees in the third side ?

6. Three sides of a spherical quadrilateral are respectively
86° 29', 73° 47', and 69° 54'. What is known concerning the
number of degrees in the fourth side ?

7. Draw a picture of a sphere, and of an equilateral spherical
triangle on the sphere, each side being 90°. Then draw a pic-
ture of the polar triangle.
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ProrositioNn XI. THEOREM

666. If one spherical triangle is the polar triangle of
another, then reciprocally the second 1is the polar tri-

angle of the first.

il

o
Given the triangle ABC and its polar triangle A'B'C'.
To prove that ABC is the polar triangle of A'B'C'
Proof. Since 4 is the pole of B'C’,
and C is the pole of A'B, § 665
.. B'is at a quadrant’s distance from 4 and C. § 639
‘. B' is the pole of arc AC. § 641
Similarly A' is the pole of BC,
and C' is the pole of 4B.

.. ABC is the polar triangle of A'B'C’, by § 665. Q.E.D.

Discussion. Is it necessary that one of the triangles should be wholly
within the other ? Draw the figures approximately, without using instru-
ments, starting with A ABC having 4B = 100°, AC =100°, BC = 30°.

Also draw the figures having 4 B = 120°, AC = 80°, BC = 40°.

Also draw the figures suggested in Ex. 7, on page 394, where AB =
BC = CA = 90°. Consider the proposition with these figures.

The proposition may also be considered by starting with A ABC as
the polar triangle of A A’B’C”, and proving that A A’B’C” is the polar
triangle of A ABC.

It is desirable in the study of spherical triangles to have a spherical
blackboard. Where this is not available, any wooden ball will serve the
purpose.
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Prorosition XII. THEOREM

667. In two polar triangles each angle of the one s
the supplement of the opposite side in the other.

Given two polar triangles ABC and A'B'C', the letter at the
vertex of each angle denoting its value in degrees, and the small
letter denoting the value of the opposite side in degrees.

To prove that 4 + o' =180°, B +b'=180°, C + ¢'=180°;
A'+a =180° B'4+ b =180°, ¢'+ ¢ =180°.

Proof. Produce the arcs 4B, AC until they meet B'C' at
the points D, E respectively.

Since B'is the pole of AE, .. B'E =90°. § 639
And since C'1is the pole of AD, .. DC'=90°.
.. B'E 4+ DC'=180". Ax.1
. That is, B'D 4+ DE 4 DC'=180°, Ax. 9
or DE +B'C'=180°. Ax.9
But DE is the measure of the £ 4, § 654
and ' B'C'=a
oo A+ a'=180°
Similarly B+0'=180°
and C +c'=180°

.In a similar way, starting with A 4'B'C' and producing the
sides of A ABC, all the other relations are proved. Q.E.D.
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Prorosition XIII. THEOREM

668. The sum of the angles of a spherical triangle is
greater than 180° and less than 540°.

Given a spherical triangle ABC, the letter at the vertex of each
angle denoting its valué in degrees, and the small letter denoting
the value of the opposite side in degrees.

To prove that A+ B+ C>180° and < 540°.

Proof. Let A A'B'C' be the polar triangle of A ABC.

Then A4+ a'=180°% B+ 0'=180° C 4 ¢' =180 § 667

e A4 BAC+a +b 4o = 5400 Ax. 1
v A+ B4C=540°—(a' 4+ +c). Ax. 2
Now @' +8' + ¢’ < 360°. § 664

.4 4+ B+ C =540° — some value less than 360°.
c.A4+B4HC>180°
Again o'+ b' 4 ¢' is greater than 0°
. A4+ B4 C<540° Q.E.D.

669. Cororrary. A spherical triangle may have two, or
even three, right angles; and a spherical triangle may have
two, or even three, obtuse angles.

670. Triangles classified as to Right Angles. A spherical
triangle having two right angles is said to be birectanguliar;
one having three right angles is said to be trirectangular.

The same terms may be applied. to the corresponding trihedral angles.
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EXERCISE 103

1. If two sides of a spherical triangle are quadrants, the
third side measures the opposite angle.

2. In a birectangular spherical triangle the sides opposite
the right angles are quadrants, and the side opposite the third
angle measures that angle.

Since the £ are rt. £, what two planes are L to a third plane ? Whai
two arcs must therefore (§ 632) pass through the pole of a third arc ?

Then what two arcs are quadrants ? Then how is the third angle (§ 654)
meagured ?

3. Each side of a trirectangular spherical triangle is a
quadrant.

4. Three planes passed through the center of
a sphere, each perpendicular to the other two, ¢
divide the spherical surface into eight congruent
trirectangular triangles.

Find the number of degrees in the sides of a spherical tri-
angle. given the angles of its polar triangle as follows :
5. 82° 77°, 69°. 8. 83°40',48°57',103° 43"
6. 841°,813° 721° 9. 96°37'40", 82°29' 30", 68° 47"
7. 78° 30, 89° 102°. 10. 43°29'37",98°22' 53", 87° 36' 39",

Find the number of degrees in the angles of a spherical tri-
angle, given the sides of its polar triangle as follows :

11. 68°42'39",93°48' 7", 89° 38' 14".

12. 78°47' 29",106° 36' 42", a quadrant.

13. A quadrant, half a quadrant, three fourths of a quadrant.

14. From the center of a sphere are drawn three radii, each
perpendicular to the other two. Find the number of degrees
in the sides and angles of the spherical triangle determined .
by their extremities.
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671. Symmetric Spherical Triangles. If through the center 0
of a sphere three diameters A44', BB', CC' are drawn, and the
points 4, B, C' are joined by arcs of great circles, and also the
points A’, B, C', the two spherical tri-
angles ABC and A'B'C’ are called sym-
metric spherical triangles.

In the same way we may form two sym-
metric polygons of any number of sides.
Having thus formed the symmetric polygons,

we may place them in any position we choose
upon the surface of the sphere.

672. Relation of Symmetric Triangles. Two symmetric tri-
angles are mutually equilateral and mutually equiangular; yet
in general they are not congruent, for they cannot be made to
coincide by superposition. If in the above figure the triangle
AEBC is made to slide on the surface of the sphere until the
vertex 4 falls on 4/, it is evident that the two triangles cannot
be made to coincide for the reason that the corresponding parts
of the triangles occur in reverse order. '

To try to make two symmetric spherical polygons coincide is very
much like trying to put the right-hand glove on the left hand. The rela-

tion of two symmetric spherical triangles may be illustrated by cutting
them out of the peel of an orange or an apple.

673. Symmetric Isosceles Triangles. If, however, we have two
symmetric triangles ABC and 4'B'C' such that AB=A4C, and
A'B'=A'C', that is, if the two sym-
metric triangles are <sosceles, then
because AB, AC, A'B', A'C" are all
equal and the angles 4 and 4’ are
equal, being originally formed by
vertical dihedral angles (§ 671), the B C B o
two triangles can be made to coincide. Therefore,

A A

If two symmetric spherical triangles are isosceles, they are
superposable and therefore are congruent.
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ProrositioNn XIV. THEOREM

674. Two symmetric spherical triangles are equivalent.

Given two symmetric spherical triangles ABC, A'B'C’, having
their corresponding vertices opposite each to each with respect to
the center of the sphere.

To prove that the triangles ABC, A'B'C' are equivalent.

Proof. Let P be the pole of a small circle passing through
the points 4, B, C, and let POP' be a diameter.
Draw the great-circle arcs PA, PB, PC, P'A', P'B', P'C'".

Then PA =PB=PC. § 636
Now P'A'=PA, P'B'=PB, P'C' = PC. § 672
. PA'=PB' =P'C Ax. 8
.*. the two symmetric A PC4 and P'C'4' are isosceles.
.". A PCA is congruent to A P'C'4'". . § 673
Similarly A PAB is congruent to A P'A'B/,
and A PBC is congruent to A P'B'C'.

Now A ABC =A PCA 4+ A PAB + A PBC,
and AA'B'C'=AP'C'A'"4-APA'B'"+ APB'C'. Ax. 11
.. A ABC is equivalent to A A'B'C', by Ax. 9. Q.E.D.
Discussion. If the pole P should fall without the A ABC, then P’
would fall without A A’B’C’, and each triangle would be equivalent to

the sum of two symmetric isosceles triangles diminished by the third ; so
that the result would be'the same as before.



SPHERICAL POLYGONS 401

ProrosiTioN XV. THEOREM

675. Two triangles on the same sphere or on equal
spheres are either congruent or symmetric if two sides
and the included angle of the one are respectively equal
to the corresponding paits of the other.

Given two spherical triangles ABC and A'B'C', with AB=A'B!,
AC=A'C', and angle A = angle A', and similarly arranged ; and
given the triangle A'B'X symmetric with respect to the triangle
A'B'C'.

To prove that A ABC s congruent to A A'B'C', and that
A ABC is symmetric with respect to A A'B'X.

Proof. Superpose A ABC on A A'B'C', the proof being sim-
ilar to that of the corresponding case in plane geometry. § 68

.*. A ABC is congruent to A A'B'C’. § 662

Since A A'B'X is symmetric with respect to A 4'B'C,
and A ABC is congruent to A 4'B'C',

. AC=A'X, AB=A'B', L A=/ XA'B

But A ABC is congruent to A 4'B'C' and may be made to
coincide with it.

.. A ABC is symmetric with respect to A 4'B'X. Q.E.D.

Discussion. In the case of plane triangles, if the corresponding parts
-are arranged in reverse order, we can still prove the triangles congruent.
‘Why can we not do so in the case of spherical triangles ?
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Prorosition XVI. THEOREM

676. Two triangles on the same sphere or on equal
spheres are either congruent or symmetric if two angles
and the included side of the one are respectively equal
to the corresponding parts of the other.

Given -two spherical triangles ABC and A'B'C', with angle
A = angle A', angle C=angle C', and AC = A'C', and similarly
arranged ; and given the triangle A'B'X symmetric with respect to
the triangle A'B'C'.

To prove that A ABC is congruent to A A'B'C', and that
A ABC is symmetric with respect to A A'B'X.

Proof. Superpose A ABC on A A'B'C', the proof being simi-
lar to that of the corresponding case in plane geometry. § 72

. A ABC is congruent to A 4'B'C'. § 662
Since A A'B'X is symmetric with respect to A 4'B'C’, and
A ABC is congruent to A A'B'C,
cLA=LXA'B, LC=/LX,and AC = A'X.

But A ABC is congruent to A A'B'C' and may be made to
coincide with it.
*. A ABC is symmetric with respect to A 4'B'X. q.E.D.
Discussion. Under what circumstances are the two triangles both con-
gruent and symmetric ?
In plane geometry what is the case that corresponds to the one in
which the spherical triangles are both congruent and symmetric ?
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ProprosiTioN XVII. THEOREM

677. Two mutually equilateral triangles on the same
sphere or on equal spheres are mutually equiangular,
and are either congruent or symmetric.

Given two spherical triangles, ABC, A'B'C',; on equal spheres,
such that AB—=A'B', BC=B'C', CA=C'A'.

To prove that LA=ZL A\ LB=LB',LC=ZLC(, and that
A ABC and A'B'C' are either congruent or symmetric.

Proof. Let O and O' be the centers of the spheres.

Pass a plane through each pair of vertices of each triangle
and the center of its sphere.

Then in the trihedral angles at O and O' the face angles are
equal each to its corresponding face angle. § 167

.*. the corresponding dihedral £ are respectively equal. § 499
.*. the £ of the spherical A are respectively equal. § 655
.*. the A are either congruent or symmetric, by § 676. .E.D.

Discussion. In the figures the parts are arranged in the same order,
so that the triangles are congruent. They might be arranged as in the
figures of § 676.

Discuss the proposition when the triangles are equilateral and each
side is a quadrant.

Discuss the proposition when two sides of each triangle are quadrants.

What is the corresponding proposition in plane geometry, and why
does not the form of proof there given hold here ?



404 BOOK VIII. SOLID GEOMETRY

ProrositioN XVIII. THEOREM

678. Two mutually equiangular triangles on the same
sphere or on equal spheres are mutually equilateral,
and are either congruent or symmetric.

Given two mutually equiangular spherical triangles 7 and 7' on
equal spheres.
To prove that T and 1" are mutually equilateral, and are
either congruent or symmetric.
Proof. Let the AP be the polar triangle of A 7, and the AP’
be the polar triangle of AT".
Since the A T"and 1" are mutually equiangular, Given
.*. the polar A P and P' are mutually equilateral. § 667
.*. the polar A P and P' are mutually equiangular. § 677
But the A T"and 7" are the polar A of A Pand P'. § 666

.*. the AT and T' are mutually equilateral. § 667
Therefore the A T and 7" are either congruent or symmetric,
by § 677. Q.E.D.

Discussion. The statement that mutually equiangular spherical tri-
angles are mutually equilateral, and are either congruent or symmetric,
is true only when they are on the same sphere or on equal spheres. When
the spheres are unequal, the spherical triangles aré unequal. In this case,
however, their sides have the same arc measure, and therefore have the
same ratio as the circumferences or as the radii of the spheres (§ 382).
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ProrositioNn XIX. THEOREM

679. In an isosceles spherical triangle the angles op-
posite the equal sides are equal.

Given the spherical triangle ABC, with AB equal to AC.
“To prove that LB=/LC.
Proof. Draw the arc 4D of a great circle, from the vertex 4
to the mid-point of the base BC.
Then A ABD and ACD are mutually equilateral.
.. A ABD and ACD are mutually equiangular. § 677
s.LB=ZLC. Q.E.D.

EXERCISE 104

1. The radius of a sphere is 4 in. From any point on the sur-
face as a pole a circle is described upon the sphere with an open-
ing of the compasses equal to 3 in. Find the area of this circle.

2. The edge of a regular tetrahedron is e. Find the radii
r, ' of the inscribed and circumsecribed spheres.

3. Find the diameter of the section of a sphere of diameter
10 in. made by a plane 3 in. from the center.

4. The arc of a great circle drawn from the vertex of an
isosceles spherical triangle to the mid-point of the base bisects
the vertical angle, is perpendicular to the base, and divides the
triangle into two symmetric triangles.
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Prorositrion XX. THEOREM

680. If two angles of a spherical triangle are equal,
the sides opposite these angles are equal and the tri-
angle is isosceles.

Given the spherical triangle ABC, with angle B equal to angle C.

To prove that AC=A4B.
Proof. Let A A'B'C' be the polar triangle of A ABC.
Since LB=LC, .. A'C'=A4'B'" § 667
S LB'=/C, § 679
. AC = AB, by § 667. Q.E.D.

EXERCISE 105
1. To bisect-a given spherical angle.

2. To construct a spherical triangle, given two sides and the
included angle.

3. To construct a spherical triangle, given two angles and the
included side.

4. To construct a spherical triangle, given the three sides.

5. To construct a spherical triangle, given the three angles.

6. To pass a plane tangent to a given sphere at a given pomt;
on the surface of the sphere.

7. To pass a plane tangent to a given sphere through a given
straight line without the sphere.
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Prorosition XXI. THEOREM

681. If two angles of a spherical triangle are unequal,
the sides opposite these angles are unequal, and the side
opposite the greater angle is the greater ; and if two sides
are unequal, the angles opposite these sides are unequal,
and the angle opposite the greater side is the greater.

Given the triangle ABC, with angle C greater than angle B.

To prove that AB > AC.
Proof. Draw the arc CD of a great circle, making ZDCB
equal to £ B, Then DB = DC. § 680
Now AD+DC>AC. § 663
.. AD+4+ DB>AC, or AB> AC, by Ax. 9. Q.E.D.

Given the triangle ABC, with AB greater than AC.
To prove that £ C is greater than £ B.

Proof. The £ C' must be equal to, less than, or greater than
the £ B.
IféC’:AB,thenAB:AC; § 680
and if Z C is less than £ B, then 4B< A C, as above.
But both of these conclusions are contrary to what is given.
.. £C is greater than ZB. Q.E.D.
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ProrositioN XXII. THEOREM

682. T'he shortest line that can be drawn on the sur-
Jace of a sphere between two points is the arc of a great
circle joining the two points, not greater than a semi-

circle.
A

7/

@

Given AB, the arc of a great circle, not greater than a semicircle,
joining the points A and B.

To prove that AB is the shortest line that can be drawn on
the surface joining 4 and B.

Proof. . Let C be any point in 4B.

With 4 and B as poles and AC and BC as polar distances,
describe two arcs DCF and GCE.

The arcs DCF and GCE have only the point C' in common.
For if F is any other point in DCF, and if arcs of great circles
AF and BF are drawn, then

AF=AC. § 636

But "AF+BF> AC + BC. § 663

Take away A F from the left member of the inequality, and
its equal 4C from the right member. '

Then BF> BC. Ax. 6

Therefore BF > BG, the equal of BC.  Ax. 9

Hence F lies outside the circle whose pole is B, and the
arcs DCF and GCE have only the point C' in common.
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Now let ADEB be any line from A4 to B on the surface of
the sphere, which does not pass through C.

This line will cut the arcs DCF and GCE in separate points
D and E; and if we revolve the line 4D about 4 as a fixed
point until D coincides with C, we shall have a line from 4 to
C equal to the line 4D.

In like manner, we can draw a line from B to C equal to
the line BE. .

Therefore a line can be drawn from 4 to B through C that
is equal to the sum of the lines 4D and BE, and hence is less
than the line ADEB by the line DE.

Therefore no line which does not pass through C can be the
shortest line from 4 to B.

Therefore the shortest line from 4 to B passes through C.

But C is any point in the arc 4B.

Therefore the shortest line from 4 to B passes through
every point of the arc 4B, and consequently coincides with
the arc 4B.

Therefore the shortest line from 4 to B is the great-circle
arc AB. Q.E.D.

EXERCISE 106

1. The three medians of a spherical triangle are concurrent.

2. To construct with a given radius a spherical surface that
passes through three given points.

3. To construct with a given radius a spherical surface that
passes through two given points and is tangent to a given plane.

4. To construct with a given radius a spherical surface that
passes through two given points and is tangent to a given
sphere.

5. The smallest circle on a given sphere whose plane passes
through a given point within the sphere is the circle whose
plane is perpendicular to the radius through the given point.
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683. Zone. A portion of a spherical surface included be-
tween two parallel planes is called a zone.

Thus on the earth we have the torrid zone included between the
pldnes of the tropics of Cancer and Capricorn.

The circles made by the planes are called the
bases of the zone, and the distance between the 4
planes is called the altitude of the zone.

If one of the planes is tangent to the sphere and
the other plane cuts the sphere, the zone is called a

zone of one base. Y ) S
If both planes are tangent to the sphere, the zone
is a complete spherical surface.

684. Generation of a Zone. If a great circle revolves about
its diameter as an axis, any arc of the circle generates a zone.

Thus, in the figure of § 683, if the great circle PACQ revolves about
its diameter P@ as an axis, the arc 4 C generates the zone 4D, of which
the altitude is the distance between the parallel planes. Similarly, the
arc AP generates the zone A BP, and the arc C' Q) generates the zone CDQ,
these both being zones of one base.

685. Lune. A portion of a spherical surface bounded by
the halves of two great circles is called a lune.
Thus PAQB is a lune. A lune is
evidently generated by the partial or

complete revolution of half of a great
circle about its diameter as an axis.

686. Angle of a Lune. The angle
between the semicircles bounding
a lune is called the angle of the
lune.

Thus £ APB is the angle of the Q
lune PAQB. :

A lune is usually taken as having an angle less than a straight angle.
This is not necessary, for we may consider a hemispherical surface as a
lune with an angle of 180°. We may also conceive of lunes with angles
greater than a straight angle, and we may even think of an entire
spherical surface as a lune whose angle is 360°.

r
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ProrosiTioNn XXIII. THEOREM

687. The area of the surface generated by a straight
line revolving about an axis in its plane is equal to the
product of the projection of the line on the axis by
the circle whose radius is a perpendicular erected at the
mid-point of the line and terminated by the axis.

A M B B

4

[n \
"y A

A
o A VIR S RS

Given an axis XY about which a line AB in the same plane with
XY revolves, M being the mid-point of AB, CD being the projec-
tion of AB on XY, MO being perpendicular to XY, MR being per-
pendicular to AB, and a being the area generated by AB.

B
|
|

D

Q

To prove that a=CD X 2mMR.
Proof. 1. If 4B is Il to XY, CD=AB, MR coincides with
MO, and « is the lateral area of a right cylinder. § 588

2. If AB is not Il to XY, and does not cut XV, a is the
lateral area of the frustum of a cone of revolution.

c.a=AB X 27MO. § 616
Draw AE |l to XVY.
The A AEB and MOR are similar. § 290
MO :AE = MR : AB. § 282
<. AB X MO=AE X MR, § 261
or AB X MO =CD X MR. Ax. 9
Substituting, a=CD X 2mMR.

3. If A lies in the axis XY, then AE and CD coincide,
and a=CD X 27MR, by § 609. Q.E.D.
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Proposirion XXIV. THEOREM

688. The area of the surface of a sphere is equal to
the product of the diameter by the circumference of a
great circle.

Given a sphere generated by the semicircle ABCDE revolving
about the diameter AE as an axis, s being the area of the surface,
r being the radius, and d being the diameter.

To prove that s =2mrd.

Proof. Inscribe in the semicircle half of a regular polygon
having an even number of sides, as ABCDE.

From the center O draw s to the chords 4B, BC, CD, DE.

These s bisect the chords (§ 174) and are equal. §178

Let  denote the length of each of these L.
From B, C, and D drop perpendiculars to AE.

Then area of surface generated by AB=AB' X 27, § 687

area of surface generated by BC' = B'0 X 2 i, ete.

.. area of surface generated by ABCDE =AE X 27wl Ax.1

=2mld. Ax. 9

Denote the area of the surface generated by ABCDE by s/,
and let the number of sides of A BCDE be indefinitely increased.

Then s' approaches s as a limit,

¢ approaches » as a limit, § 377
and consequently 2 7rid approaches 2 7rd as a limit.

But s'=2mld, always. . § 687

s =2mrd, by § 207, . QED
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689. Cororrary 1. The area of the surface of a sphere is
equivalent to the area of four great circles, or to 4 mr

In s = 2#rd, what is the value of d in terms of 7 ? Then what is the
value of 8 in terms of r?

For example, if the radius is 10 in., the area of the surface of the
sphere is 47 - 100 sq. in., or 1256.64 sq. in.

690. Cororrary 2. The areas of the surfaces of two spheres
are to each other as the squares on their radii, or as the squares
on their diameters.

If the radii are r and ¢/, the diameters d and d’, and the surfaces
s and &', then what is the ratio of s to s/, according to § 689 ? Show that
this also equals 72 : 2, and d? : d’2.

691. Cororrary 3. The area of a zome is equal to the
product of the altitude by the circumference of a great circle.

If we apply the reasoning of § 688 to the zone generated by the revo-
lution of the arc BCD, we obtain

the area of zone BCD = B'D’ x 2=,

where B’DY is the altitude of the zone and 2#r the circumference of
a great circle. .

For example, if the radius is 10 in., and the altitude is 5 in., the area
of the zone is 5. 27 - 10 sq. in., or 314.16 sq. in.

692. CororLArY 4. The area of a zone of one base is equiv-
alent to the area of a circle whose radius is the chord of the
generating are.

The arc AB generates a zone of one base.
.. the area of the zone AB = AB' X 27ar = wAB’ x AE.
But AB x AE = AB. § 208
.. the area of the zone AB = wAB">

693. Spherical Excess of a Triangle. The excess of the sum of
the angles of a spherical triangle over 180° is called the spherical
excess of the triangle.

For example, if the angles of a spherical triangle are 80°, 90°, and 100°,
the spherical excess of the triangle is 90°.
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ProprositioN XXV. THEOREM

694. The area of a lune is to the area of the surface of
the sphere as the angle of the lune is to four right angles.

s

I

Q

ek

TRt
J

Given a lune PAQB, the great circle ABCD whose pole is P, a
the value in degrees of the angle of the lune, 7 the area of the lune,
and s the area of the surface of the sphere.

To prove that lis=a:4rt A
Proof. The arc 4B measures the £ a of the lune. § 654
Hence arc AB: circle ABCD =« : 4 rt. A. § 212

If AB and ABCD are commensurable, let their common meas-
ure be contained m times in 4B, and » times in A BCD.
Then arc AB: circle ABCD =m : n.
coardrt. £=m:n.
Pass an arc of a great cirele through the poles P and @ and
each point of division of 4BCD.
These arcs will divide the entire surface into » equal lunes,
of which the lune P4QB will contain m.
Slis=min.
Solis=a:4rt A Ax. 8
If AB and ABCD are incommensurable, the theorem can be
proved by the method of limits as in § 472. . Q.E.D.
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EXERCISE 107

Using m = 8.1416 for all examples in this exercise, find the
areas of spheres whose radii are as follows :

1. 2 in. 3. 3} in. 5. 2 ft. 1 in. 7. 48.8 in.
2. 7in. 4. 5% in. 6. 3 ft. 6 in. 8. 4000 mi.

Find the radii of spheres whose areas are as follows :

9. 12.5664 sq. in. 11. 1 sq. ft. 13. s.
10. 50.2656 sq. in. 12. 100 7 sq. in. 14. 475

On a sphere whose radius is 20 in., find the areas of zones
whose altitudes are as follows :

15. 2 in. 17. 7 in. 19. 1 ft. 21. 3.45 in.
16. 3 in. 18. 10 in. 20. 2} in. 22. 6.83 in.

On a sphere whose radius is 10 in., find the areas of lunes
whose angles are as follows :

23. 30°. 25. 90°. 27. 22° 30", 29. 52°20' 20".

24. 45° 26. 180°. 28. 7° 30" 30. 48°35' 10"

31. Two lunes on the same sphere or on equal spheres have
the same ratio as their angles.

32. The area of a lune is equal to one ninetieth of the area
of a great circle multiplied by the number of degrees in the
angle of the lune.

33. Zones on the same sphere or on equal spheres are to
each other as their altitudes.

34. Given the radius of a sphere 15 in., find the area of a
lune whose angle is 30°.

35. Given the diameter of a sphere 16 in., find the area of a
lune whose angle is 75°

36. What is the spherical excess of a trirectangular triangle ?
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ProrosiTioN XXVI. THEOREM

695. A spherical triangle is equivalent to a lune whose
angle is half the spherical excess of the triangle.

Given the spherical triangle ABC on a sphere of surface s.
To prove that A ABC is equivalent to a lune whose angle s
Y(LA+ LB+ £LC—-180°).
Proof. Produce the sides of the A ABC to complete circles.
Now A AB'C' and A'BC are symmetric. Const.
.*. A AB'C' is equivalent to A 4'BC. § 674
.. lune ABA'C=A ABC + A AB'C". Ax. 9
But ACB'A4+AAC'B4+AABC'+AABC=}s. Ax. 11
. (lune BC'B'A— A ABC) + (lune CAC'B — A ABC)
+ lune ABA'C=1}s. Ax. 9
. 2A ABC = lune BCB'A 4 lune CAC'B
+ lune ABA'C — }s. Axs. 1,2
A ABC =} (lune BCB'A + lune CAC'B
+ lune ABA'C — L s). Ax. 4

But } s =a lune whose angle is 180°. § 694
.*. A ABC = a lune whose angle is
Yy LA+ LB+ LC—180°%). Q.E.D.

Discussion. Since we have found (§ 894) how to compute the area of
a lune, we can now compute the area of a spherical triangle when the
angles are known.
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696. CoroLLARY. If two great-circle arcs intersect within
a great circle, the sum of the two opposite spherical triangles
which they form with the great circle is equivalent to a lune
whose angle is the angle between the arcs.

697. Computation of Area. To illustrate the computation in-

volved in § 695, find the area of a triangle whose angles are 110°,
100°, and 95° on the surface of a sphere whose radius is 6 in.

Spherical excess = 110° + 100° 4 95° — 180° = 125°,
.. angle of lune = 62§°.

62}

.. area of lune = 360 of the spherical surface.

1
. area of lune = % X 4 x 3.1416 x 36 sq. in.
.. area of triangle = 78.54 sq. in.

698. Spherical Excess of a Polygon. The excess of the sum of
the angles of a spherical polygon of n sides over (n — 2) x 180°
is called the spherical excess of the polygon.

EXERCISE 108

Compute the areas of triangles on spheres of the given diam-
eters, the angles being as follows :

1. 100°,120°140°, d =16 in. - 4. 115° 124°, 85°, d — 30in.

2. 105°,130°,125°, d =10in. 5. 135°,110°,92°, d — 40 in.

3. 127°,132°, 90°, d=20in. 6. 148°93°,68°,d — 25.8in.

7. 115° 27" 30", 102° 32' 48", 68° 27’ 39", d = 8000 mi.

Compute the areas of triangles on spheres of the given radii,
the angles being as follows : _

8. 120°,100°% 90° r=9 in.  11. 115° 102° 30°, » = 36 in.

9. 130°, 90°, 80°, »—10 in.  12. 140°, 120°, 85°, # — 90 in.

10. 105°, 75, 65°% » =18 in.  13. 136°,117°,93°, r = 1.8 in.
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Compute the areas of triangles on spheres of the given cir-
cumferences, the angles being as follows :

14. 93°, 94°, 120° ¢ = 31.416 in.

15. 82°, 105° 98°, ¢ = 62.832 in.

16. 148° 27°,125° ¢=15.708 in.

17. 162° 39° 120° ¢ = 78.54 in.

18. 149° 41°, 116°, ¢ = 39.27 in.

19. 126° 30' 42", 105° 26' 15", 63° 15’ 3", ¢ = 314.16 in.

20. What is the area of a triangle on the earth’s surface
the vertices of which are the north pole and two points on the
equator, one at 37° W. and the other at 16° E., the earth being
considered a sphere with a radius of 4000 mi. ?

21. If the radii of two spheres are 6 in. and 4 in. respec-
tively, and the distance between the centers is 5 in., what is
the area of the circle of intersection of the spheres ?

22. Find the radius of the circle determined on a sphere of
5 in. diameter by a plane 1 in. from the center.

23. If the radii of two concentric spheres are » and »', and
if a plane is passed tangent to the interior sphere, what is the
-area of the section made in the other sphere ?

24. Two points 4 and B are 8 in. apart. Find the locus in
space of a point 5 in. from 4 and 7 in. from B.

25. Two points 4 and B are 10 in. apart. Find the locus in
space of a point 7 in. from 4 and 3 in. from B.

26. The radii of two parallel sections of the same sphere are
a and b respectively, and the distance between the sections is
d. Find the radius of the sphere.

27. The diameter of a certain sphere is V2. The chords of
the arcs that form the sides of a triangle on the surface of the
sphere are respectively 1, 1, and } V2. Find the area of the
spherical triangle.
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Prorosition XXVII. THEOREM

699. A spherical polygon is equivalent to a lune whose
angle is half the spherical excess of the polygon.

Given a spherical polygon P of n sides, the sum of the angles
being s.

To prove that P is equivalent to a lune whose angle s
T (s—n—2x180°).

Proof. Draw all the diagonals from any vertex.

Since there is a distinet triangle for each side except those
meeting at the vertex chosen, there are (n — 2) triangles.

Since each triangle is equivalent to a lune whose angle is
half the excess of the sum of its angles over 180°, § 695

therefore the (n — 2) triangles are equivalent to a lune whose
angle is half the excess of the sum of all the angles of the
polygon over (n — 2) x 180°

.. P =a lune whose angle is $(s —n — 2 x 180°). Q.E.D.

700. Computation of Area. Find the area of a spherical poly-
gon whose angles are 100°, 110° 120°, and 170° » being 6 in.

Spherical excess = 100° + 110° - 120° 4-170° — 2 x 180° = 140°,
+. angle of lune = 70°,
. area of lune = 3% of 47?2
= 4% of 4 x 3.1416 x 86 sq. in.
= 87.9648-sq. in.
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EXERCISE 109

Find the areas of spherical polygons on spheres of the given
areas, the angles being as follows : )

1.

SO YR T SORE )

30°, 90°,120°, 130° a =2 sq. ft.
45°, 60°, 100°, 165° a = 288 sq. in.
70°, 168°, 92°,-120° a = 500 sq. in.

. 68° 30", 149° 50', 96° 54, 136° 52/, @ = 750 sq. in.

. 122°27'40",130°32'50"", 98°31'30", 96°48", a= 600 sq. in.
. 132°, 96°, 154°, 120°, 150°, @ = 3 sq. ft. 120 sq. in.

. 130°, 156°, 172°, 95°, 120°, 100°, @ = 157.2 sq. in.

Find the areas of spherical polygons on spheres of the given
radii, the angles being as follows :

8.
9.
10.
11.

130°, 150°, 80°, 90°, » = 10 in.

148°, 157°, 90°, 100°, 120°, » = 20 in.

172°, 169°, 86°, 141°, 100°, 90°, » — 24 in.
135° 30/, 148° 42', 96° 37, 102° 11/, » = 10 in.

Find the areas of spherical polygons on spheres of the given
diameters, the angles being as follows :

12.
13.
14.
15.

148°, 92°, 60°, 120°, d = 10 in.

172°, 168°, 93°, 37°, 100°, d = 22 in.

102°, 162°, 139°, 141°, 138°, 126°, d = 20 in.

82°50'42", 120°29' 18", 98°37'15", 141°22'45", =20 in.

Find the areas of spherical polygons on spheres of the given
circumferences, the angles being as follows :

16.
17.
18.
19.

39°, 148°, 172°, 168°, ¢ = 3.1416 in.

128°, 92°, 168°, 109°, ¢ = 31.416 in.

146°, 129°, 102°, 137°, 100°, ¢ = 6.2832 in.
128°, 145°, 139°, 82°, 161°, 137°, ¢ = 18.8496 in.



MEASUREMENT OF SPHERICAL SOLIDS 421

701. Spherical Pyramid. A portion of a sphere bounded by
a spherical polygon and the planes of its
sides is called a spherical pyramid.

The center of the sphere is called the vertex
of the spherical pyramid, and the spherical

polygon is called the base.
Thus 0-ABC is a spherical pyramid.

702. Spherical Sector. A portion of a sphere generated by
the revolution of a circular sector about any diameter of the
circle of which the sector is a part is called a spherical sector.

o
B
A
P 0
1]

Thus if the sector A OB revolves about the diameter MN as an axis, it ’
generates the spherical sector 4 B-O-4’B’.

The zone generated by the arc of the generating sector is called the
base of the spherical sector.

703. Spherical Segment. A portion of a sphere contained
between two parallel planes is called a spherical segment.

The sections of the sphere made by the parallel planes are called the
bases of the spherical segment, and the distance between these bases is
called the altitude of the spherical segment.

If one of the parallel planes is tangent to the sphere, the segment
is called a spherical segment of one base.

A spherical segment of one base may be generated by the revolution
of a circular segment about the diameter perpendicular to its base.

704. Spherical Wedge. A portion of a sphere bounded by a
lune and the planes of two great circles is called a spherical
wedge.
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ProprositioN XXVIII. THEOREM

705. The volume of a sphere is equal to the product
of the area of its surface by one third of its radius.

\"

Given a sphere of radius r, area of surface s, volume v, and
center O.

To prove that v=8X L

Proof. We may imagine a cube of edge 2r circumscribed
about the sphere. : :

Connect O with each of the vertices of this cube.

These connecting lines are the edges of six pyramids whose
bases are the faces of the cube and whose altitudes all equal ».

The volume of each pyramid is a face of the cube multiplied
by }r, and the volume of the six pyramids, or of the whole
cube, is the area of the surface of the cube multiplied by } 7.

Now imagine planes drawn tangent to the sphere, at the
points where the edges of the pyramids cut its surface. We
then have a circumscribed solid whose volume is nearer that
of the sphere than is the volume of the circumsecribed cube,
but is still greater than the sphere. Ax. 11

Proceeding as before, connect O with the vertices of the
new polyhedron. These connecting lines are the edges of
pyramids whose bases are together equal to the bases of the
polyhedron and whose common altitude is r. § 646
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Then the sum of the volumes of these pyramids is again the
area of the surface of the polyhedron multiplied by 4 ». De-
noting this volume by +' and the area of the surface by s', we
have v'=s"X}r

If we continue to draw tangent planes to the sphere, we con-
tinue to diminish the circumseribed solid. A

By continuing this process indefinitely we can make the
difference between the volume of the sphere and the volume
of the circumscribed solid less than any assigned positive
quantity, however small, the difference between the surface of
the sphere and the surface of the circumscribed solid becoming
and remaining less than any assigned value, however small.

.. v is the limit of ¢', and s is the limit of s'.  § 204

And since it has been shown that

v'=s' X }r, always,
c.ov=sX3ir by § 207 Q.E.D.

706. Cororrary 1. The volume of a sphere of radius r and
diameter d is equal to 4 mr® or L wds,

For in v = s x }r what is the value of s in terms of »? What is the
value of d in terms of r ? Then what is the value of v in terms of d ?

707. CoroLLarY 2. The volumes of two spheres are to each
other as the cubes of their radii.

‘What is the ratio of $ 7wr3 to § #r3?

By the same reasoning, the volumes are to each other as the cubes of
the diameters.

708. CororrArY 3. The volume of a spherical sector is
equal to one third the product of the area of the zone which
JSorms its base multiplied by the radius of the sphere.

Suppose the base divided into spherical triangles. The planes deter-
mined by their vertices are the bases of triangular pyramids with ver-

tices at O. What is the limit of the sum of the volumes of these pyramids
as the bases decrease in size ?
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EXERCISE 110
ProsBLEMS oF CoMPUTATION

Find the volumes of spheres whose radii are :

1. 3in. 4. 2} in. 7. 20.7 ft.
2. 5in. 5. 43 in. 8. 2 ft. 3 in.
3. 7in. 6. 9% in. 9. 4000 mi.
Find the volumes of spheres whose diameters are :
10. 24 in. 13. 2.8 in. 16. 2 ft. 1 in.
11. 36 in. 14. 3.4 in. 17. 3 ft. 4 in.
12. 48 in. 15. 4.5 in. 18. 8 ft. 6 in.

Find the volumes of spheres whose circumferences are :

19. 6.2832 in. 20. 12.5664 in. 21. 18.8496 in.

Find the volumes of spheres whose surface areas are :

22. 12.5664 sq. in. 23. 50.2656 sq.in. 24. 113.0976 sq. in.

Find the radii of spheres whose volumes are :

25. 4.1888 cu. in. 26. 33.5104 cu.in. 27. 113.0976 cu. in.

28. The circumference of a hemispherical dome is 66 ft.
How many square feet of lead are required to cover it ?

29. If the ball on the top of St. Paul’s Cathedral in London
is 6 ft. in diameter, how much would it cost to gild it at 9 cents
per square inch ?

30. The dihedral angles made by the faces of a spherical
pyramid are 80° 100° 120°, and 150°, and the length of a
lateral edge is 42 ft. Find the area of the base.

31. The dihedral angles made by the faces of a spherical
pyramid are 60° 80° and 100° and the area of the base is
4 7r8q. ft. Find the radius.
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32. What is the area of the surface of the earth ?

Assume that the earth is a sphere with a radius of 4000 mi., and make
the same assumption in subsequent examples relating to the earth.

33. The altitude of the torrid zone is 3200 mi. Find its area.

34. What is the area of the north temperate zone if its
altitude is 1800 mi. ?

35. I'ind the number of square miles of the earth’s surface
that can be seen from an agroplane 1500 ft. above the surface.

36. How far in one direction can a man see from the deck
of an ocean steamer if his eye is 40 ft. above the water ?

37. To what height must a man be raised above the earth
in order to see one sixth of its surface ?

38. How much of the earth’s surface would a man see if he
were raised to the height of the radius above it ?

39. If the atmosphere extends 50 mi. above the surface of
the earth, find the volume of the atmosphere.

40. If an iron ball 4 in. in diameter weighs 9 1b., find the
weight of a spherical iron shell 2 in. thick, the external diame-
ter being 20 in.

41. What is the angle of a spherical wedge if its volume is
11 cu. ft. and the volume of the entire sphere is 8% cu. ft. ?

42. The inside of a washbasin is in the shape of the segment -
of a sphere. The distance across the top is 16 in. and its
greatest depth is 8 in. How many pints of water will it hold,
allowing 7 gal. to the cubic foot ?

43. Prove that the volume of a spherical pyramid is equal
to the product of the base by one third of the radius, and find
the volume if the base is one eighth of the surface of a sphere
of radius 10 in.

44. Find the volume of a spﬁerical sector whose base is a
zone of area z, the radius of the sphere being r, following a
process of reasoning similar to that in § 705.
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EXERCISE 111
ForMULAS

1. Find the area # of the zone of a sphere of radius 7, illu-
minated by a lamp placed at the height A4 above the surface.

2. Find the volume v of a sphere in terms of ¢, the cir-
cumference.

3. Find the radius » of a sphere in terms of v, the volume.

4. Find the diameter d of a sphere in terms of s, the
area of the surface.

5. Find the circumference ¢ of a sphere in terms of s, the
area of the surface.

6. What is the altitude a of a zone, if its area is # and the
volume of the sphere is v ? '

7. Show that in a spherical pyramid v =1} 6. Find # in
terms of v and &; also & in terms of v and r.

8. Find a formula for the volume of the metal in a spher-
ical iron shell, the inside radius being » and the thickness of
the metal being . )

9. Find a formula for the weight of a spherical shell, the
inside radius being r, the thickness of the metal being ¢, and
the weight of a cubic unit of metal being w. .

10. If the area of a zone z equals 2 7ra (§ 691), find a for-
mula for ¢ in terms of z and r.

11. If the area of a zone is expressed by the formula z2=2mra,
what is the diameter of the sphere upon which a zone z has an
altitude a ?

12. Find the area = of a zone of altitude @ on a sphere whose
area of surface is s.

13. Find a formula for the area a of that part of the surface
of a sphere of radius » seen from a point at a distance & above
the surface.
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" EXERCISE 112
ProBrLEMS oF Locr
Find the locus of a point :
1. At a given distance from a given point.
. At a given distance from a given straight line.
. At a given distance from a given plane.
. At a given distance from a given cylindric surface.
. At a given distance from a given spherical surface.

. Equidistant from two given points.

g O Ot - W D

. Equidistant from two given planes.
8. At a given distance from a given point and at another
given distance from a given straight line.
9. At a given distance from a given point and at another
given distance from a given plane.
10. At a given distance from a given point and equidistant
from two other given points.

11. At a given distance from a given point and equidistant
from two given planes,

Find one or more points :

12. Atadistance d, from a given point, at a distance d, from
a given straight line, and at a distance d, from a given plane.

13. At a distance d, from a given point, at a distance d,
from a given plane, and equidistant from two other given
planes. :

14. Equidistant from two given points, equidistant from two
given planes, and at a distance » from a given point.

15. Find the locus of the center of a sphere whose surface
touches two given planes and passes through two given points
that lie between the planes.
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EXERCISE 113
MisCELLANEOUS EXERCISES

1. The volume of a sphere is to the volume of the inscribed
cube as 7 is to 3 V3.

2. The volume of a sphere is to the volume of the circum-
scribed cube as 7 is to 6.

3. Find the ratio of the volume of a cube inscribed in a
sphere to that of a circumsecribed cube.

4. Find the difference between the volumes of two cubes,
one inscribed in a sphere of radius 10 in. and the other circum-
scribed about it.

5. The planes perpendicular to the three faces of a trihedral
angle, and bisecting the face angles, meet in a straight line.

6. The planes that pass through the edges of a trihedral
angle, and are perpendicular to the opposite faces, meet in a
straight line.

7. The altitude of a regular tetrahedron is equal to the sum .
of four perpendiculars let fall from any point within the tetra-
hedron upon the four faces.

8. To cut a given tetrahedral angle by a plane so that the
section shall be a parallelogram.

9. Compare the volumes of the solids generated by the
revolution of a rectangle successively about two adjacent sides,
the sides being @ and b respectively.

10. Find the difference between the volume of a frustum of
a pyramid and the volume of a prism each 24 ft. high, if the
bases of the frustum are squares with sides 20 ft. and 16 ft.
respectively, and the base of the prism is the section of the.:
frustum parallel to the bases and midway between them.

11. To draw a line through the vertex of any trihedral angle,
making equal angles with its edges.
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12. The lines drawn from each vertex of a tetrahedron to
the point of intersection of the medians of the opposite face all
meet in a point called the center of gravity of the tetrahedron,
which divides each line so that the ratio of the shorter seg-
ment to the whole line is 1:4.

13. The lines joining the mid-points of the opposite edges
of a tetrahedron all pass through the center of gravity and are
bisected by it.

14. The plane which bisects a dihedral angle of a tetrahe-
dron divides the opposite edge into segments proportional to
the areas of the faces that include the dihedral angle.

15. To cut a given cube by a plane so that the section shall
" be a regular hexagon.

16. The volume of a right circular cylinder is equal to the
product of the lateral area by half the radius.

17. The volume of a right circular cylinder is equal to the
product of the area of the rectangle which generates it, by the
length of the circumference generated by the point of intersec-
tion of the diagonals of the rectangle. '

18. If the altitude of a right circular cylinder is equal to
the diameter of the base, the volume is equal to the total area
multiplied by a third of the radius.

19. The surface of a sphere is two thirds the total surface
of the circumscribed cylinder.

20. The volume of a sphere is two thirds the volume of the
circumscribed cylinder.

21. Given a sphere, a cylinder circumscribed about the
sphere, and a cone of two nappes inscribed in the cylinder.
‘If any two planes are drawn perpendicular to the axis of the
three figures, the spherical segment between the planes is
equivalent to the difference between the corresponding cylin-
dric and conic segments.
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EXERCISE 114
REVIEW QUESTIONS

1. How is a sphere generated ?

2. What are two tests of equality of spheres ?

3. If a plane cuts a sphere, what figure is formed ? Is the
same true of a plane cutting a cone ?

4. What is the test of equal circles on a given sphere ?

5. What is a great circle of a sphere ? Name four proper-
ties of great circles.

6. What is meant by a plane being tangent to a sphere ?
State any proposition concerning a tangent plane, and the cor-
responding proposition in plane geometry.

7. Complete this statement: A sphere may be inscribed
in . ... State the corresponding proposition in plane geometry.

8. Complete this statement: A sphere may be circum-
scribed about - -.. State the corresponding proposition in
plane geometry.

9. Complete this statement: A spherical surface is deter-
mined by - - - points not in the same plane. State the corre-
sponding proposition in plane geometry.

10. What is the limit of the sum of the sides of a spherical
polygon ? What are the limits of the sum of the angles of a
spherical triangle ?

11. What is a polar triangle? State two propositions re-
lating to polar triangles.

12. What is meant by symmetric spherical triangles ? State
two propositions relating to such triangles.

13. State two propositions relating to congruent spherical
triangles.

14. How is the area of a spherical triangle found ? How is
the area of a spherical polygon found ?



APPENDIX

709. Subjects Treated. As with plane geometry, so with
solid geometry, there are many topics that might be taken in
addition to those given in any textbook. The theorems and
problems already given in this work are standard propositions
that are looked upon as basal, and are usually required as
preliminary to more advanced work, and these, with a reason-
able selection from the exercises, will be all that most schools
have time to consider. It occasionally happens, however, that
a school is able to do more than this, and then more exercises
may be selected from the large number contained in this work,
and a few additional topics may be studied. For this latter
purpose the appendix is added, but its study should not be
undertaken at the expense of good work on the fundamental
propositions and the exercises depending upon them.

The subjects treated are certain additional propositions in
the mensuration of solids, and a few general theorems relating
to similar polyhedrons, these being occasionally required for
college examinations. There is also added a brief sketch of the
history of geometry, which all students are advised to read as
a matter of general information, and a few of those recreations
of geometry that add a peculiar interest to the subject.

710. Similar Polyhedrons. Polyhedrons that have the same
number of faces, respectively similar and similarly placed, and
their corresponding polyhedral angles equal, are called similar
polyhedrons.

It will be seen that this is analogous to the definition of similar

polygons in plane geometry.
431
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ProrositioN I. THEOREM

711. A truncated triangular prism is equivalent to
the sum of three pyramids whose common base is the
base of the prism and whose vertices are the three ver-
tices of the inclined section.

Given a truncated triangular prism ABC-DEF whose base is
ABC and inclined section DEF, the truncated prism being divided
into the three pyramids E-ABC, E-ACD, and E-CFD.

To prove ABC-DEF equivalent to the sum of the three pyr-
amids E-ABC, D-ABC, and F-ABC.

Proof. E-ABC has the base ABC and the vertex E.

Now pyramid E-ACD = pyramid B-ACD. § 558

(For they have the same base, ACD, and the same altitude, since their
vertices E and B are in the line EB || to the plane ACD.)

But the pyramid B-4 CD may be regarded as having the base
ABC and the vertex Dj; that is, as pyramid D-4BC.
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Then since A CFD and 4 CF have the common base CF and
equal altitudes, their vertices lying in the line 4D which is
parallel to CF, they are equivalent. § 326

Furthermore, pyramids E-CFD and B-ACF not only have
equivalent bases, the A CFD and A CF, but they have the same
altitude, since their vertices E and B are in the line EB which
is parallel to the plane of their bases.

.. pyramid E-CFD = pyramid B-ACF. § 558

But the pyramid B-4 CF may be regarded as having the base
ABC and the vertex F; that is, as pyramid F-ABC.

Therefore the truncated triangular prism ABC-DEF Is
equivalent to the sum of the three pyramids E-ABC, D-ABC,
and F-ABC., Q.E.D.

F16. 1 Fic. 2

712. Corovrrary 1. The volume of a trurcated right tri-
angular prism is equal to the product of its base by one third
the sum of its lateral edges.

For the lateral edges DA, EB, FC (Fig. 1), being perpendicular to
the base ABC, are the altitudes of the three pyramids whose sum is

equivalent to the truncated prism. It is interesting to consider the spe-
cial case in which A DEF is parallel to A ABC.

713. Cororrary 2. The volume of any truncated triangular
prism 8 equal to the product of its right section by one third
the sum of its lateral edges.

For the right section DEF (Fig. 2) divides the truncated prism into
two truncated right prisms.
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Prorosition II. THEOREM

4. The volumes of two tetrahedrons that have o
trihedral angle of the one equal to a trikedral angle
of the other are to each other as the products of the
three edges of these trihedral angles.

"

///////

Given the two tetrahedrons S-ABC and S'-A'B'C', having the
trihedral angles S and S’ equal, v and v’ denoting the volumes.

To prove that - = S4 X 8B x SC

o S§'4'xX §'B'x S8'C’
Proof. Place the tetrahedron S-4BC upon S'-4'B'C' so that
the trihedral £ 8 shall coincide with the equal trihedral £ §'.
~Draw CD and C'D' L to the plane S'4'B/,
and let their plane intersect S'A'B'in S'DD'.
The faces S'AB and S'A'B' may be taken as the bases, and

CD, C'D' as the altitudes, of the triangular pyramids C-S'AB
and C'-S'A'B' respectively.

v S'AB x CD S'AB CD

Then = S =SuB x oD 5AB < TD § 562
Bt S = ST S £ 52
and —g—z' = TS’S% § 282
KR :7’, = SAXSEXSC 54X 3B X » by Ax.9. Q.E.D.

S'4'x S'B'x S'C' §'A"x 8'B'x 8'C'
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ProprosiTioN III. THEOREM

715. In any polyhedron the number of edgés increased
by two 1is equal to the number of vertices increased by
the number of faces.

Given the polyhedron AG, e denoting the number of edges, v the
number of vertices, and f the number of faces. .

To prove that e+2=v+f

Proof. Beginning with one face BCGF, we have e =w.

Annex a second face ABCD by applying one of its edges to
a corresponding edge of the first face, and there is formed a
surface of two faces having one edge BC and two vertices.B
and C common to the two faces.

Therefore for two faces e =v +1.

Annex a third face 4BFE, adjoining each of the first two
faces. This face will have two edges AB, BF and three ver-
tices 4, B, F in common with the surface already formed.

Therefore for three faces e=v+ 2.

In like manner, for four faces, ¢ = v + 3, and so on.

Therefore for (f—1) faces e=v+(f—2).

But £—1 is the number of faces of the polyhedron when

only one face is lacking, and the addition of this face will not
increase the number of edges or vertices. Hence for f faces

e=v+f—2,0ore+2=v+f Q.E.D.

This theorem is due to the great Swiss mathematician, Euler.
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ProrosiTioN 1V. THEOREM

716. The sum of the face angles of any polyhedron is
equal to four right angles taken as many times, less
two, as the polyhedron has vertices.

Given the polyhedron P, ¢ denotmg the number of edges, v the
number of vertices, f the number of faces, and s the sum of the
face angles.

To prove that s=((v—2)4rt 4

Proof. Since e denotes the number of edges, 2e will denote
- the number of sides of the faces, considered as independent
polygons, for each edge is common to two polygons.

If an exterior angle is formed at each vertex of every poly-
gon, the sum of the interior and exterior angles at each vertex
is 2 rt. £; and since there are 2e¢ vertices, the sum of the
interior and exterior angles of all the faces is

2ex 2r1t. A4, or e X 4 1t. A.

But the sum of the ext. £ of each face is 4 rt. A. . § 146
Therefore the sum of all the ext. £ of f faces is
S x4t A '
Therefore s=eX4rt. £—f X 4rt. 4
=(e—f)4rt 4
But - e+2=v+f; ' § 715
that is, e—f=v—2. Ax. 2

Therefore s=(v—2)4rt A Q.E.D.
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EXERCISE 115

Find the volumes of truncated triangular prisms, given the
bases b, and the distances of the three vertices p, q, r from
the planes of the bases, as follows :

1. 6=8 sq. in.,p=3 in., q=4 in., r=>5 in.
b=9sq. in,, p==06in, ¢ =3 in,, » =4} in.
b=15sq. in, p="T7in, ¢=9 in, r=81in.
b=232sq. in.,, p=9 in,, ¢ =12 in., » = 9.3 in.

o @

. b=48 sq. in., p =16 in., ¢ =15 in.,, » =18 in.

(=]

. A triangular rod of iron is cut square off (ie.in right
section) at one end, and slanting at the other end. The right
section is an equilateral triangle 1} in. on a side. The edges of
the rod are 3 ft. 2 in., 3 ft. 3 in., and 3 ft. 3 in. Find the weight
of the rod, allowing 0.28 lb. per cubic inch.

7. Two triangular pyramids with a trihedral ‘angle of the
one equal to a trihedral angle of the other have the edges of
these angles 3 in., 4 in., 3} in,, and 5 in., 5} in., 6 in. respec-
tively. Find the ratio of the volumes.

8. Make a table giving the number of edges, vertices, and
faces of each of the five regular polyhedrons, showing that in
every case the number conforms to Euler’s theorem (§ 715).

9. Make a table similar to that of Ex. 8, giving the sum
of the face angles in each of the five. regular polyhedrons,
showing that in every case s = (v — 2) 4 rt. Ls (§ 716).

10. There can be no seven-edged polyhedron.

11. Can there be a nine-edged polyhedron ?

12. What is the sum of the face angles of a six-edged poly-
hedron ?

13. What is the sum of the face angles of a polyhedron
with five vertices? with four vertices ? Consider the possi-
bility of a polyhedron with three vertices.
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ProrositioNn V. THEOREM

717. Two similar polyhedrons can be separated into
the same number of tetrahedrons similar each to each
and similarly placed.

Given two similar polyhedrons P and P'.

To prove that P and P' can be separated into the same
number of tetrahedrons similar each to each and similarly
placed.

Proof. Let G and G' be corresponding vertices.

Divide all the faces of P and P', except those which include
the angles G and ¢, into corresponding triangles by drawing
corresponding diagonals.

Pass a plane through G and each diagonal of the faces of P;
also pass a plane through G'and each corresponding diagonal
of P!,

Any two corresponding tetrahedrons G-4BC and G'-4'B'C'
have the faces 4BC, GAB, GBC similar respectively to the
faces A'B'C', G'A'B', G'B'C'. . § 292

AG _AB _AC _ BC _ GC
A'¢' T 4B A'c' T B'C'T g'e’
‘. the face GAC is similar to the face G'A'C'.  § 289

Since § 282
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They also have the corresponding trihedral £ equal. § 498

.*. the tetrahedron G-ABC is similar to G'-4'B'C'. § 710

If G-ABC and G'-A'B'C' are removed, the polyhedrons re-
maining continue similar; for the new faces GAC and G'4'C’
have just been proved similar, and the modified faces 4 GF and
A'G'F') GCH and G'C'H', are similar (§ 292) ; also the modified
polyhedral £ ¢ and G', 4 and A', C and C' remain equal each
to each, since the corresponding parts taken from these angles
are equal.

The process of removing similar tetrahedrons can be carried
on until the polyhedrons are separated into the same number
of tetrahedrons similar each to each and similarly placed. Q.E.D.

718. Cororrary 1. The corresponding edges of similar poly-
hedrons are proportional.

For the corresponding faces are similar. Therefore their correspond-
ing sides are proportional (§ 282).

719. CoroLLARY 2. Any two corresponding lines in two
similar polyhedrons have the same ratio as any two corre-
sponding edges.

For these lines may be shown to be sides of similar polygons, and
hence § 282 applies.

720. Cororrary 3. Two corresponding faces of similar
polyhedrons are proportional to the squares on any two corre-
sponding‘ edges.

For they are similqr polyhedrons, and hence they are to each other
as the squares on any two corresponding sides (§ 334).

721. CororrarY 4. The entire surfaces of two similar poly-
hedrons are proportional to the squares on any two correspond-
tng edges.

For the corresponding faces are proportional to the squares on any two

corresponding edges (§ 720), and hence their sum has the same proportion,
by § 269.
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ProrosiTioN VI. THEOREM

722. The volumes of two similar tetrahedrons are to
each other as the cubes on any two corresponding edges.

A

Given two similar tetrahedrons V-ABC and V'-A'B'C', with
volumes v and v', VB and V'B’ being two corresponding edges.
3

To prove that _v_, = —ZB—S
v VB
Proof. Since the two polyhedrons are similar, Given

.*. the corresponding polyhedral angles are equal, § 710
and, in particular, the trihedral angles ¥ and V' are equal.

v VBXVC XVA .
R 14
v V'B'XV'C'XV'A 57
VB Ve VA
Ve Vo Xy
Furthermore, since the tetrahedrons are similar, Given

VB 149 VA

VB Ve T AT ST
... VB .
Substituting 75 for its equals, we have
v VB VB VB
o 7B X vE B Ax.9
v VB’
Or - = =3" Q.E.D.
V VIBI
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ProrosiTioN VII. THEOREM

723. The volumes of two similar polyhedrons are to
each other as the cubes of any two corresponding edges.

Given two similar polyhedrons P and P', with volumes v and v/,
GB and G'B' being any two corresponding edges.

To prove that v:o'=GB: @B
Proof. Separate P and P' into tetrahedrons similar each to
each and similarly placed (§ 717), denoting their respective
volumes by v, v,, v, -, V1, Vg, Vg, +-+
Then since v,:v]=GB": GB",
v,:vj= GB": G'B", and so on. § 722
Cov v tvter oot = GB’: G'B"”. §269
But v+ v+ v+ =0, and v{f v+ vs+-- =0
coviv' =GB G_'B's, by Ax. 9. Q.E.D.
724. Prismatoid. A polyhedronhaving for bases two polygons
in parallel planes, and for lateral faces triangles or trapezoids
with one side common with one base, and the opposite vertex
or side common with the other base, is called a prismatoid.

The altitude is the distance between the planes of the bases. The mid-
section is the section made by a plane parallel to the bases and bisecting
the altitude.
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ProrosiTion VIII. THEOREM

725. The volume of a prismatoid is equal to the prod-
uct of one siwth of its altitude into the sum of its bases
and four times its mid-section.

Given a prismatoid of volume v, bases b and b', mid-section m,
and altitude a.

To prove that ~v=1%a(b+¥ +4m).

Proof. If any lateral face is a trapezoid, divide it into two
triangles by a diagonal.

Take any point P in the mid-section and join P to the
vertices of the polyhedron and of the mid-section. :

Separate the prismatoid into pyramids which have their
vertices at P, and for their respective bases the lower base
b, the upper base 0', and the lateral faces of the prismatoid.

The pyramid P-XA4B, which we may call a lateral pyra-
mid, is composed of the three pyramids P-XQR, P-QBR and
P-QAB.

Now P-XQR may be regarded as having vertex X and base
PQR, and P-QBR as having vertex B and base PQR.

Hence the volume of P-XQR is equal to } - PQR,
and the volume of P-QBR is equal to } a - PQR. § 559
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The pyramids P-QAB and P-QBR have the same vertex P.
The base Q4B is twice the base @QBR (§ 327), since the A QAB
has its base 4B twice the base QR of the A QBR (§ 136), and
these triangles have the same altitude (§ 724).

Hence the pyramid P-QA4 B is equivalent to twice the pyramid
P-QBR. ' § 563

Hence the volume of P-QAB is equal to 4 ¢ - PQR.

~ Therefore the volume of P-XAB, which is composed of
P-XQR, P-QBR, and P-QAB, is equal to 4 a- PQR.
In like manner, the volume of each lateral pyramid is equal

to 4 a X the area of that part of the mid-section which is .

included within it; and therefore the total volume of all these
lateral pyramids is equal to % am.

The volume of the pyramid with base b is } al) _
and the volume of the pyramid with base &' is } ad'". § 559

Therefore  v=}a b4 0'+ 4m). ’ Q.E.D.

EXERCISE 116

Deduce from the formula for the volume of a prismatoid,
v="ta(b+ o' + 4 m), the following formulas :

1. Cube, v =a® 3. Pyramid, v = } ba.
2. Prism, v = ba. 4. Parallelepiped, v = ba.

5. Frustum of a pyramid, v =3 a (b + ' + Vb').

6. A prismatoid has an upper base 3 sq. in., a lower base
7 sq. in., an altitude 3 in., and a mid-section 4 sq. in. What
is the volume ?

7. A wedge has for its base a rectangle 7 in. long and w in.
wide. The cutting edge is e in. long, and is parallel to the base.
The distance from e to the base is din. Deduce a formula for the

volume of the wedge. Apply this formula to the case in which
l=6,w=1,e=5,d=3.

t

[ OSSR S S S —n

4
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ProrositioNn IX. THEOREM

726. The volume of a spherical segment is equal to the
product of one half the sum of its bases by its altitude,
increased by the volume of a sphere having that altitude
Jor its diameter.

2

EO vO

Given a spherical segment of volume v, generated by the*revo-
lution of ABQP about MN as an axis, r being the radius of the
sphere, AP being represented by r,, BQ by r,, and PQ by a.

To prove that v =1} a(mwr+mr))+ 1 ma. '

Proof. We shall first find the volume of the spherical seg-
ment with one base, generated by AMP. :

Area of zone AM = 277 PM. § 691
.. volume of sector generated by OAM = }rx2mr-PM. §708
But the cone generated by OAP =} wri(r—PM). §611
.. volume AMP =37 X 27r-PM- —} wri(r—PM). Ax.2
But 72= PM X NP =PM (2r — PM). § 297
.. volume AMP=1}r X 2mr-PM
—}m-PM (27— PM)(r—PM) Ax.9
= a.PM’ (r—} PM).
In the same way, volume BMQ = - QM (r — } Q).
.". v = volume A MP — volume BMQ
=7r-P—M2-r——?!;7r-1713—7T-Q—]l{2-r+g,;7r-5]178
= WT(ITWZ -Wz) -1 W(ﬁlg — Q_]lls)



SPHERICAL SEGMENTS 445

But PM — QM =a. ) Given

v =mra(PM+ QM) — y ma(PM +PM- QM +QM"). Ax. 9

But o= PM’ — 2 PM- QM+ QM". Ax.5

. c.a*+3PM.QM=PM +PM-QM+ QM. Ax.1

cov=mra(PM+QM) — } ma(a®+ 3 PM - QM). Ax. 9
Furthermore @2r—PM)PM=r},

and 2r— QM) QM =13 § 297

27 PM+2r-QU—PM° — QM =72 +7}. Ax.1

2 e Dt L pare .
.’.1'-PM—4—7'~QM="‘1 —*2-7"2 +PM ;_QM - Axs.1,4
2 2 DAt L oAt 2
covmmg(ET PM QM @ Ly oy
2 2 3
2 2 2 2
—ma (X LY o —% — paom
2 2" 3
=La(mri+mr}) + } wa’ ‘ Q.E.D.

EXERCISE 117

Find the volumes of ‘spherical segments having bases b and
b, and altitudes a, as follows :

1. 0=4,0'=5,a=1. 4. 0=6,0'=8,a=1}.
2.0=4,0'=6,a=11 5.0=8,0'=12, a=2.
3.0=50=17a=2} 6. b=12,0'=15, a =3}.

7. b =27 sq. in., J'= 32 sq. in., a = 2.33 in.

Find the volumes of spherical segments having radit of bases
r.and r, and altitudes a, as follows :

8. = 3, 1‘2:4, a=2. 11. "= 5, ry= 3, a = 1%
9. rn=4,7r="T0a=3 12. =6, r,=5,a=1].
10. 7, =38, 7,=5, a =4} 18. 7,=9,7=10,a =24

4. » =9in., r, =T in., a =4.75 in.
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EXERCISE 118
ExXAMINATION QUESTIONS

1. A pyramid 6 ft. high is cut by a plane parallel to the
base, the area of the section being } that of the base. How far
from the vertex is the cutting plane ?

2. Find the area of a spherical triangle whose angles are
100°, 120°, and 140°, the diameter of the sphere being 16 in.

3. Two angles of a spherical triangle are 80° and 120°.
Find the limits of the third angle, and prove that the greatest
" possible area of the triangle is four times the least possible
area, the sphere on which it is drawn being given.

4. An irregular portion, less than half, of a material sphere
is given. Show how the radius can be found, compasses and
ruler being allowed.

5. Find the volume of a cone of revolution, the area of
the total surface of which is 200 7 sq. ft., and the altitude of
which is 16 ft.

6. The volumes of two similar polyhedrons are 64 cu. ft.
and 216 cu. ft. respectively. If the area of the surface of the
first polyhedron is 112 sq. ft., find the area of the surface of
the second polyhedron.

7. A solid sphere of metal of radius 12 in. is recast into a
hollow sphere. If the cavity is spherical, of the same radius
as the original sphere, find the thickness of the shell.

8. The stone spire of a church is a regular pyramid 50 ft.
high on a hexagonal base each side of which is 10 ft. There
is a hollow part which is also a regular pyramid 45 ft. high, on
a hexagonal base of which each side is 9 ft. Find the number
of cubic feet of stone in the spire.

9. The volumes of a hemisphere, right circular cone, and
right circular cylinder are equal. Their bases are also equal,
each being a circle of radius 10 in. Find the altitude of each.
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10. A sphere of radius 5 ft. and a right circular cone also of
radius 5 ft. stand on a plane. If the height of the cone is
equal to a diameter of the sphere, find the position of the plane
that cuts the two solids in equal circular sections.

11. The vertices of one regular tetrahedron are at the centers
of the faces of another regular tetrahedron. Find the ratio of
the volumes. ‘

12. Find the area of a spherical triangle, if the perimeter of
its polar triangle is 297° and the radius of the sphere is 10
centimeters.

13. The radii of two spheres are 13 in. and 15 in. respec-
tively, and the distance between the centers is 14 in. Find the
volume of the solid common to both spheres,— a spherical lens.

14. The radius of the base of a right circular cylinder is
and the altitude of the cylinder is @. Find the radius and the
volume of a sphere whose surface is equivalent to the lateral

* surface of the cylinder. '

15. If the polyhedral angle at the vertex of a triangular
pyramid is trirectangular, and the areas of the lateral faces
are a, b, and c¢ respectively, and the area of the base is d,
then a4 0*+ & =d>

16. If the earth is a sphere with a diameter of 8000 mi.,
find the area of the zone bounded by the parallels 30° north
latitude and 30° south latitude. Show that this zone and the -
planes of the circles include 1} of the volume of the earth.

17. The altitude of a cone of revolution is 12 centimeters
and the radius of its base is 5 centimeters. Compute the radius
of the sector of paper which, when rolled up, will just cover
the convex surface of the cone, and compute the size of the
central angle of this sector in degrees, minutes, and seconds.

18. The volume of any regular pyramid is equal to one
third of its lateral area multiplied by the perpendicular dis-
tance from the center of its base to any lateral face.
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~19. If the area of a zone of one base is n times the area of
the circle which forms its base, the altitude of the zone is

111, (n—1) times the diameter of the sphere. Discuss the special

case when n =1.

20. If the four sides of a spherical quadrilateral are equal,
its diagonals are perpendicular to each other.

21. Find the volume of a pyramid whose base contains 30
square centimeters if one lateral edge is 5 centimeters and the
angle formed by this edge and the plane of the base is 45°.

22. On the base of a right circular cone a hemisphere is
constructed outside the cone. The surface of the hemisphere
equals the surface of the cone. If » is the radius of the hemi-
sphere, find the slant height of the cone, the.inclination of the
slant height to the base, and the volume of the entire solid.

23. Tind the total surface and the volume of a regular tetra-
hedron whose edge equals 8 centimeters.

24. If a spherical quadrilateral is inscribed in a small circle,
the sum of two opposite angles is equal to the sum of the
other two angles.

25. By what number must the dimensions of a cylinder of
revolution be multiplied to obtain a similar cylinder of revo-
lution with surface » times that of the first ? with volume n
times that of the first ?

26. A pyramid is cut by a plane parallel to the base midway
between the vertex and the plane of the base. Compare the
volumes of the entire pyramid and the pyramid cut off.

27. The height of a regular hexagonal pyramid is 36 ft. and
one side of the base is 6 ft. What are the dimensions of a
similar pyramid whose volume is 5 that of the first ?

28. One of the lateral edges of a pyramid is 4 meters. How
far from the vertex will this edge be cut by a plane parallel to
the base, which divides the pyramid into two equivalent parts ?
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727. Recreations of Geometry. The following simple puzzles
and recreations of geometry may serve the double purpose of
adding interest to the study of the subject and of leading the
student to exercise greater care in his demonstrations. They
have long been used for this purpose and are among the best

known puzzles of geometry.

EXERCISE 119

1. To prove that every triangle is isosceles.
Let ABC be a A that is not isosceles.
Take CP the bisector of £ ACB, and ZP the L bisector of AB.
These lines must meet, as at P, for otherwise
they would be Il, which would require CP to be L
to AB, and this could happen only if A ABC were
isosceles, which is not the case by hypothesis.
From P draw PX 1 to BC and PY L to C4, and P
draw PA and PB.
Then since ZP is the L bisector of 4B, ... PA = PB.
And since CP is the bisector of ZACB, ... PX = PY.
.. the rt. & PBX and PAY are congruent, and BX = AY.
But the rt. A PXC and PYC are also congruent, and ... XC =YC.
Adding, we have BX + XC =AY + YC, or BC = AC.
.. A ABC is isosceles, even though constructed as not isosceles.

2. To prove that part of an angle equals the whole angle.

Take a square A BCD, and draw MM’P, the L bisector of CD. Then
MM’P is also the L bisector of 4B. D M C

From B draw any line BX equal to 4B.

Draw DX and bisect it by the 1L NP.

Since DX intersects CD, Is to these lines can-
not be parallel, but must meet as at P.

Draw PA, PD, PC, PX, and PB. \M

Since MP is the L bisector of CD, PD=PC. “~_
Similarly PA = PB, and PD = PX. 0

. PX=PD=PC.
But BX = BC by construction, and PB is common to & PBX and PBC.

». A PBX is congruent to A PBC, and Z XBP.=Z CBP.
.. the whole £ XBP equals its part, the Z CBP.

T X
floa
i
!
I}
!
{

.

.

7
I

~—IB

/
NS
N
.
,

/
-

4



450 APPENDIX TO SOLID GEOMETRY

3. To prove that part of an angle equals the whole angle.

Take a right triangle ABC and con-
struct upon the hypotenuse BC an equi-
lateral triangle BCD, as shown.

On CD lay off CP equal to CA.

Through X, the mid-paint of 4B,
draw PX to meet CB produced at Q.
Draw QA4.

Draw the L bisectors of Q4 and
QP, as YO and ZO. These must meet
at some point O because they are L to
two intersecting lines.

Draw 0Q, 04, OP, and OC. iy
Since O is on the L bisector of Q4, ... 0Q = 04.
Similarly 0Q = OP, and ... 04 = OP.
But CA = CP, by construction, and CO = CO.
». A AOC is congruent to A POC, and £ZACO = £ PCO.

4. To prove that part of a line equals the whole line.

Take a triangle A BCand draw CP L to AB.
From C draw CX, making ZACX = £ B.
Then & ABC and ACX are similar.

~. AABC:AACX =BC*:CX°.

1
Py XP B

Furthermore A ABC:AACX = AB:AX,
-~ BC%:TX*=AB: AX,
or BC%. AB=CX%:AX.
But BC?=AC*+ AB*—2AB. AP,
and CX?=AC*+ AX*—24X.AP.
_AC*'+ AB*—2AB. AP AC'4+ AX’_2AX.AP
e -—QAB = AX k]
or AC* | 4 _2ap=AC | ax_2apP.
AB AX '
ACE—AX: AC?—AB,
AB X
or Ez—AB-AXZ'A—Cz—'-AB-AX.
AB AX

- AB=AX,



RECREATIONS 451
5. To show geometrically that 1= 0.

Take a square that is 8 units on a side, and cut it into three parts
A, B, C, as shown in the right-hand figure. Fit

these parts together as in the left-hand figure. LA
Now the square is 8 units on a side, and therefore |. 4 B
contains 8 x 8, or 64, small squares, while the rec- | A
tangle is 13 units long and 6 units high, and there- L1 ff—<-—+— F—
3 . fore contains [~ ot
' A7 111 5% 18, or 65, [t
4 » _+—-1—4:—4 —1-{ small squares. [ | -t
i // ~reteT L +-4+-1—1  Butthe two — —
7Tt B -kt + figures are each made up of 4+B+C

(Ax.11),and thereforeare equal (Ax.8).
.~ 65 = 64, and by subtracting 64 we have 1 =0 (Ax. 2).

6. To prove that any point on a line bisects it.
Take any point P on AB.

On AB construct an isosceles A ABC, having ,,:%\
AC = BC; and draw PC. . PR
Then in & APC and PBC, we have / “‘. \“‘
ZA=/.DB, §74 7
AC = BC, Const. ',// “-‘ \‘\\
and PC = PC. Iden. 4P B

Three independent parts (that is, not merely the three angles) of one

triangle are respectively equal to three parts of the other, and the tri-
angles are congruent ; therefore AP = BP (§ 67).

7. To prove that it is possible to let fall two perpendlculars
to a line from an external point.
Take two intersecting ® with centers O and O’.

Let one point of intersection be P, and draw the diameters P4 and PD.
Draw AD cutting the circumferences at B
and C. Then draw PB and PC.

Since £ PCA is inscribed in a semicircle,
it is a right angle. In the same way, since A‘L
ZDBP is inscribed in a semicircle, it also is v'(,
a right angle.

. D and PC are both L to 4D.
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452
8. To prove that if two opposite sides of a quadrilateral are
N c

equal the figure is an isosceles trapezoid.
Given the quadrilateral ABCD, with BC = DA. NG //
To prove that AB is || to DC. X \\: d
,””/’ \\\
A M B

Draw MO and NO, the L bisectors of AB and

CD, to meet at O.
If AB and DC are parallel, the proposition is already proved.
If ABand DC are not parallel, then MO and NO will meet at O, either

inside or outside the figure. Let O be supposed to be inside the figure.
. Draw 04, OB, 0C, OD.
Then since OM is the L bisector of 4B, ... 04 = OB,
OD = 0C. :
But DA is given equal to BC.

Similarly
“ . A AOD is congruent to A BOC,
and £D0A = £BOC. .
Also, rt. & OCN and ODN are congruent,
and LNOD = £ZCON.
Similarly rt. & AMO and BMO are.congruent,
and LAOM = £ MOB.
o ZLNOD+£D0OA+ LAOM=ZLCON+ £LBOC + £LMOB,
LNOM = £ MON = a st. £.

or
Therefore the line MON is a straight line, and hence 4B is Il to DC.

If the point O is outside the quadrilateral, as
in the second figure, the proof is substantially the

same.
For it can be easily shown that

£LDON—£LDOA —LAOM
=4NOC—Z£BOC—£ZMOB, :
D__C

which is possible only if
£ZDON = £DOM,
if ON lies along OM.

or
But that the proposition is not true is evident from the
third figure, in which BC = DA, but 4B is not |l to DC.
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728. History of Geometry. The geometry of very ancient
peoples was largely the mensuration of simple areas and
volumes such as is taught to children in elementary arithmetic -
to-day. They learned how to find the area of a rectangle,
and in the oldest mathematical records that we have there is
some discussion of triangles and of the volumes of solids.

The earliest documents that we have, relating to geometry,
come to us from Babylon and Egypt. Those from Babylon
were written about 2000 B.c. on small clay tablets, some of
them about the size of the hand, these tablets afterwards
having been baked in the sun. They show that the Baby-
lonians of that period knew something of land measures, and
perhaps had advanced far enough to compute the area of a
trapezoid. For the mensuration of the circle they later used,
as did the early Hebrews, the value 7 =3.

The first definite knowledge that we have of Egyptian math-
ematics comes to us from a manuscript copied on papyrus, a
kind of paper used about the Mediterranean in early times.
This copy was made by one Aah-mesu (The Moon-born), com-
monly called Ahmes, who probably flourished about 1700 B.c.
The original from which he copied, written about 2300 =.c.,
has been lost, but the papyrus of Ahmes, written nearly four
thousand years ago, is still preserved and is now in the British
Museum. In this manuscript, which is devoted chiefly to frac-
tions and to a crude algebra, is found some work on mensu-
ration. Among the curious rules are the incorrect ones that
the area of an isosceles triangle equals half the product of
the base and one of the equal sides; and that the area of a
trapezoid having bases &, §', and nonparallel sides each equal
to @, is $ a(b +2"). One noteworthy advance appears however.
Ahmes gives a rule for finding the area of a circle, substan-
tially as follows: Multiply the square on the radius by (%#)?
which is equivalent to taking for 7 the value 3.1605. Long
before the time of Ahmes, however, Egypt had a good working
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knowledge of practical geometry, as witness the building of
the pyramids, the laying out of temples, and the digging of
irrigation canals.

From Egypt and possibly from Babylon geometry passed to
the shores of Asia Minor and Greece. The scientific study of
the subject begins with Thales, one of the Seven Wise Men
of the Grecian civilization. Born at Miletus about 640 s.c.,
he died there in 548 B.c. He spent his early manhood as a
merchant, accumulating the wealth that enabled him to spend
his later years in study. He visited Egypt and is said to have
learned such elements of geometry as were known there. He
founded a school of mathematics and philosophy at Miletus,
known as the Ionic School. How elementary the knowledge
.of geometry then was, may be understood from the fact that
tradition attributes only about four propositions to Thales,
substantially those given in §§ 60, 72, 74, and 215 of this book.

The greatest pupil of Thales, and one of the most remark-
able men of antiquity, was Pythagoras. Born probably on the
island of Samos, just off the coast of Asia Minor, about the
year 580.B.c., Pythagoras set forth as a young man to travel.
He went to Miletus and studied under Thales, probably spent
several years in study in Egypt, very likely went to Babylon,
and possibly went even to India, since tradition asserts this
and the nature of his work in mathematics confirms it. In
Jater life he went to southern Italy, and there, at Crotona, in
the southeastern part of the peninsula, he founded a school -
and established a secret society to propagate his doctrines.
In geometry he is said to have been the first to demonstrate
the proposition that the square on the hypotenuse of a right
triangle is equivalent to the sum of the squares on the other
two sides (§ 337). The proposition was known before his time,
at any rate for special cases, but he seems to have been the
first to prove it. To him or to his school seems also to have
been due the construction of the regular pentagon (§§ 397, 398)



HISTORY OF GEOMETRY 455

and of the five regular polyhedrons. The construction of the
regular pentagon requires the dividing of a line in extreme
and mean ratio (§ 311), and this problem is commonly assigned
to the Pythagoreans, although it played an important part in
Plato’s school. Pythagoras is also said to have known that six
equilateral triangles, three regular hexagons, or four squares,
can be placed about a point so as just to fill the 360°, but that
no other regular polygons can be so placed. To his school is
also due the proof that the sum of the angles of a triangle
equals two right angles (§ 107), and the construction of at
least one star-polygon, the star-pentagon, which became the
badge of his fraternity.

For two centuries after Pythagoras geometry passed through
a period of discovery of propositions. The state of the science
may be seen from the fact that (Enopides of Chios, who
flourished about 465 B.c., showed how to let fall a perpendicu-
lar to a line (§ 227), and how to construct an angle equal to a
given angle (§ 232). A few years later, about 440 B.c., Hippoc-
rates of Chios wrote the first Greek textbook on mathematics.
He knew that the areas of circles are proportional to the squares
on their radii, but was ignorant of the fact that equal central
angles or equal inscribed angles intercept equal ares.

About 430 B.c. Antiphon and Bryson, two Greek teachers,
worked on the mensuration of the circle. The former attempted
to find the area by doubling the number of sides of a regular
inscribed polygon, and the latter by doing the same for both in-
seribed and circumscribed polygons. They thus substantially
exhausted the area between the circle and the polygon, and
hence this method was known as the Method of Exhaustions.

During this period the great philosophic school of Plato
(429-348 B.c.) flourished at Athens, and to this school is due
the first systematic attempt to create exact definitions, axioms,
and postulates, and to distinguish between elementary and
higher geometry. At this time elementary geometry became
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limited to the use of the compasses and the unmarked straight-
edge, which took from this domain the possibility of con-
structing a square equivalent to a given circle (“squaring the
circle”), of trisecting any given angle, and of constructing
a cube with twice the volume of a given cube (*duplicating
the cube”), these being the three most famous problems of
antiquity. Plato and his school were interested in the so-called
Pythagorean numbers, numbers that represent the three sides
of a right triangle. Pythagoras had already given a rule to
the effect that }(m*+1)*=m?+ 4 (m*—1)% The school of
Plato found that [(§m)*4+ 1PP=m*+[($m)*—1]% By giving
various values to m, different numbers will be found such that
the sum of the squares of two of them is equal to the square of
the third.

The first great textbook on geometry, and the most famous
one that has ever appeared, was written by Euclid, who taught
mathematics in the great university at Alexandria, Egypt,
about 300 B.c. Alexandria was then practically a Greek city,
having been named in honor of Alexander the Great, and
being ruled by the Greeks.

Euclid’s work is known as the “ Elements,” and, as was the case
with all ancient works, the leading divisions were called books,
as is seen in the Bible and in such Latin writers as Ceasar
and Vergil. This is why we speak of the various books of
geometry to-day. In this work Euclid placed all the leading
propositions of plane geometry as then known, and arranged
them in a logical order. Most subsequent geometries of any im-
portance since his time have been based upon Euclid, improving
the sequence, symbols, and wording as occasion demanded.

Euclid did not give much solid geometry because not much
was known then. It was to Archimedes (287-212 m.c.), a
famous mathematician of Syracuse, on the island of Sicily,
that some of the most important propositions of solid geometry
are due, particularly those relating to the sphere and cylinder.
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He also showed how to find the approximate value of 7 by a
method similar to the one we teach to-day (§404), proving
that the real value lies between 3} and 3}¢. Tradition says
that the sphere and cylinder were engraved upon his tomb.
The Greeks contributed little more to elementary geometry,
although Apollonius of Perga, who taught at Alexandria be-
tween 250 and 200 B.c., wrote extensively on conic sections; and
Heron of Alexandria, about the beginning of the Christian era,
showed that the area of a triangle whose sides are a, , ¢, equals
\/Rs—a)(s——b) (s—¢), where s=} (¢ 40 +c) (see p. 211).

The Fast did little for geometry, although contributing
considerably to algebra. The first great Hindu writer was
Aryabhatta, who was born in 476 A.n. He gave the very
close approximation for 7, expressed in modern notation as
3.1416. The Arabs, about the time of the Arabian Nights Tales
(800 A.p.), did much for mathematics, translating the Greek
authors into their own language and also bringing learning
from India. Indeed, it is to them that modern Europe owes
its first knowledge of Euclid. They contributed nothing of
importance to geometry, however.

Euclid was translated from the Arabic into Tatin in the
twelfth century, Greek manuscripts not being then at hand, or
being neglected because of ignorance of the language. The
leading translators were Athelhard of Bath (1120), an English
monk who had learned Arabic in Spain or in Egypt; Gerhard
of Cremona, an Italian monk; and Johannes Ca,mpa.nus chap-
lain to Pope Urban IV.

In the Middle Ages in Europe nothing worthy of note was
added to the geometry of the Greeks. The first edition of
Euclid was printed in Latin in 1482, the first one in English
appearing in 1570. Our symbols are modern, + and — first
appearing in a German work in 1489; = in Recorde’s *“ Whet-
stone of Witte” in 1557; > and < in the works of Harriot
(1560-1621); and X in a publication by Oughtred (1574-1660).
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729. Areas of Solid Figures. The following are the more
important areas of solid figures:

Prism, l=ep (§ 512).

Regular pyramid, {=1%sp (§ 553).

I'rustum of regular nyramid, 7=} (p+p')s (§ 554).
Cylinder of revoiution, l=ac=2mra (§ 588).

Cone of revolution, {=}sc=mrs (§ 609).

Frustum of cone of vevolution, 7=} (¢ +¢') s (§ 615).

Sphere, s=4m" (§ 689).

Zone, s=2mra (§ 691).

Lune, § = % A= % -7 (§694).

730. Volumes. The following are the more important volumes:

Rectangular parallelepiped, e (§ 534).

Prism or cylinder, be (88 539, 589).

Pyramid or cone, Loa (§8 561, 611).

Frustum of pyramid or cone, Ya(b+0'+ \/b_b') (8§ 565, 617).
ight-circular cylinder, - m?a (§ 590).

Cone of revolution, 3 mta (§ 612).

Trustum of cone of revolution, 1 wa (0 + »'* 4+ 2") (§ 618).

Prismatoid, Ta(+0" 4+ 4m) (§725).
Sphere, L ar® =3 wd® (§ T06).

Spherical pyramid, 1 or.

Spherical sector, | Lar (§708).

Spherical segment, Ya(mri4ar}) +§ wa® (§ 726).
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